1
|
Sedikides AT, Walters RC, Dean AC, Lennox AJJ. Au(I)-, Au(II)-, Au(III)-Fluoride Complexes: Synthesis and Applications in Organic Transformations. Angew Chem Int Ed Engl 2025; 64:e202424656. [PMID: 39932295 PMCID: PMC12015403 DOI: 10.1002/anie.202424656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
The synthesis and reactivity of organometallic gold-fluoride complexes in oxidation states of Au(I), Au(II), and Au(III), up to and including 2024, are reviewed herein. Despite the flourishing field of gold catalysis, these complexes had long been elusive due to their instability. A widespread interest in C-C and C-F coupling reactions has resulted in several reports of these complexes in recent years. The use of a variety of supporting ligands have facilitated access to these complexes, which has allowed their reactivity to be further studied and understood, thereby laying the ground for future reaction development. This review highlights these advances, organised by the formal oxidation state of the gold centre and the supporting ligand.
Collapse
Affiliation(s)
| | | | - Alice C. Dean
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
| | | |
Collapse
|
2
|
López-López JC, Bautista D, González-Herrero P. Photoinduced Reductive C-O Couplings from Unsymmetrical Bis-Cyclometalated Pt(IV) Dicarboxylato Complexes. Inorg Chem 2025; 64:662-673. [PMID: 39729437 PMCID: PMC11734118 DOI: 10.1021/acs.inorgchem.4c03667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 12/29/2024]
Abstract
Unsymmetrical bis-cyclometalated dicarboxylato complexes (OC-6-32)-[Pt(tpy)2(O2CR)2] [tpy = cyclometalated 2-(p-tolyl)pyridine, R = t-Bu (1), Me (2), Ph (3), CF3 (4)], are obtained from the reaction of cis-[Pt(tpy)2] with the appropriate PhI(O2CR)2 reagent. Treatment of complexes of this type with different carboxylates (R'CO2-) results in the formation of mixed-carboxylato derivatives, namely (OC-6-43)-[Pt(tpy)2(O2CMe)(O2CR')] [R' = t-Bu (5), CF3 (6), Ph (7)], (OC-6-34)-[Pt(tpy)2(O2CCF3)(O2CR')] [R' = t-Bu (8), Me (9), Ph (10)], and (OC-6-34)-[Pt(tpy)2(O2C-t-Bu)(O2CMe)] (11). Irradiation of 1-3 and 5-11 with UV light (365 nm) in MeCN gives 5-methyl-2-(2-pyridyl)phenyl pivalate (12), 5-methyl-2-(2-pyridyl)phenyl acetate (13) or 5-methyl-2-(2-pyridyl)phenyl benzoate (14) as the major photoproduct from most complexes, resulting from a reductive C-O coupling between a tpy ligand and a carboxylato ligand. Cyclometalation of 12-14 at the ensuing Pt(II) species to produce cis-[Pt(tpy)(tpyO2CR/R')], reduction to cis-[Pt(tpy)2] and isomerization to (OC-6-33)-[Pt(tpy)2(O2CR/R')2] are identified as secondary processes in most cases. In contrast, complex 4 exclusively photoisomerizes to (OC-6-33)-[Pt(tpy)2(O2CCF3)2] (4'). The C-O couplings are favored for the most electron-rich carboxylato ligands and occur predominantly from the carboxylato trans to N. Consistent with this, a computational study reveals that the lowest singlet and triplet LMCT excited states result from electronic transitions to a dσ* orbital distributed along the N-Pt-O axis, which would trigger the observed processes.
Collapse
Affiliation(s)
- Juan Carlos López-López
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo 19, Murcia 30100, Spain
| | - Delia Bautista
- Área
Científica y Técnica de Investigación, Universidad de Murcia, Campus de Espinardo 21, Murcia 30100, Spain
| | - Pablo González-Herrero
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo 19, Murcia 30100, Spain
| |
Collapse
|
3
|
Serrano-Guarinos J, Jiménez-García A, Bautista D, González-Herrero P, Vivancos Á. Synthesis, Luminescence, and Electrochemistry of Tris-Chelate Platinum(IV) Complexes with Cyclometalated N-Heterocyclic Carbene Ligands and Aromatic Diimines. Inorg Chem 2024; 63:24929-24939. [PMID: 39698802 PMCID: PMC11688666 DOI: 10.1021/acs.inorgchem.4c04446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Dicationic, C2-symmetrical, tris-chelate Pt(IV) complexes of general formula [Pt(trz)2(N∧N)](OTf)2, bearing two cyclometalated 4-butyl-3-methyl-1-phenyl-1H-1,2,3-triazol-5-ylidene (trz) ligands and one aromatic diimine [N∧N = 2,2'-bipyridine (bpy, 2), 4,4'-di-tert-butyl-2,2'-bipyridine (dbbpy, 3), 4,4'-dimethoxi-2,2'-bipyridine (dMeO-bpy, 4), 1,10-phenanthroline (phen, 5), 4,7-diphenyl-1,10-phenanthroline (bphen, 6), dipyrido[3,2-a:2',3'-c]phenazine (dppz, 7), or 2,3-diphenylpyrazino[2,3-f][1,10]phenanthroline (dpprzphen, 8)] are obtained through chloride abstraction from [PtCl2(trz)2] (1) using AgOTf in the presence of the corresponding diimine. Complexes 2-4 show long-lived phosphorescence from 3LC excited states involving the diimine ligand, with quantum yields that reach 0.18 in solution and 0.58 in the solid matrix at room temperature for 3. Derivatives with more extended aromatic systems show dual phosphorescent/fluorescent emissions (5, 6) or mainly fluorescence (7, 8) in solution. Comparisons with similar complexes bearing cyclometalated 2-arylpyridines instead of aryl-N-heterocyclic carbenes indicate that the {Pt(trz)2} subunit is crucial to enable efficient emissions from diimine-centered excited states. It is also shown that the introduction of protective bulky substituents on the diimine, such as the tert-butyl groups in 3, is a key strategy to reach higher emission efficiencies. The new compounds represent rare examples of luminescent Pt(IV) complexes that show quasi-reversible one-electron reductions, indicating an unusually high redox stability.
Collapse
Affiliation(s)
- José Serrano-Guarinos
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| | - Adrián Jiménez-García
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| | - Delia Bautista
- Área
Científica y Técnica de Investigación, Universidad de Murcia, Campus de Espinardo, 21, 30100 Murcia, Spain
| | - Pablo González-Herrero
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| | - Ángela Vivancos
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| |
Collapse
|
4
|
Ota S, Soto MA, Patrick BO, Kamal S, Lelj F, MacLachlan MJ. π-Extended ligands with dual-binding behavior: hindered rotation unlocks unexpected reactivity in cyclometalated Pt complexes. Chem Sci 2024; 15:d4sc04799k. [PMID: 39282641 PMCID: PMC11388036 DOI: 10.1039/d4sc04799k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Cyclometalated platinum complexes play a crucial role in catalysis, bioimaging, and optoelectronics. Phenylpyridines are widespread cyclometalating ligands that generate stable and highly emissive Pt complexes. While it is common practice to modify these ligands to fine-tune their photophysical properties, the incorporation of polycyclic aromatic hydrocarbons into the ligand's structure has been largely overlooked. This report describes the cyclometalation of naphthalenyl- and anthracenylpyridine ligands, which has resulted in ten new luminescent PtII and PtIV complexes. These species are enabled by a dual-binding behavior discovered in our polyaromatic-containing ligands. The introduction of naphthalenyl and anthracenyl groups unlocks dual binding modes, with the Pt center bonding to either of two distant carbon atoms within the ligand. These complexes exhibit both symmetric structures with two 5-membered metallacycles and asymmetric structures with 5- and 6-membered metallacycles. This work presents a strategy for the regioselective synthesis of Pt complexes with bespoke structures and photophysical properties. Our findings offer new opportunities in platinum chemistry and beyond, with potential implications for materials and technologies.
Collapse
Affiliation(s)
- Seiya Ota
- Department of Chemistry University of British Columbia 2036 Main Mall Vancouver V6T 1Z1 Canada
| | - Miguel A Soto
- Department of Chemistry University of British Columbia 2036 Main Mall Vancouver V6T 1Z1 Canada
| | - Brian O Patrick
- Department of Chemistry University of British Columbia 2036 Main Mall Vancouver V6T 1Z1 Canada
| | - Saeid Kamal
- Department of Chemistry University of British Columbia 2036 Main Mall Vancouver V6T 1Z1 Canada
| | - Francesco Lelj
- La.M.I.and LaSCAMM INSTM Sezione Basilicata, Dipartiento di Scienze, Università della Basilicata via dell'Ateneo Lucano 10 Potenza 85100 Italy
| | - Mark J MacLachlan
- Department of Chemistry University of British Columbia 2036 Main Mall Vancouver V6T 1Z1 Canada
- Stewart Blusson Quantum Matter Institute University of British Columbia 2355 East Mall Vancouver BC V6T 1Z4 Canada
- WPI Nano Life Science Institute Kanazawa University Kanazawa 920-1192 Japan
| |
Collapse
|
5
|
Aseman MD, Kiyavash S. High Selectivity in Csp 2-Csp 2 versus Csp 3-O Reductive Elimination from Cycloplatinated(IV) Complexes. Inorg Chem 2024; 63:12475-12484. [PMID: 38907728 DOI: 10.1021/acs.inorgchem.4c01096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The cycloplatinated(IV) complexes trans-[Pt(p-MeC6H4)(C∧N)(OAc)2(H2O)] (C∧N = benzo[h]quinolate, bhq, 2a, and 2-phenylpyridinate, ppy, 2b) were prepared by reacting the corresponding [Pt(p-MeC6H4)(C∧N)(SMe2)] precursors with PhI(OAc)2 through an oxidative addition (OA) reaction. Thermolysis of 2a at 65 °C generates cis-[Pt(κ1N-10-(p-MeC6H4)-bhq)(OAc)2(H2O)], 3a, which is the product of a Csp2Ar-Csp2bhq reductive elimination (RE). The observed coupling reaction is significantly different from the previously reported analogous thermolysis of trans-[PtMe(C∧N)(OAc)2(H2O)] (C∧N = bhq, 2c, and ppy, 2d) that selectively releases Me-OAc (C-O RE). The density functional theory (DFT) calculations and experimental observations reveal that the Csp2Ar-Csp2bhq coupling reaction occurs through the dissociation of a coordinated water ligand. This in turn is followed by the concomitant bond forming and bond breaking process via a three-center ring transition state, in contrast to the Csp3Me-OAc coupling, which had taken place by an outer sphere SN2 type RE reaction in methyl complexes.
Collapse
Affiliation(s)
- Marzieh Dadkhah Aseman
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box, Tehran 14115-175, Iran
| | - Susan Kiyavash
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box, Tehran 14115-175, Iran
| |
Collapse
|
6
|
Poveda D, Vivancos Á, Bautista D, González-Herrero P. Luminescent Platinum(II) Complexes with Terdentate N∧C∧C Ligands. Inorg Chem 2023; 62:20987-21002. [PMID: 38051299 PMCID: PMC10751801 DOI: 10.1021/acs.inorgchem.3c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
The synthesis, structure, and luminescence of Pt(II) complexes of the type [Pt(N∧C∧C)(L)] are reported, where N∧C∧C is a terdentate ligand resulting from the cycloplatination of 2-(3,5-diphenoxyphenyl)pyridine or 2-(4,4″-dimethyl-[1,1':3',1″-terphenyl]-5'-yl)pyridine, and L represents a monodentate ancillary ligand, which can be γ-picoline, 4-pyridinecarboxaldehyde, PPh3, n-butyl or 2,6-dimethylphenyl isocyanide, CO, or the N-heterocyclic carbenes 1-butyl-3-methylimidazol-2-ylidene or 4-butyl-3-methyl-1-phenyl-1H-1,2,3-triazol-5-ylidene. Derivatives bearing CO, isocyanides, or carbenes showed the highest stabilities in solution, whereas the pyridine and PPh3 derivatives establish ligand-exchange equilibria in acetonitrile. Different supramolecular structures are observed in the solid state, which largely depend on the nature of the ancillary ligand. Isocyanides and CO favor π interactions between the aromatic rings, metallophilic Pt···Pt contacts, or a combination of both. In contrast, pyridine ligands may lead to bimolecular assemblies driven by C-H···O, C-H···Pt, or C-H/π hydrogen bonds. Luminescence was examined in fluid solution, poly(methyl methacrylate) matrices, and the solid state at 298 K, and in 2-methyltetrahydrofuran glasses at 77 K. The majority of derivatives show highly efficient emissions from 3ILCT/MLCT or 3ILCT/MLCT/LLCT excited states of monomeric species. The formation of excimers and different types of emissive aggregates are demonstrated, which lead to red-shifted emissions of different origins and characteristics depending on the involved noncovalent interactions.
Collapse
Affiliation(s)
- Dionisio Poveda
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| | - Ángela Vivancos
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| | - Delia Bautista
- Área
Científica y Técnica de Investigación, Universidad de Murcia, Campus de Espinardo, 21, 30100 Murcia, Spain
| | - Pablo González-Herrero
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| |
Collapse
|