1
|
Ameen SSM, Omer KM. Metal-organic framework-based nanozymes for water-soluble antioxidants and Total antioxidant capacity detection: Principles and applications. Food Chem 2025; 479:143876. [PMID: 40147141 DOI: 10.1016/j.foodchem.2025.143876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Nanozymes, engineered catalysts exhibiting catalytic properties, have emerged as key players at the interface of nanotechnology and biology, holding great promise in diverse food applications. Notably, nanoscale metal-organic frameworks (MOFs) have gained widespread recognition as flexible platforms for developing potent nanozymes. This review explores the design, development, and applications of MOF-based nanozymes, with a focus on their potential in detecting antioxidants and total antioxidant capacity (TAC), two critical parameters in the assessment of oxidative stress and related diseases. A comprehensive classification of these MOF-based nanozymes is presented, based on their catalytic activities, and recent advancements in their application to antioxidants and TAC detection are discussed. The review further delves into the challenges faced by MOF nanozymes in these areas, including issues related to stability, reproducibility, and selectivity. By addressing these challenges and proposing potential solutions, the review offers future perspectives on advancing the use of MOF nanozymes in sensing applications.
Collapse
Affiliation(s)
- Sameera Sh Mohammed Ameen
- Department of Chemistry, College of Science, University of Zakho, 42002, Zakho, Kurdistan region, Iraq.
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan St. 46002, Sulaymaniyah, Kurdistan region, Iraq.
| |
Collapse
|
2
|
Ameen SSM, Algethami FK, Omer KM. Flower-like Ag-ZIF nanoparticles with petal-like structures as effective hot/cold-adapted oxidase mimic: Visual color tonality nitrite detection. Food Chem 2025; 478:143615. [PMID: 40043430 DOI: 10.1016/j.foodchem.2025.143615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 04/06/2025]
Abstract
This study presents the synthesis of novel flower-like silver-based zeolitic imidazolate frameworks (Ag-ZIFs) with petal-like nanosheet structures, exhibiting robust oxidase-like activity. These nanozymes catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) effectively across a wide temperature range (5 °C to 80 °C), making them suitable for thermophilic and cryogenic applications. Leveraging this strong oxidase activity, Ag-ZIFs@TMB system was used to design a conventional ratiometric colorimetric method for nitrite detection in water and food samples, alongside a color tonality-based visual detection mode. Nitrite concentrations ranging from 1.0 to 54.0 μM were quantified, achieving a detection limit of 0.06 μM. The ratiometric approach demonstrated enhanced sensitivity, lower detection limits, and superior resistance to interference compared to traditional single-absorbance methods. Furthermore, the smartphone-assisted or naked-eye detection mode enabled rapid, portable, and accurate analysis, offering practical applications in environmental monitoring and food safety. These results highlight the multifunctional potential of Ag-ZIFs in advanced sensing technologies.
Collapse
Affiliation(s)
- Sameera Sh Mohammed Ameen
- Department of Chemistry, College of Science, University of Zakho, 42002 Zakho, Kurdistan region, Iraq
| | - Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan St., 46002 Sulaymaniyah, Kurdistan region, Iraq.
| |
Collapse
|
3
|
Ahlawat D, Pachisia S, Aashish, Gupta R. Lanthanide-Based Metal-Organic Frameworks Offering Hydrogen Bonding Cavities: Luminescent Characteristics and Sensing Applications. Chem Asian J 2025; 20:e202401213. [PMID: 39749415 DOI: 10.1002/asia.202401213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
This work presents the synthesis and characterization of three isomorphous lanthanide-based metal-organic frameworks (Ln-MOFs) (Ln3+=Eu (1), Tb (2), and Sm (3)) supported by a pyridine-2,6-dicarboxamide-based linker offering appended arylcarboxylate groups. Single crystal X-ray diffraction studies highlight that these Ln-MOFs present three-dimensional porous architectures offering large cavities decorated with hydrogen bonding (H-bonding) groups. These Ln-MOFs display noteworthy luminescent characteristics. The mixed-metal strategy affords a series of Ln-MOFs exhibiting color-tunable emissions. The Eu-MOF was utilized for the nanomolar sensing of both nitrobenzene and 4-nitrophenol. The critical role of H-bonding in detecting these analytes is validated through multiple spectroscopic, ξ potential, and molecular docking studies. The Eu-MOF illustrated notable anticounterfeiting as well as practical sensing applications.
Collapse
Affiliation(s)
- Deepti Ahlawat
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India
| | - Sanya Pachisia
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India
| | - Aashish
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India
| |
Collapse
|
4
|
Wang S, VanNatta PE, Wang B, Liu Z, Al-Enizi AM, Nafady A, Ma S, Yan H. Pressure-Modulated Luminescence Enhancement and Quenching in a Hydrogen-Bonded Organic Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411362. [PMID: 39901460 DOI: 10.1002/smll.202411362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/17/2025] [Indexed: 02/05/2025]
Abstract
Light emission in the solid state is central for illumination, sensing, and imaging applications. Unlike luminescence in dilute solutions, where the excited states are unimolecular in nature, intermolecular interaction plays a significant role in the quantum yield of solid-state luminophores, manifested as competing aggregation-caused quenching (ACQ) and aggregation-induced enhancement (AIE). Both effects are extensively studied in various systems; however, it remains unclear how their competition depends on molecular conformation and intermolecular stacking. Here the direct observation of pressure-modulated AIE-ACQ competition in a crystalline hydrogen-bonded organic framework (HOF) is reported. Using in situ spectroscopies and computational modeling, the intramolecular vibration and intermolecular π-π stacking directly responsible for the non-radiative decay of the excited state are identified. The extent of these two contributions is modulated by hydrostatic pressure and guest molecules in the HOF pores. This work demonstrates a physically neat model system to understand and control solid-state luminescence, and a potential material platform for piezoluminescent sensing.
Collapse
Affiliation(s)
- Sicheng Wang
- Department of Chemistry, University of North Texas, Denton, TX, 76205, USA
| | - Peter E VanNatta
- Department of Chemistry, University of North Texas, Denton, TX, 76205, USA
| | - Bin Wang
- Department of Chemistry, University of North Texas, Denton, TX, 76205, USA
| | - Zhenxian Liu
- Department of Physics, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX, 76205, USA
| | - Hao Yan
- Department of Chemistry, University of North Texas, Denton, TX, 76205, USA
| |
Collapse
|
5
|
Lian W, Huang Y, Yin Q, Guo Z, Xu Y, Miao T. Syntheses of heterometallic organic frameworks catalysts via multicomponent postmodification: For improving CO 2 photoreduction efficiency. J Colloid Interface Sci 2024; 675:94-103. [PMID: 38968640 DOI: 10.1016/j.jcis.2024.06.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/07/2024]
Abstract
To enhance the economic viability of photocatalytic materials for carbon capture and conversion, the challenge of employing expensive photosensitizer must be overcome. This study aims to improve the visible light utilization with zirconium-based metal-organic frameworks (Zr-MOFs) by employing a multi-component post-synthetic modification (PSM) strategy. An economical photosensitiser and copper ions are introduced into MOF 808 to enhance its photoreduction properties. Notably, the PSM of MOF 808 shows the highest CO yield up to 236.5 μmol g-1 h-1 with aHCOOH production of 993.6 μmol g-1 h-1 under non-noble metal, and its mechanistic insight for CO2 reaction is discussed in detail. The research results have important reference value for the potential application of photocatalytic metal-organic frameworks.
Collapse
Affiliation(s)
- Wanqi Lian
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, China
| | - Ying Huang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, China
| | - Qiaoqiao Yin
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, China
| | - Zhicheng Guo
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, China
| | - Yun Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, China; State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Tifang Miao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
6
|
Li WL, Shuai Q, Yu J. Recent Advances of Carbon Capture in Metal-Organic Frameworks: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402783. [PMID: 39115100 DOI: 10.1002/smll.202402783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Indexed: 11/08/2024]
Abstract
The excessive emission of greenhouse gases, which leads to global warming and alarms the world, has triggered a global campaign for carbon neutrality. Carbon capture and sequestration (CCS) technology has aroused wide research interest as a versatile emission mitigation technology. Metal-organic frameworks (MOFs), as a new class of high-performance adsorbents, hold great potential for CO2 capture from large point sources and ambient air due to their ultra-high specific surface area as well as pore structure. In recent years, MOFs have made great progress in the field of CO2 capture and separation, and have published a number of important results, which have greatly promoted the development of MOF materials for practical carbon capture applications. This review summarizes the most recent advanced research on MOF materials for carbon capture in various application scenarios over the past six years. The strategies for enhancing CO2 selective adsorption and separation of MOFs are described in detail, along with the development of MOF-based composites. Moreover, this review also systematically summarizes the highly concerned issues of MOF materials in practical applications of carbon capture. Finally, future research on CO2 capture by MOF materials is prospected.
Collapse
Affiliation(s)
- Wen-Liang Li
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Qi Shuai
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jiamei Yu
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
7
|
Mohammed Ameen SS, Omer KM. Dual-State Red-Emitting Zinc-Based MOF Accompanied by Dual-Mode and Dual-State Detection: Color Tonality Visual Mode for the Detection of Tetracycline. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51376-51383. [PMID: 39270310 DOI: 10.1021/acsami.4c13115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Red-emitting metal-organic frameworks (MOFs) are still mostly based on the use of lanthanides or functionalization with red fluorophores. However, production of transition-metal-based MOFs with red-emitting is scarce. This work reports on the synthesis of a novel dual-state red-emitting Zn-based MOF (denoted as UoZ-7) with the capability to detect target molecules in dual state, in solution, and as solid on paper. UoZ-7 gives strong red emission when excited in the solution and in the solid state with 365 nm ultraviolet (UV) lamp irradiation. Coordination-induced emission is the mechanism for the red emission enhancement in the MOF as a restriction of intramolecular rotation occurred to the ligand within the framework structure. UoZ-7 was successfully used for tetracycline (TC) using dual-mode detection, fluorescence-based ratiometry, and color tonality, in the dual state, in solution, and on the paper. TC molecules adsorb on the red-emitting UoZ-7 surface, and a yellow-greenish color emerges due to aggregation-induced emission between TC and UoZ-7. Concurrently, the inner filter effect diminishes the red emission of UoZ-7. The dual-mode or dual-state detection platform provides a simple and reliable fast method for the detection of TC on-site in various environmental and biomedical applications. Moreover, red-emitting UoZ-7 will have further luminescence-based biomedical applications.
Collapse
Affiliation(s)
- Sameera Sh Mohammed Ameen
- Department of Chemistry, College of Science, University of Zakho, 42002 Zakho, Kurdistan Region, Iraq
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan St., 46002 Sulaymanyia, Kurdistan Region, Iraq
| |
Collapse
|
8
|
Shaw EV, Chester AM, Robertson GP, Castillo-Blas C, Bennett TD. Synthetic and analytical considerations for the preparation of amorphous metal-organic frameworks. Chem Sci 2024; 15:10689-10712. [PMID: 39027308 PMCID: PMC11253190 DOI: 10.1039/d4sc01433b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Metal-organic frameworks (MOFs) are hybrid porous materials presenting several tuneable properties, allowing them to be utilised for a wide range of applications. To date, focus has been on the preparation of novel crystalline MOFs for specific applications. Recently, interest in amorphous MOFs (aMOFs), defined by their lack of correlated long-range order, is growing. This is due to their potential favourable properties compared to their crystalline equivalents, including increased defect concentration, improved processability and gas separation ability. Direct synthesis of these disordered materials presents an alternative method of preparation to post-synthetic amorphisation of a crystalline framework, potentially allowing for the preparation of aMOFs with varying compositions and structures, and very different properties to crystalline MOFs. This perspective summarises current literature on directly synthesised aMOFs, and proposes methods that could be utilised to modify existing syntheses for crystalline MOFs to form their amorphous counterparts. It outlines parameters that could discourage the ordering of crystalline MOFs, before examining the potential properties that could emerge. Methodologies of structural characterisation are discussed, in addition to the necessary analyses required to define a topologically amorphous structure.
Collapse
Affiliation(s)
- Emily V Shaw
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Ashleigh M Chester
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Georgina P Robertson
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Celia Castillo-Blas
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Thomas D Bennett
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| |
Collapse
|
9
|
Dalapati R, Hunter M, Sk M, Yang X, Zang L. Fluorescence Turn-on Detection of Perfluorooctanoic Acid (PFOA) by Perylene Diimide-Based Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32344-32356. [PMID: 38718353 DOI: 10.1021/acsami.4c03389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
A novel, water-stable, perylene diimide (PDI) based metal-organic framework (MOF), namely, U-1, has been synthesized for selective and sensitive detection of perfluorooctanoic acid (PFOA) in mixed aqueous solutions. The MOF shows highly selective fluorescence turn-on detection via the formation of a PFOA-MOF complex. This PFOA-MOF complex formation was confirmed by various spectroscopic techniques. The detection limit of the MOF for PFOA was found to be 1.68 μM in an aqueous suspension. Upon coating onto cellulose paper, the MOF demonstrated a significantly lower detection limit, down to 3.1 nM, which is mainly due to the concentrative effect of solid phase extraction (SPE). This detection limit is lower than the fluorescence sensors based on MOFs previously reported for PFAS detection. The MOF sensor is regenerable and capable of detecting PFOA in drinking and tap water samples. The PDI-MOF-based sensor reported herein represents a novel approach, relying on fluorescence turn-on response, that has not yet been thoroughly investigated for detecting per- and polyfluoroalkyl substances (PFAS) until now.
Collapse
Affiliation(s)
- Rana Dalapati
- Nano Institute of Utah, and Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Matthew Hunter
- Nano Institute of Utah, and Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Mostakim Sk
- Lab of Soft Interfaces, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Xiaomei Yang
- Nano Institute of Utah, and Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ling Zang
- Nano Institute of Utah, and Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
10
|
Celeste A, Fertey P, Itié JP, Blanita G, Zlotea C, Capitani F. Exploring the Role of Ligand Connectivity in MOFs Mechanical Stability: The Case of MIL-100(Cr). J Am Chem Soc 2024; 146:9155-9162. [PMID: 38511254 DOI: 10.1021/jacs.3c14589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The key parameters governing the mechanical stability of highly porous materials such as metal-organic frameworks (MOFs) are yet to be clearly understood. This study focuses on the role of the linker connectivity by investigating the mechanical stability of MIL-100(Cr), a mesoporous MOF with a hierarchical structure and a tritopic linker, and comparing it to MIL-101(Cr) having instead a ditopic linker. Using synchrotron X-ray diffraction and infrared spectroscopy, we investigate the high-pressure behavior of MIL-100(Cr) with both solid and fluid pressure transmitting media (PTM). In the case of a solid medium, MIL-100(Cr) undergoes amorphization at about 0.6 GPa, while silicone oil as a PTM delays amorphization until 12 GPa due to the fluid penetration into the pores. Both of these values are considerably higher than those of MIL-101(Cr). MIL-100(Cr) also exhibits a bulk modulus almost ten times larger than that of MIL-101(Cr). This set of results coherently proves the superior stability of MIL-100(Cr) under compression. We ascribe this to the higher connectivity of the organic linker in MIL-100(Cr), which enhances its interconnection between the metal nodes. These findings shed light on the importance of linker connectivity in the mechanical stability of MOFs, a relevant contribution to the quest for designing more robust MOFs.
Collapse
Affiliation(s)
- Anna Celeste
- Institut de Chimie et des Matériaux Paris-Est, CNRS UMR 7182, UPEC, 2-8, rue Henri Dunant, 94320 Thiais, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - Pierre Fertey
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - Jean-Paul Itié
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - Gabriela Blanita
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., RO-400293 Cluj-Napoca, Romania
| | - Claudia Zlotea
- Institut de Chimie et des Matériaux Paris-Est, CNRS UMR 7182, UPEC, 2-8, rue Henri Dunant, 94320 Thiais, France
| | - Francesco Capitani
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| |
Collapse
|