1
|
Chen T, Deng Z, Lu W, Lu M, Xu J, Mao F, Li C, Zhang C, Wang K. Pillar-Supported 2D Layered MOFs with Abundant Active-Site Distributions for High-Performance Alkaline Supercapacitors. Inorg Chem 2024; 63:18699-18709. [PMID: 39329297 DOI: 10.1021/acs.inorgchem.4c02479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The development of two-dimensional (2D) layered metal-organic frameworks (MOFs) through precise molecular-level design and synthesis has emerged as a prominent research endeavor. However, the utilization of MOFs in their pristine form as electrodes for supercapacitors poses a significant challenge due to their limited tolerance in alkaline environments. To address these issues, we have developed Co- and Cu-based pillar-layered MOFs by regulating the structure of their inner layers through introducing an alkaline N-containing "pillar" to enhance the performance of alkaline supercapacitor electrodes. From the microstructure study and theoretical calculation, the high-density redox centers and efficient chemical bonding modes of Co-MOF determine a unique electron conduction pathway, resulting in excellent energy storage performance. This study underscores the significance of chemical bonding modes and active-site distribution in enhancing the energy storage capabilities of pillar-layered MOFs in alkaline environments, presenting a promising approach for the development of high-performance MOF-based materials for supercapacitor applications.
Collapse
Affiliation(s)
- Tianqi Chen
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Zhuoyin Deng
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Wenjie Lu
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Mengfan Lu
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jiangyan Xu
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Feifei Mao
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Chao Li
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin 644000, P. R. China
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Kuaibing Wang
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
2
|
Zhang W, Cao Z, Li Y, Li R, Zheng Y, Su P, Guo X. In situ growth of binder-free CoNi 0.5-MOF/CC electrode for high-performance flexible solid-state supercapacitor application. NANOSCALE 2024. [PMID: 38656251 DOI: 10.1039/d3nr06225b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metal organic frameworks (MOFs) with binder-free electrodes have shown promise for portable electrochemical energy storage applications. However, their low specific capacitance and challenges associated with the attachment of active materials to the substrate constrain their practical utility. In this research, we prepared a CoNi0.5-MOF/CC electrode by in situ growth of CoNi0.5-MOF on an H2O2-pretreated carbon cloth (CC) without using any binder. It exhibits a higher specific capacitance of 1337.5 F g-1 than that of CoNi0.5-MOF (∼578 F g-1) at a current density of 1 A g-1 and an excellent rate ability of 88% specific capacitance retention at a current density of 10 A g-1 after 6000 cycles. The as-assembled flexible asymmetric solid-state supercapacitor based on the CoNi0.5-MOF/CC positive electrode and a nitrogen-doped graphene (N-Gr) negative electrode exhibits an energy density of 61.46 W h kg-1 at a power density of 1244.56 W kg-1 and holds a stable capacitance of ∼125 F g-1 at 1 A g-1 when the flexible supercapacitor is bent, showing great potential for flexible electronics application. The H2O2 is indicated to play an important role, enhancing the adhesion of CoNi0.5-MOF on CC and reducing its charge transfer resistance by functionalizing the carbon fiber during the pretreatment of the CC matrix. The results provide a great way to prepare a flexible asymmetric solid-state supercapacitor with both high power density and high energy density for practical application.
Collapse
Affiliation(s)
- Weijie Zhang
- Chongqing Key Laboratory of New Energy Storage Materials and Devices, School of Science, Chongqing University of Technology, Chongqing 40054, China
- School of Materials Science and Engineer, Southeast University, Nanjing 211189, China.
| | - Zhen Cao
- School of Materials Science and Engineer, Southeast University, Nanjing 211189, China.
| | - Yuying Li
- School of Materials Science and Engineer, Southeast University, Nanjing 211189, China.
| | - Ruiting Li
- School of Materials Science and Engineer, Southeast University, Nanjing 211189, China.
| | - Yanmei Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Ping Su
- Chongqing Key Laboratory of New Energy Storage Materials and Devices, School of Science, Chongqing University of Technology, Chongqing 40054, China
| | - Xinli Guo
- School of Materials Science and Engineer, Southeast University, Nanjing 211189, China.
| |
Collapse
|
3
|
Ji Z, Chen L, Tang G, Zhong J, Yuan A, Zhu G, Shen X. Rational Design of High-Performance Electrodes Based on Ferric Oxide Nanosheets Deposited on Reduced Graphene Oxide for Advanced Hybrid Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306236. [PMID: 38009511 DOI: 10.1002/smll.202306236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/31/2023] [Indexed: 11/29/2023]
Abstract
The core strategy for constructing ultra-high-performance hybrid supercapacitors is the design of reasonable and effective electrode materials. Herein, a facile solvothermal-calcination strategy is developed to deposit the phosphate-functionalized Fe2O3 (P-Fe2O3) nanosheets on the reduced graphene oxide (rGO) framework. Benefiting from the superior conductivity of rGO and the high conductivity and fast charge storage dynamics of phosphate ions, the synthesized P-Fe2O3/rGO anode exhibits remarkable electrochemical performance with a high capacitance of 586.6 F g-1 at 1 A g-1 and only 4.0% capacitance loss within 10 000 cycles. In addition, the FeMoO4/Fe2O3/rGO nanosheets are fabricated by utilizing Fe2O3/rGO as the precursor. The introduction of molybdates successfully constructs open ion channels between rGO layers and provides abundant active sites, enabling the excellent electrochemical features of FeMoO4/Fe2O3/rGO cathode with a splendid capacity of 475.4 C g-1 at 1 A g-1. By matching P-Fe2O3/rGO with FeMoO4/Fe2O3/rGO, the constructed hybrid supercapacitor presents an admirable energy density of 82.0 Wh kg-1 and an extremely long working life of 95.0% after 20 000 cycles. Furthermore, the continuous operation of the red light-emitting diode for up to 30 min demonstrates the excellent energy storage properties of FeMoO4/Fe2O3/rGO//P-Fe2O3/rGO, which provides multiple possibilities for the follow-up energy storage applications of the iron-based composites.
Collapse
Affiliation(s)
- Zhenyuan Ji
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Lizhi Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Guanxiang Tang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Jiali Zhong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, P. R. China
| | - Guoxing Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Xiaoping Shen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
4
|
Shi J, Tai H, Xu D, Kang X, Liu Z. Efficient improvement in the electrochemical performance of petal-like lamellar NiMn-LDHs with affluent oxygen vacancies derived from Mn MOF-74. Dalton Trans 2024. [PMID: 38247321 DOI: 10.1039/d3dt03807f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Supercapacitors (SCs) as a kind of novel energy storage devices have emerged to meet the urgent requirement of environmentally friendly clean energy storage equipment. However, unsatisfactory energy density and low operating voltage tremendously restrict their practical application. Herein, petal-like lamellar NiMn-layered double hydroxide (NiMn-LDH) was successfully fabricated through a simple Ni(NO3)2 etching method with Mn MOF-74 as a sacrificial template. This NiMn-LDH 3/NF electrode exhibited an improved specific capacitance of 1410.2 F g-1 at a current density of 1 A g-1 (Mn MOF-74/NF: 172.2) owing to its high redox activity, compositional flexibility and intercalating capability. Importantly, NiMn-LDH was further optimized via a facile hydroperoxide treatment to harvest NiMn-LDH (O-LDH) with abundant oxygen vacancies, exhibiting remarkable improvement in specific capacitance (990%) compared to original MOF-74 before modification. The preparation of O-LDH enriches the electrode material engineering strategy and achieves improved electrochemical performance for application in new-generation SCs.
Collapse
Affiliation(s)
- Jing Shi
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China.
| | - Hongbo Tai
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China.
| | - Dongwei Xu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China.
| | - Xiaomin Kang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China.
| | - Zhiliang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China.
| |
Collapse
|
5
|
Wang X, Hang X, Zhang G, An Y, Liu B, Pang H. Metal Ion-controlled Growth of Different Metal-Organic Framework Micro/nanostructures for Enhanced Supercapacitor Performance. Chem Asian J 2023; 18:e202300859. [PMID: 37843823 DOI: 10.1002/asia.202300859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/17/2023]
Abstract
We report a metal ion-modulated effective strategy to achieve different metal-organic framework (MOF) micro/nanostructures using different metal precursors like CoCl2 ⋅ 6H2 O, CoCl2 ⋅ 6H2 O and NiCl2 ⋅ 6H2 O, and NiCl2 ⋅ 6H2 O with pyridine-3,5-dicarboxylate (3,5-pdc). The structural characterizations confirm that different morphological structures, hollow microsphere, hierarchical nanoflower, and solid nanosphere are for Co-(3,5-pdc), Co0.19 Ni0.81 -(3,5-pdc), and Ni-(3,5-pdc), respectively. These different MOF micro/nanostructures correlate with the coordination ability of Co and Ni with 3,5-pdc. Benefitting from the synergistic effect of the alloying metal nodes of Co and Ni producing rapid and rich redox reactions and the hierarchical nanoflower with higher surface area enabling excellent ion kinetics, the Co0.19 Ni0.81 -(3,5-pdc) exhibits higher specific capacitance of 515 F g-1 /273 C g-1 at 0.5 A g-1 than that of Ni-(3,5-pdc) (290 F g-1 /153.7 C g-1 ) and Co-(3,5-pdc) (132 F g-1 /67 C g-1 ), good rate capability and cycling stability. Moreover, the asymmetric supercapacitor device (Co0.19 Ni0.81 -(3,5-pdc)//AC) assembled from Co0.19 Ni0.81 -(3,5-pdc) and activated carbon (AC) achieves a maximum energy density of 42.6 Wh kg-1 at a power density of 277.3 W kg-1 .
Collapse
Affiliation(s)
- Xiaoju Wang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Xinxin Hang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Yang An
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Bei Liu
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| |
Collapse
|
6
|
Tang X, Zhao S, Wu J, He Z, Zhang Y, Huang K, Zou Z, Xiong X. Construction of rose flower-like NiCo-LDH electrode derived from bimetallic MOF for highly sensitive electrochemical sensing of hydrazine in food samples. Food Chem 2023; 427:136648. [PMID: 37399644 DOI: 10.1016/j.foodchem.2023.136648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
It is necessary to efficient detection hydrazine in food. Exploring highly sensitive, low-cost and fast response electrochemical hydrazine sensing methods has been a challenge in this field. In this paper, a conformal transformation method is used to prepare rose flower-like NiCo-LDH derivating from the bimetallic NiCo-MOFs, and the N2H4 sensing platform with a large electrocatalytic area, high conductivity and good stability was constructed. Based on the synergy between Ni and Co and the remarkable catalytic activity of the rough 3D flower-like structure, the N2H4 sensor has a linear response in the concentration range of 0.001-1 mmol/L and 1-7 mmol/L, with a sensitivity of 5342 μA L mmol-1 cm-2 and 2965 μA L mmol-1 cm-2 (S/N = 3), respectively, and low limit of detection of 0.043 μmol/L. This study opens a new door for the successful application of electrochemical sensors to detect N2H4 in real food samples.
Collapse
Affiliation(s)
- Xin Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, Sichuan, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Shan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Jiaying Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Zhiyuan He
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Yu Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Ke Huang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, Sichuan, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Zhirong Zou
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, Sichuan, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China.
| | - Xiaoli Xiong
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, Sichuan, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China.
| |
Collapse
|
7
|
Sahoo G, Jeong HS, Jeong SM. Ligand-Controlled Growth of Different Morphological Bimetallic Metal-Organic Frameworks for Enhanced Charge-Storage Performance and Quasi-Solid-State Hybrid Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21097-21111. [PMID: 37075253 DOI: 10.1021/acsami.3c01580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The present research work facilitates a ligand-mediated effective strategy to achieve different morphological surface structures of bimetallic (Ni and Co) metal-organic frameworks (MOFs) by utilizing different types of organic ligands like terephthalic acid (BDC), 2-methylimidazole (2-Melm), and trimesic acid (BTC). Different morphological structures, rectangular-like nanosheets, petal-like nanosheets, and nanosheet-assembled flower-like spheres (NSFS) of NiCo MOFs, are confirmed from the structural characterization for ligands BDC, 2-Melm, and BTC, respectively. The basic characterization studies like scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and Brunauer-Emmett-Teller revealed that the NiCo MOF prepared by using trimesic acid as the ligand (NiCo MOF_BTC) with a long organic linker exhibits a three-dimensional architecture of NSFS that possesses higher surface area and pore dimensions, which enables better ion kinetics. Also, the NiCo MOF_BTC delivered the highest capacity of 1471.4 C g-1 (and 408 mA h g-1) at 1 A g-1 current density, compared to the other prepared NiCo MOFs and already reported different NiCo MOF structures. High interaction of trimesic acid with the metal ions confirmed from ultraviolet-visible spectroscopy and X-ray photoelectron spectroscopy leads to a NSFS structure of NiCo MOF_BTC. For practical application, an asymmetric supercapacitor device (NiCo MOF_BTC//AC) is fabricated by taking NiCo MOF_BTC and activated carbon as the positive and negative electrode, respectively, where the PVA + KOH gel electrolyte serves as a separator as well as an electrolyte. The device delivered an outstanding energy density of 78.1 Wh kg-1 at a power density of 750 W kg-1 in an operating potential window of 1.5 V. In addition, it displays a long cycle life of 5000 cycles with only 12% decay of the initial specific capacitance. Therefore, these findings manifest the morphology control of MOFs by using different ligands and the mechanism behind the different morphologies that will provide an effective way to synthesize differently structured MOF materials for future energy-storage applications.
Collapse
Affiliation(s)
- Gopinath Sahoo
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Hyeon Seo Jeong
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sang Mun Jeong
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
8
|
Cong C, Ma H. Advances of Electroactive Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207547. [PMID: 36631286 DOI: 10.1002/smll.202207547] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The preparation of electroactive metal-organic frameworks (MOFs) for applications of supercapacitors and batteries has received much attention and remarkable progress during the past few years. MOF-based materials including pristine MOFs, hybrid MOFs or MOF composites, and MOF derivatives are well designed by a combination of organic linkers (e.g., carboxylic acids, conjugated aromatic phenols/thiols, conjugated aromatic amines, and N-heterocyclic donors) and metal salts to construct predictable structures with appropriate properties. This review will focus on construction strategies of pristine MOFs and hybrid MOFs as anodes, cathodes, separators, and electrolytes in supercapacitors and batteries. Descriptions and discussions follow categories of electrochemical double-layer capacitors (EDLCs), pseudocapacitors (PSCs), and hybrid supercapacitors (HSCs) for supercapacitors. In contrast, Li-ion batteries (LIBs), Lithium-sulfur batteries (LSBs), Lithium-oxygen batteries (LOBs), Sodium-ion batteries (SIBs), Sodium-sulfur batteries (SSBs), Zinc-ion batteries (ZIBs), Zinc-air batteries (ZABs), Aluminum-sulfur batteries (ASBs), and others (e.g., LiSe, NiZn, H+ , alkaline, organic, and redox flow batteries) are categorized for batteries.
Collapse
Affiliation(s)
- Cong Cong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| | - Huaibo Ma
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| |
Collapse
|
9
|
Solvent-regulated synthesis and phosphating of nickel-cobalt bimetal organic framework microflowers with hierarchical structure for high-performance supercapacitors. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Cheng C, Zou Y, Xu F, Xiang C, Sun L. In Situ Growth of Nickel-Cobalt Metal Organic Frameworks Guided by a Nickel-Molybdenum Layered Double Hydroxide with Two-Dimensional Nanosheets Forming Flower-Like Struc-Tures for High-Performance Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:581. [PMID: 36770541 PMCID: PMC9919709 DOI: 10.3390/nano13030581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Metal organic frameworks (MOFs) are a kind of porous coordination polymer supported by organic ligands with metal ions as connection points. They have a controlled structure and porosity and a significant specific surface area, and can be used as functional linkers or sacrificial templates. However, long diffusion pathways, low conductivity, low cycling stability, and the presence of few exposed active sites limit the direct application of MOFs in energy storage applications. The targeted design of MOFs has the potential to overcome these limitations. This study proposes a facile method to grow and immobilize MOFs on layered double hydroxides through an in situ design. The proposed method imparts not only enhanced conductivity and cycling stability, but also provides additional active sites with excellent specific capacitance properties due to the interconnectivity of MOF nanoparticles and layered double hydroxide (LDH) nanosheets. Due to this favorable heterojunction hook, the NiMo-LDH@NiCo-MOF composite exhibits a large specific capacitance of 1536 F·g-1 at 1 A·g-1. In addition, the assembled NiMo-LDH@NiCo-MOF//AC asymmetric supercapacitor can achieve a high-energy density value of 60.2 Wh·kg-1 at a power density of 797 W·kg-1, indicating promising applications.
Collapse
|
11
|
Lokhande P, Kulkarni S, Chakrabarti S, Pathan H, Sindhu M, Kumar D, Singh J, Kumar A, Kumar Mishra Y, Toncu DC, Syväjärvi M, Sharma A, Tiwari A. The progress and roadmap of metal–organic frameworks for high-performance supercapacitors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Liu JQ, Kumar A, Srivastava D, Pan Y, Dai Z, Zhang W, Liu Y, Qiu Y, Liu S. Recent advances on bimetallic metal-organic frameworks (BMOFs): Syntheses, applications and challenges. NEW J CHEM 2022. [DOI: 10.1039/d2nj01994a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bimetallic metal-organic frameworks (MOFs) possess two different metal ions as nodes in their molecular frameworks. They are prepared by either using one-pot syntheses wherein different metals are mixed with suitable...
Collapse
|