1
|
Rowe C, Kashyap A, Sharma G, Goyal N, Alauzun JG, Barry ST, Ravishankar N, Soni A, Eklund P, Pedersen H, Ramanath G. Nanomolecularly-induced Effects at Titania/Organo-Diphosphonate Interfaces for Stable Hybrid Multilayers with Emergent Properties. ACS APPLIED NANO MATERIALS 2024; 7:11225-11233. [PMID: 38808308 PMCID: PMC11129189 DOI: 10.1021/acsanm.4c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/30/2024]
Abstract
Nanoscale hybrid inorganic-organic multilayers are attractive for accessing emergent phenomena and properties through superposition of nanomolecularly-induced interface effects for diverse applications. Here, we demonstrate the effects of interfacial molecular nanolayers (MNLs) of organo-diphosphonates on the growth and stability of titania nanolayers during the synthesis of titania/MNL multilayers by sequential atomic layer deposition and single-cycle molecular layer deposition. Interfacial organo-diphosphonate MNLs result in ∼20-40% slower growth of amorphous titania nanolayers and inhibit anatase nanocrystal formation from them when compared to amorphous titania grown without MNLs. Both these effects are more pronounced in multilayers with aliphatic backbone-MNLs and likely related to impurity incorporation and incomplete reduction of the titania precursor indicated by our spectroscopic analyses. In contrast, both MNLs result in two-fold higher titania nanolayer roughness, suggesting that roughening is primarily due to MNL bonding chemistry. Such MNL-induced effects on inorganic nanolayer growth rate, roughening, and stability are germane to realizing high-interface-fraction hybrid nanolaminate multilayers.
Collapse
Affiliation(s)
- Collin Rowe
- Materials
Science & Engineering Department, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
| | - Ankit Kashyap
- School
of Physical Sciences, Indian Institute of
Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Geetu Sharma
- Materials
Science & Engineering Department, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
| | - Naveen Goyal
- Materials
Research Centre, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Johan G. Alauzun
- Institut
Charles Gerhardt, University of Montpellier,
CNRS, ENSCM, 34293 Montpellier, France
| | - Seán T. Barry
- Department
of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Narayanan Ravishankar
- Materials
Research Centre, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Ajay Soni
- School
of Physical Sciences, Indian Institute of
Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Per Eklund
- Department
of Physics, Chemistry, and Biology, Linköping
University, SE-58183 Linköping, Sweden
| | - Henrik Pedersen
- Department
of Physics, Chemistry, and Biology, Linköping
University, SE-58183 Linköping, Sweden
| | - Ganpati Ramanath
- Materials
Science & Engineering Department, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
- Department
of Physics, Chemistry, and Biology, Linköping
University, SE-58183 Linköping, Sweden
| |
Collapse
|
2
|
Lawford KG, Land MA, Goodwin E, Robertson KN, Barry ST. Synthesis, Characterization, and Single-Crystal X-ray Structures of Refractory Metal Compounds as Precursors for the Single-Source Chemical Vapor Deposition of Metal Nitrides. Inorg Chem 2023; 62:21061-21073. [PMID: 38064637 DOI: 10.1021/acs.inorgchem.3c02841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
The chemical vapor deposition of refractory metal nitrides requires volatile precursors and has previously been achieved by using metal complexes containing a variety of imide ligands. Recently, the 1,4-di-tert-butyl-1,3-diazabutadiene (DAD) adduct of bis(tert-butylimide)dichloridemolybdenum(VI) was shown to be an excellent precursor for the single-source CVD of Mo2N thin films. Leveraging the success of this work, we prepared chromium and tungsten compounds with the same framework. Additionally, the framework has been modified slightly to allow the isolation of mono(tert-butylimide)trichloride complexes of vanadium, niobium, tantalum, and molybdenum(V) to extend the search for new vapor-phase precursors. These compounds were all fully characterized using the standard methods of multinuclear magnetic resonance spectroscopy, combustion analysis, and single-crystal X-ray diffraction. Their thermal properties were determined by using thermogravimetric analysis and differential scanning colorimetry to assess their utility as vapor-phase precursors. Finally, preliminary deposition studies were carried out to investigate their potential as single-source CVD precursors.
Collapse
Affiliation(s)
- Kieran G Lawford
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Michael A Land
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Eden Goodwin
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Katherine N Robertson
- Department of Chemistry, Saint Mary's University, 923 Robie Street, Halifax, Nova Scotia B3H 3C3, Canada
| | - Seán T Barry
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
3
|
Do DCH, Đorđević N, Huynh HV. Diverse Post-Metathesis Reactivities of Mixed Amido-Isothiocyanato Molybdenum Complexes. Inorg Chem 2023; 62:18583-18590. [PMID: 37921365 DOI: 10.1021/acs.inorgchem.3c02885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Attempts to prepare mixed isothiocyanato-bis(imido) MoVI complexes led to the discovery of post-metathesis rearrangements toward three distinct products (1-3), which feature the NCS-derived chelators [N(NMe2)CS]2- (L1 in dinuclear 1 and 2) and [N(SiMe3)(NMe2)CS]- (L2 in mononuclear 3). Notably, the preparation of bidentate ligand L1 and its coordination chemistry are unprecedented. Together with computational studies, it is proposed that the putative "mono-substituted" intermediate [Mo(NtBu)2(NMe2)(NCS)] serves as the common starting point for the observed molecular transformations. Construction of the [Mo(NtBu)2(NCS)2] core was ultimately possible in the presence of additional stabilizing donors (THF or PMe3), which yielded the complexes [Mo(NtBu)2(NCS)2(THF)2] (4) and [Mo(NtBu)2(NCS)2(PMe3)2] (5).
Collapse
Affiliation(s)
- Dinh Cao Huan Do
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Nemanja Đorđević
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Han Vinh Huynh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
4
|
Park DA, Son JY, Seo JM, Park BK. Synthesis and Volatility Characterization of Mo(II) and W(II) Compounds for Thin Films. Inorg Chem 2023; 62:16874-16881. [PMID: 37788074 DOI: 10.1021/acs.inorgchem.3c02449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Mo(II) and W(II) compounds, Mo(η3-allyl)(CO)2(Tri-MEDA)Br (1), Mo(η3-allyl)(CO)2(TMEDA)Br (2), W(η3-allyl)(CO)2(Tri-MEDA)Br (3), and W(η3-allyl)(CO)2(TMEDA)Br (4) (Tri-MEDA = N,N,N'-trimethylethylenediamine), were synthesized and characterized. The molecular structures of 1 and 3 were nearly identical with a pseudo-octahedral geometry except for the different Mo and W metal centers. The thermogravimetric analysis of 1 and 3 showed approximately 53 and 64% residues at 550 °C, respectively, which were significantly higher than the values for the expected materials. However, 1 and 3 sublimed at 100 °C under 0.40 Torr and 120 °C under 0.50 Torr, respectively, confirming that they were volatile. For 1 and 3, the temperatures at a vapor pressure of 1 Torr and enthalpies of vaporization (ΔHvap) were 168.78 °C and 143.8 kJ mol-1, and 167.48 °C and 148.5 kJ mol-1, respectively. The tungsten compound (3) exhibited good durability for 5 weeks under a thermal stability test at a sublimation temperature of 120 °C.
Collapse
Affiliation(s)
- Da-Ae Park
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT),Daejeon 34114, Republic of Korea
| | - Ji Young Son
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT),Daejeon 34114, Republic of Korea
- Department of Chemistry, Korea University 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ji Min Seo
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT),Daejeon 34114, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Bo Keun Park
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT),Daejeon 34114, Republic of Korea
- Advanced Materials and Chemical Engineering, KRICT School, University of Science and Technology (UST), Daejeon 34114, Republic of Korea
| |
Collapse
|
5
|
Shaw TE, Ali Z, Currie TM, Berriel SN, Butkus B, Wagner JT, Preradovic K, Yap GPA, Green JC, Banerjee P, Sattelberger AP, McElwee-White L, Jurca T. Molybdenum(III) Amidinate: Synthesis, Characterization, and Vapor Phase Growth of Mo-Based Materials. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37450887 DOI: 10.1021/acsami.3c04074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The synthesis, characterization, and thermogravimetric analysis of tris(N,N'-di-isopropylacetamidinate)molybdenum(III), Mo(iPr-AMD)3, are reported. Mo(iPr-AMD)3 is a rare example of a homoleptic mononuclear complex of molybdenum(III) and fills a longstanding gap in the literature of transition metal(III) trisamidinate complexes. Thermogravimetric analysis (TGA) reveals excellent volatilization at elevated temperatures, pointing to potential applications as a vapor phase precursor for higher temperature atomic layer deposition (ALD), or chemical vapor deposition (CVD) growth of Mo-based materials. The measured TGA temperature window was 200-314 °C for samples in the 3-20 mg range. To validate the utility of Mo(iPr-AMD)3, we demonstrate aerosol-assisted CVD growth of MoO3 from benzonitrile solutions of Mo(iPr-AMD)3 at 500 °C using compressed air as the carrier gas. The resulting films are characterized by X-ray photoelectron spectroscopy, X-ray diffraction, and Raman spectroscopy. We further demonstrate the potential for ALD growth at 200 °C with a Mo(iPr-AMD)3/Ar purge/300 W O2 plasma/Ar purge sequence, yielding ultrathin films which retain a nitride/oxynitride component. Our results highlight the broad scope utility and potential of Mo(iPr-AMD)3 as a stable, high-temperature precursor for both CVD and ALD processes.
Collapse
Affiliation(s)
- Thomas E Shaw
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
- Renewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, Florida 32816, United States
| | - Zahra Ali
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Taylor M Currie
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - S Novia Berriel
- Renewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, Florida 32816, United States
- Department of Materials Science & Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Brian Butkus
- Department of Materials Science & Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - J Tyler Wagner
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Konstantin Preradovic
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Jennifer C Green
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, U.K
| | - Parag Banerjee
- Renewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, Florida 32816, United States
- Department of Materials Science & Engineering, University of Central Florida, Orlando, Florida 32816, United States
- NanoScience & Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Alfred P Sattelberger
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
- NanoScience & Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Lisa McElwee-White
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Titel Jurca
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
- Renewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, Florida 32816, United States
- NanoScience & Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| |
Collapse
|
6
|
Land MA, Robertson KN, Clyburne JAC, Barry ST. Disturbance of intermolecular forces: eutectics as a new tool for the preparation of vapor-phase deposition precursors. Phys Chem Chem Phys 2023; 25:8336-8340. [PMID: 36916546 DOI: 10.1039/d2cp05341a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The volatile bis(tert-butylimido)dichloromolybdenum(VI) compounds, (tBuN)2MoCl2·dad (dad = 1,4-di-tert-butyl-1,3-diazabutadiene) (1) and [(tBuN)2MoCl(μ-Cl)·(tBuNH2)]2 (2), form a eutectic, with a two to one composition (χ2 = 0.33). A decrease of 40 °C in the melting temperature has been observed between the eutectic mixture and the pure compounds. We have isolated a co-crystal of (tBuN)2MoCl2·dme (dme = 1,2-dimethoxyethane) (3) and 2, also in a two to one ratio, which serves as a structural model for such mixtures. The lower melting point of carefully chosen eutectic mixtures can offer more consistent precursor delivery in deposition processes.
Collapse
Affiliation(s)
- Michael A Land
- Department of Chemistry, Carleton University, Ottawa, Ontario, K1S 5B6, Canada.
| | - Katherine N Robertson
- Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Jason A C Clyburne
- Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Seán T Barry
- Department of Chemistry, Carleton University, Ottawa, Ontario, K1S 5B6, Canada.
| |
Collapse
|
7
|
Land MA, Bačić G, Robertson KN, Barry ST. Origin of Decomposition in a Family of Molybdenum Precursor Compounds. Inorg Chem 2022; 61:16607-16621. [PMID: 36223133 DOI: 10.1021/acs.inorgchem.2c01967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bis(tert-butylimido)-molybdenum(VI) framework has been used successfully in the design of vapor-phase precursors for molybdenum-containing thin films, so understanding its thermal behavior is important for such applications. Here, we report the thermal decomposition mechanism for a series of volatile bis(alkylimido)-dichloromolybdenum(VI) adducts with neutral N,N'-chelating ligands, to probe the stability and decomposition pathways for these molecules. The alkyl groups explored were tert-butyl, tert-pentyl, 1-adamantyl, and a cyclic imido (from 2,5-dimethylhexane-2,5-diamine). We also report the synthesis of the new tert-octyl imido adducts, (tOctN)2MoCl2·L (L = N,N,N',N'-tetramethylethylenediamine or 2,2'-bipyridine), which have been fully characterized by spectroscopic techniques as well as single-crystal X-ray diffraction and thermal analysis. We found that the decomposition of all compounds follows the same general pathway, proceeding first by the dissociation of the chelating ligand to give the coordinatively unsaturated species (RN)2MoCl2. Subsequent dimerization results in either an imido bridged adduct, [(RN)Mo(μ-NR)Cl2]2, or a chloride bridged adduct, [(RN)2Mo(μ-Cl)Cl]2, depending on the size of the R group. The dimeric species then likely undergoes an intramolecular γ-hydrogen transfer to yield a nitrido-amido adduct, (RHN)MoNCl2, and an alkene. Ultimately, the resulting molybdenum species appears to decompose into free tert-alkylamine and Mo2N or Mo2C. The thermolysis reactions have been monitored using 1H NMR spectroscopy, and the volatile decomposition products were analyzed using gas chromatography-mass spectrometry. A key intermediate has also been detected using electron ionization high-resolution mass spectrometry. Finally, a detailed computational investigation supports the mechanism outlined above and helps explain the relative stabilities of different N,N'-chelated bis(alkylimido)-dichloromolybdenum(VI) adducts.
Collapse
Affiliation(s)
- Michael A Land
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Goran Bačić
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Katherine N Robertson
- Department of Chemistry, Saint Mary's University, 923 Robie Street, Halifax, Nova Scotia B3H 3C3, Canada
| | - Seán T Barry
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|