1
|
Chisholm TS, Hunter CA. Ligands for Protein Fibrils of Amyloid-β, α-Synuclein, and Tau. Chem Rev 2025. [PMID: 40327808 DOI: 10.1021/acs.chemrev.4c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Amyloid fibrils are characteristic features of many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. The use of small molecule ligands that bind to amyloid fibrils underpins both fundamental research aiming to better understand the pathology of neurodegenerative disease, and clinical research aiming to develop diagnostic tools for these diseases. To date, a large number of amyloid-binding ligands have been reported in the literature, predominantly targeting protein fibrils composed of amyloid-β (Aβ), tau, and α-synuclein (αSyn) fibrils. Fibrils formed by a particular protein can adopt a range of possible morphologies, but protein fibrils formed in vivo possess disease-specific morphologies, highlighting the need for morphology-specific amyloid-binding ligands. This review details the morphologies of Aβ, tau, and αSyn fibril polymorphs that have been reported as a result of structural work and describes a database of amyloid-binding ligands containing 4,288 binding measurements for 2,404 unique compounds targeting Aβ, tau, or αSyn fibrils.
Collapse
Affiliation(s)
- Timothy S Chisholm
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
2
|
Tan RX, Li WH, Pang JM, Zhong SM, Huang XY, Deng JZ, Zhou LY, Wu JQ, Wang XQ. Design, synthesis, and evaluation of 2,2'-bipyridyl derivatives as bifunctional agents against Alzheimer's disease. Mol Divers 2024; 28:1225-1238. [PMID: 37119457 DOI: 10.1007/s11030-023-10651-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/14/2023] [Indexed: 05/01/2023]
Abstract
Alzheimer's disease (AD) is a complex multifactorial neurodegenerative disease. Metal ion dyshomeostasis and Aβ aggregation have been proposed to contribute to AD progression. Metal ions can bind to Aβ and promote Aβ aggregation, and ultimately lead to neuronal death. Bifunctional (metal chelation and Aβ interaction) compounds are showing promise against AD. In this work, eleven new 3,3'-diamino-2,2'-bipyridine derivatives 4a-4k were synthesized, and evaluated as bifunctional agents for AD treatment. In vitro Aβ aggregation inhibition assay confirmed that most of the synthesized compounds exhibited significant self-induced Aβ1-42 aggregation inhibition. Among them, compound 4d displayed the best inhibitory potency of self-induced Aβ1-42 aggregation with IC50 value of 9.4 µM, and it could selectively chelate with Cu2+ and exhibited 66.2% inhibition of Cu2+-induced Aβ1-42 aggregation. Meanwhile, compound 4d showed strong neuroprotective activity against Aβ1-42 and Cu2+-treated Aβ1-42 induced cell damage. Moreover, compound 4d in high dose significantly reversed Aβ-induced memory impairment in mice.
Collapse
Affiliation(s)
- Ren-Xian Tan
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Wei-Hao Li
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Jia-Min Pang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Si-Min Zhong
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Xin-Yi Huang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Jun-Ze Deng
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Lu-Yi Zhou
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Jia-Qiang Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Xiao-Qin Wang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| |
Collapse
|
3
|
Chisholm TS, Hunter CA. A closer look at amyloid ligands, and what they tell us about protein aggregates. Chem Soc Rev 2024; 53:1354-1374. [PMID: 38116736 DOI: 10.1039/d3cs00518f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The accumulation of amyloid fibrils is characteristic of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease. Detecting these fibrils with fluorescent or radiolabelled ligands is one strategy for diagnosing and better understanding these diseases. A vast number of amyloid-binding ligands have been reported in the literature as a result. To obtain a better understanding of how amyloid ligands bind, we have compiled a database of 3457 experimental dissociation constants for 2076 unique amyloid-binding ligands. These ligands target Aβ, tau, or αSyn fibrils, as well as relevant biological samples including AD brain homogenates. From this database significant variation in the reported dissociation constants of ligands was found, possibly due to differences in the morphology of the fibrils being studied. Ligands were also found to bind to Aβ(1-40) and Aβ(1-42) fibrils with similar affinities, whereas a greater difference was found for binding to Aβ and tau or αSyn fibrils. Next, the binding of ligands to fibrils was shown to be largely limited by the hydrophobic effect. Some Aβ ligands do not fit into this hydrophobicity-limited model, suggesting that polar interactions can play an important role when binding to this target. Finally several binding site models were outlined for amyloid fibrils that describe what ligands target what binding sites. These models provide a foundation for interpreting and designing site-specific binding assays.
Collapse
Affiliation(s)
- Timothy S Chisholm
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1 EW, UK.
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1 EW, UK.
| |
Collapse
|
4
|
Yu Z, Blade G, Bouley BS, Dobrucki IT, Dobrucki LW, Mirica LM. Coordination Chemistry of Sulfur-Containing Bifunctional Chelators: Toward in Vivo Stabilization of 64Cu PET Imaging Agents for Alzheimer's Disease. Inorg Chem 2023; 62:20820-20833. [PMID: 38060375 PMCID: PMC11400993 DOI: 10.1021/acs.inorgchem.3c02929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The broader utilization of 64Cu positron emission tomography (PET) imaging agents has been hindered by the unproductive demetalation induced by bioreductants. To advance the development of 64Cu-based PET imaging tracers for Alzheimer's Disease (AD), there is a need for novel ligand design strategies. In this study, we developed sulfur-containing dithiapyridinophane (N2S2) bifunctional chelators (BFCs) as well as all nitrogen-based diazapyridinophane (N4) BFCs to compare their abilities to chelate Cu and target Aβ aggregates. Through spectrophotometric titrations and electrochemical measurements, we have demonstrated that the N2S2-based BFCs exhibit >10 orders of magnitude higher binding affinity toward Cu(I) compared to their N4-based counterparts, while both types of BFCs exhibit high stability constants toward Cu(II). Notably, solid state structures for both Cu(II) and Cu(I) complexes supported by the two ligand frameworks were obtained, providing molecular insights into their copper chelating abilities. Aβ binding experiments were conducted to study the structure-affinity relationship, and fluorescence microscopy imaging studies confirmed the selective labeling of the BFCs and their copper complexes. Furthermore, we investigated the potential of these ligands for the 64Cu-based PET imaging of AD through radiolabeling and autoradiography studies. We believe our findings provide molecular insights into the design of bifunctional Cu chelators that can effectively stabilize both Cu(II) and Cu(I) and, thus, can have significant implications for the development of 64Cu PET imaging as a diagnostic tool for AD.
Collapse
Affiliation(s)
- Zhengxin Yu
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, The Neuroscience Program, Carle Illinois College of Medicine, University of Illinois at Urbana─Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Glenn Blade
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, The Neuroscience Program, Carle Illinois College of Medicine, University of Illinois at Urbana─Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Bailey S Bouley
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, The Neuroscience Program, Carle Illinois College of Medicine, University of Illinois at Urbana─Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Iwona T Dobrucki
- Beckman Institute for Advanced Science and Technology, Department of Bioengineering, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Lawrence W Dobrucki
- Beckman Institute for Advanced Science and Technology, Department of Bioengineering, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Liviu M Mirica
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, The Neuroscience Program, Carle Illinois College of Medicine, University of Illinois at Urbana─Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
5
|
Blade G, Wessel AJ, Terpstra K, Mirica LM. Pentadentate and Hexadentate Pyridinophane Ligands Support Reversible Cu(II)/Cu(I) Redox Couples. INORGANICS 2023; 11:446. [PMID: 39301085 PMCID: PMC11412068 DOI: 10.3390/inorganics11110446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Two new ligands were synthesized with the goal of copper stabilization, N,N'-(2-methylpyridine)-2,11-diaza[3,3](2,6)pyridinophane (PicN4) and N-(methyl),N'-(2-methylpyridine)-2,11-diaza[3,3](2,6)pyridinophane (PicMeN4), by selective functionalization of HN4 and TsHN4. These two ligands, when reacted with various copper salts, generated both Cu(II) and Cu(I) complexes. These ligands and Cu complexes were characterized by various methods, such as NMR, UV-Vis, MS, and EA. Each compound was also examined electrochemically, and each revealed reversible Cu(II)/Cu(I) redox couples. Additionally, stability constants were determined via spectrophotometric titrations, and radiolabeling and cytotoxicity experiments were performed to assess the chelators relevance to their potential use in vivo as 64Cu PET imaging agents.
Collapse
Affiliation(s)
- Glenn Blade
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 S. Matthews Ave, Urbana, IL 61801, USA
| | - Andrew J Wessel
- Department of Chemistry, Washington University, One Brookings Drive, St. Louis, MO 63130, USA
| | - Karna Terpstra
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 S. Matthews Ave, Urbana, IL 61801, USA
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 S. Matthews Ave, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Krasnovskaya O, Kononova A, Erofeev A, Gorelkin P, Majouga A, Beloglazkina E. Aβ-Targeting Bifunctional Chelators (BFCs) for Potential Therapeutic and PET Imaging Applications. Int J Mol Sci 2022; 24:ijms24010236. [PMID: 36613679 PMCID: PMC9820683 DOI: 10.3390/ijms24010236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Currently, more than 55 million people live with dementia worldwide, and there are nearly 10 million new cases every year. Alzheimer's disease (AD) is the most common neurodegenerative disease resulting in personality changes, cognitive impairment, memory loss, and physical disability. Diagnosis of AD is often missed or delayed in clinical practice due to the fact that cognitive deterioration occurs already in the later stages of the disease. Thus, methods to improve early detection would provide opportunities for early treatment of disease. All FDA-approved PET imaging agents for Aβ plaques use short-lived radioisotopes such as 11C (t1/2 = 20.4 min) and 18F (t1/2 = 109.8 min), which limit their widespread use. Thus, a novel metal-based imaging agent for visualization of Aβ plaques is of interest, due to the simplicity of its synthesis and the longer lifetimes of its constituent isotopes. We have previously summarized a metal-containing drug for positron emission tomography (PET), magnetic resonance imaging (MRI), and single-photon emission computed tomography (SPECT) imaging of Alzheimer's disease. In this review, we have summarized a recent advance in design of Aβ-targeting bifunctional chelators for potential therapeutic and PET imaging applications, reported after our previous review.
Collapse
Affiliation(s)
- Olga Krasnovskaya
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
- Correspondence:
| | - Aina Kononova
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 119049 Moscow, Russia
| | - Alexander Erofeev
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Peter Gorelkin
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 119049 Moscow, Russia
| | - Alexander Majouga
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| |
Collapse
|