1
|
Yang J, Zhan S, Wang L, Yang H, Duan L, Fan X, Liu T, Sun L. Adaptive water oxidation catalysis on a carboxylate-sulfonate ligand with low onset potential. Chem Commun (Camb) 2024; 60:6162-6165. [PMID: 38804570 DOI: 10.1039/d4cc02303j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
A water oxidation catalyst Ru-bcs (bcs = 2,2'-bipyridine-6'-carboxylate-6-sulfonate) with a hybrid ligand was reported. Ru-bcs utilizes the electron-donating properties of carboxylate ligands and the on-demand coordination feature of sulfonate ligands to enable a low onset potential of 1.21 V vs. NHE and a high TOF over 1000 s-1 at pH 7. The adaptive chemistry uncovered in this work provides new perspectives for developing molecular catalysts with high efficiency under low driving forces.
Collapse
Affiliation(s)
- Jing Yang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China.
| | - Shaoqi Zhan
- Department of Chemistry - Ångström, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Linqin Wang
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, 310024 Hangzhou, China.
| | - Hao Yang
- Department of Chemistry, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Lele Duan
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, 310024 Hangzhou, China.
| | - Xiaolei Fan
- Institute of Wenzhou, Zhejiang University, 325005, Wenzhou, China.
- Department of Chemical Engineering, School of Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Tianqi Liu
- Institute of Wenzhou, Zhejiang University, 325005, Wenzhou, China.
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, 310024 Hangzhou, China.
- Department of Chemistry, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| |
Collapse
|
2
|
Lin L, Xin R, Yuan M, Wang T, Li J, Xu Y, Xu X, Li M, Du Y, Wang J, Wang S, Jiang F, Wu W, Lu C, Huang B, Sun Z, Liu J, He J, Sun G. Revealing Spin Magnetic Effect of Iron-Group Layered Double Hydroxides with Enhanced Oxygen Catalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Liu Lin
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Ruiyun Xin
- Inner Mongolia University, 235 West University Street, Hohhot010021, China
| | - Mengwei Yuan
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Tongyue Wang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Jie Li
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Yunming Xu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Xuhui Xu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Mingxuan Li
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Yu Du
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Jianing Wang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Shuyi Wang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Fubin Jiang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Wenxin Wu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Caicai Lu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Binbin Huang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Zemin Sun
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Jian Liu
- Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao266101, China
| | - Jinlu He
- Inner Mongolia University, 235 West University Street, Hohhot010021, China
| | - Genban Sun
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing100875, China
| |
Collapse
|
3
|
Schlossarek T, Stepanenko V, Beuerle F, Würthner F. Self-assembled Ru(bda) Coordination Oligomers as Efficient Catalysts for Visible Light-Driven Water Oxidation in Pure Water. Angew Chem Int Ed Engl 2022; 61:e202211445. [PMID: 36315034 PMCID: PMC10100213 DOI: 10.1002/anie.202211445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 11/07/2022]
Abstract
Water-soluble multinuclear complexes based on ruthenium 2,2'-bipyridine-6,6'-dicarboxylate (bda) and ditopic bipyridine linker units are investigated in three-component visible light-driven water oxidation catalysis. Systematic studies revealed a strong enhancement of the catalytic efficiency in the absence of organic co-solvents and with increasing oligomer length. In-depth kinetic and morphological investigations suggest that the enhanced performance is induced by the self-assembly of linear Ru(bda) oligomers into aggregated superstructures. The obtained turnover frequencies (up to 14.9 s-1 ) and turnover numbers (more than 1000) per ruthenium center are the highest reported so far for Ru(bda)-based photocatalytic water oxidation systems.
Collapse
Affiliation(s)
- Tim Schlossarek
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Vladimir Stepanenko
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Florian Beuerle
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| |
Collapse
|
4
|
Yazdani S, Breyer CJ, Kumari P, Rheingold AL, Jazzar R, Bertrand G, Grotjahn DB. Six-coordinate ruthenium water oxidation catalysts bearing equatorial polypyridinedicarboxylato and axial phosphine ligands. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Schlossarek T, Stepanenko V, Beuerle F, Würthner F. Self‐assembled Ru(bda) Coordination Oligomers as Efficient Catalysts for Visible Light‐Driven Water Oxidation in Pure Water. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Tim Schlossarek
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Vladimir Stepanenko
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Florian Beuerle
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC) Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC) Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
6
|
Weberg AB, Murphy RP, Tomson NC. Oriented internal electrostatic fields: an emerging design element in coordination chemistry and catalysis. Chem Sci 2022; 13:5432-5446. [PMID: 35694353 PMCID: PMC9116365 DOI: 10.1039/d2sc01715f] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
The power of oriented electrostatic fields (ESFs) to influence chemical bonding and reactivity is a phenomenon of rapidly growing interest. The presence of strong ESFs has recently been implicated as one of the most significant contributors to the activity of select enzymes, wherein alignment of a substrate's changing dipole moment with a strong, local electrostatic field has been shown to be responsible for the majority of the enzymatic rate enhancement. Outside of enzymology, researchers have studied the impacts of "internal" electrostatic fields via the addition of ionic salts to reactions and the incorporation of charged functional groups into organic molecules (both experimentally and computationally), and "externally" via the implementation of bulk fields between electrode plates. Incorporation of charged moieties into homogeneous inorganic complexes to generate internal ESFs represents an area of high potential for novel catalyst design. This field has only begun to materialize within the past 10 years but could be an area of significant impact moving forward, since it provides a means for tuning the properties of molecular complexes via a method that is orthogonal to traditional strategies, thereby providing possibilities for improved catalytic conditions and novel reactivity. In this perspective, we highlight recent developments in this area and offer insights, obtained from our own research, on the challenges and future directions of this emerging field of research.
Collapse
Affiliation(s)
- Alexander B Weberg
- R, oy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 S. 34th Street Philadelphia Pennsylvania 19104 USA
| | - Ryan P Murphy
- R, oy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 S. 34th Street Philadelphia Pennsylvania 19104 USA
| | - Neil C Tomson
- R, oy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 S. 34th Street Philadelphia Pennsylvania 19104 USA
| |
Collapse
|
7
|
Otsuka H, Kobayashi A, Yoshida M, Kato M. Carbazole modification of ruthenium bipyridine-dicarboxylate oxygen evolution molecular catalysts. Dalton Trans 2021; 50:16233-16241. [PMID: 34730158 DOI: 10.1039/d1dt02824c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We synthesized new oxygen-evolving molecular Ru(II) catalysts with one or two carbazole moieties on the axial pyridyl ligands, namely [Ru(bda)(cbz-py)(py)] and [Ru(bda)(cbz-py)2] [C1 and C2; bdaH2 = 2,2'-bipyridyl-6,6'-dicarboxylic acid, py = pyridine, and cbz-py = 9-(pyridin-4-yl)-9H-carbazole] to investigate the effect of cbz modification on the photophysical and catalytic properties of the well-known molecular catalyst [Ru(bda)(py)2] (C0). The initial oxygen-evolving catalytic activities of C1 and C2 were higher than that of C0 in both a chemical reaction driven by the strong oxidant (NH4)2[Ce(NO3)6] (CAN = ceric ammonium nitrate) and photochemical oxidation using a [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) photosensitizer with Na2S2O8 as the sacrificial oxidant. The higher activities were ascribed to the electron-withdrawing cbz groups, which promoted the radical coupling reaction to form a RuIV-O-O-RuIV species. A unique oxygen-evolution rate change behaviour was observed for both C1 and C2 in the presence of a large excess of CAN, suggesting the competitive oxidation of the cbz moiety during the chemical oxygen evolution reaction. This work suggests that the cbz modification of an oxygen evolution molecular catalyst is a promising approach for integrating the hole accumulator near the oxygen evolution catalytic centre.
Collapse
Affiliation(s)
- Hiroki Otsuka
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo 060-0810, Japan.
| | - Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo 060-0810, Japan.
| | - Masaki Yoshida
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo 060-0810, Japan.
| | - Masako Kato
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo 060-0810, Japan. .,Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
8
|
Cody CC, Kelly HR, Mercado BQ, Batista VS, Crabtree RH, Brudvig GW. Distorted Copper(II) Complex with Unusually Short CF···Cu Distances. Inorg Chem 2021; 60:14759-14764. [PMID: 34546058 DOI: 10.1021/acs.inorgchem.1c01958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We find a Cu(II)-(L-CF3)2 complex (L-CF3 = 2,2,2-trifluoro-N-[2-(pyridin-2-yl)propan-2-yl]acetamide) with a distorted "seesaw" geometry. It has the shortest crystallographic CF···Cu distances yet reported, to the best of our knowledge (<2.6 Å), for which computational and experimental data indicate a secondary bonding interaction. A comparison with a CCl3 version and one without ligand backbone gem-dimethyl groups suggests a steric origin for the distorted geometry, resulting from the specific ligand interactions.
Collapse
Affiliation(s)
- Claire C Cody
- Department of Chemistry, and Yale Energy Sciences Institute, Yale University, New Haven, Connecticut 06520-8107, United States
| | - H Ray Kelly
- Department of Chemistry, and Yale Energy Sciences Institute, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Victor S Batista
- Department of Chemistry, and Yale Energy Sciences Institute, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Robert H Crabtree
- Department of Chemistry, and Yale Energy Sciences Institute, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Gary W Brudvig
- Department of Chemistry, and Yale Energy Sciences Institute, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
9
|
Rubtsov AE, Malkov AV. Recent Advances in the Synthesis of 2,2′-Bipyridines and Their Derivatives. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1706030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractThe sustained interest in the synthesis of new analogues of 2,2′-bipyridines is supported by the importance of compounds featuring bipyridine core in diverse areas of chemical, biomedical and materials research, which is relayed into the development of new approaches and the expansion of existing synthetic methods. This short review covers advances in the synthesis of 2,2′-bipyridines, including both the synthesis of compounds with a given substitution pattern and the development of new methods for assembling the bipyridine core. Special attention is directed toward the use of pyridine N-oxides and metal-free protocols to facilitate the formation of bipyridines. This short review focuses primarily on reports published in the last 5–6 years.1 Introduction2 Ullmann-Type Homocoupling Reactions3 Cross-Coupling Reactions in the Synthesis of Bipyridines4 Coupling Reactions Employing Pyridine N-Oxides5 Other Methods for the Synthesis of 2,2′-Bipyridines6 Conclusions and Outlook
Collapse
|
10
|
Timmer BJJ, Kravchenko O, Liu T, Zhang B, Sun L. Off-Set Interactions of Ruthenium-bda Type Catalysts for Promoting Water-Splitting Performance. Angew Chem Int Ed Engl 2021; 60:14504-14511. [PMID: 33861495 PMCID: PMC8251529 DOI: 10.1002/anie.202101931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Indexed: 12/31/2022]
Abstract
O-O bond formation with Ru(bda)L2 -type catalysts is well-known to proceed through a bimolecular reaction pathway, limiting the potential application of these catalysts at low concentrations. Herein, we achieved high efficiencies with mononuclear catalysts, with TOFs of 460±32 s-1 at high catalyst loading and 31±3 s-1 at only 1 μM catalyst concentration, by simple structural considerations on the axial ligands. Kinetic and DFT studies show that introduction of an off-set in the interaction between the two catalytic units reduces the kinetic barrier of the second-order O-O bond formation, maintaining high catalytic activity even at low catalyst concentrations. The results herein furthermore suggest that π-π interactions may only play a minor role in the observed catalytic activity, and that asymmetry can also rationalize high activity observed for Ru(bda)(isoq)2 type catalysts and offer inspiration to overcome the limitations of 2nd order catalysis.
Collapse
Affiliation(s)
- Brian J. J. Timmer
- Department of ChemistrySchool of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of Technology10044StockholmSweden
| | - Oleksandr Kravchenko
- Department of ChemistrySchool of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of Technology10044StockholmSweden
| | - Tianqi Liu
- Department of ChemistrySchool of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of Technology10044StockholmSweden
| | - Biaobiao Zhang
- Department of ChemistrySchool of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of Technology10044StockholmSweden
| | - Licheng Sun
- Department of ChemistrySchool of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of Technology10044StockholmSweden
- State Key Laboratory of Fine ChemicalsInstitute of Artificial PhotosynthesisDUT-KTH Joint Education and Research Centre on Molecular DevicesDalian University of Technology116024DalianChina
- Center of Artificial Photosynthesis for Solar FuelsSchool of ScienceWestlake University310024HangzhouChina
| |
Collapse
|
11
|
Timmer BJJ, Kravchenko O, Liu T, Zhang B, Sun L. Off‐Set Interactions of Ruthenium–bda Type Catalysts for Promoting Water‐Splitting Performance. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Brian J. J. Timmer
- Department of Chemistry School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology 10044 Stockholm Sweden
| | - Oleksandr Kravchenko
- Department of Chemistry School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology 10044 Stockholm Sweden
| | - Tianqi Liu
- Department of Chemistry School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology 10044 Stockholm Sweden
| | - Biaobiao Zhang
- Department of Chemistry School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology 10044 Stockholm Sweden
| | - Licheng Sun
- Department of Chemistry School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology 10044 Stockholm Sweden
- State Key Laboratory of Fine Chemicals Institute of Artificial Photosynthesis DUT-KTH Joint Education and Research Centre on Molecular Devices Dalian University of Technology 116024 Dalian China
- Center of Artificial Photosynthesis for Solar Fuels School of Science Westlake University 310024 Hangzhou China
| |
Collapse
|
12
|
Vereshchuk N, Holub J, Gil-Sepulcre M, Benet-Buchholz J, Llobet A. Fate of the Molecular Ru–Phosphonate Water Oxidation Catalyst under Turnover Conditions. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nataliia Vereshchuk
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel lí Domingo s/n, 43007 Tarragona, Spain
| | - Jan Holub
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007 Tarragona, Spain
| | - Marcos Gil-Sepulcre
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007 Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007 Tarragona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
13
|
Chen G, Fan T, Liu B, Xue M, Wei JJ, Kang SR, Tong HX, Yi XY. A Ru diphosphonato complex with a metal-metal bond for water oxidation. Dalton Trans 2021; 50:2018-2022. [PMID: 33554978 DOI: 10.1039/d0dt04150e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unlike [Ru2(μ-O2CCH3)4], the structurally analogous water-soluble RuII,III2 diphosphonato complex K3[Ru2(hedp)2(H2O)2] (K3·1) is only involved in stoichiometric water oxidation with a maximum 67% O2 yield under CAN/HNO3 solution (pH 1.0) for 2.5 h. The water oxidation mechanism and intermediate products were ascertained by UV-vis, ESI-MS and DFT calculation.
Collapse
Affiliation(s)
- Guo Chen
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Ting Fan
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, P. R. China
| | - Bin Liu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Meng Xue
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Jing-Jing Wei
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Shi-Rui Kang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Hai-Xia Tong
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, P. R. China
| | - Xiao-Yi Yi
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China.
| |
Collapse
|
14
|
Yi J, Zhan S, Chen L, Tian Q, Wang N, Li J, Xu W, Zhang B, Ahlquist MSG. Electrostatic Interactions Accelerating Water Oxidation Catalysis via Intercatalyst O-O Coupling. J Am Chem Soc 2021; 143:2484-2490. [PMID: 33538597 DOI: 10.1021/jacs.0c07103] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Intercatalyst coupling has been widely applied in the functional mimics for binuclear synergy in natural metal enzymes. Herein, we introduce two facile and effective design strategies, which facilitate the coupling of two catalytic units via electrostatic interactions. The first system is based on a catalyst molecule functionalized with both a positively charged and a negatively charged group in the structure being able to pair with each other in an antiparallel manner arranged by electrostatic interactions. The other system consists of a mixture of two different of catalysts modified with either positively or negatively charged groups to generate intermolecular electrostatic interactions. Applying these designs to Ru(bda) (H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) water-oxidation catalysts improved the catalytic performance by more than an order of magnitude. The intermolecular electrostatic interactions in these two systems were fully identified by 1H NMR, TEM, SAXS, and electrical conductivity experiments. Molecular dynamics simulations further verified that electrostatic interactions contribute to the formation of prereactive dimers, which were found to play a key role in dramatically improving the catalytic performance. The successful strategies demonstrated here can be used in designing other intercatalyst coupling systems for activation and formation of small molecules and organic synthesis.
Collapse
Affiliation(s)
- Jiajia Yi
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710069 Xi'an, China
| | - Shaoqi Zhan
- Department of Theoretical Chemistry & Biology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Lin Chen
- State Key Laboratory of Environment-Friendly Energy Material, School of Materials Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Qiang Tian
- State Key Laboratory of Environment-Friendly Energy Material, School of Materials Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Ning Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710069 Xi'an, China
| | - Jun Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710069 Xi'an, China
| | - Wenhua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710069 Xi'an, China
| | - Biaobiao Zhang
- Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Mårten S G Ahlquist
- Department of Theoretical Chemistry & Biology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| |
Collapse
|
15
|
Timmer BJJ, Kravchenko O, Zhang B, Liu T, Sun L. Electronic Influence of the 2,2'-Bipyridine-6,6'-dicarboxylate Ligand in Ru-Based Molecular Water Oxidation Catalysts. Inorg Chem 2020; 60:1202-1207. [PMID: 33382240 DOI: 10.1021/acs.inorgchem.0c03339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Water provides an ideal source for the production of protons and electrons required for generation of renewable fuels. Among the most-prominent electrocatalysts capable of water oxidation at low overpotentials are Ru(bda)L2-type catalysts. Although many studies were dedicated to the investigation of the influence of structural variations, the true implication of the bda backbone on catalysis remains mostly unclarified. In this work, we further investigated if electronic effects are contributing to catalysis by Ru(bda)(pic)2 or if the intrinsic catalytic activity mainly originates from the structural features of the ligand. Through introduction of pyrazines in the bda backbone, forming Ru(N1-bda)(pic)2 and Ru(N2-bda)(pic)2, electronic differences were maximized while minimizing changes in the geometry and other intermolecular interactions. Through a combination of electrochemical analysis, chemical oxygen evolution, and density functional theory calculations, we reveal that the catalytic activity is unaffected by the electronic features of the backbone and that the unique bimolecular reactivity of the Ru(bda)L2 family of catalysts thus purely depends on the spatial geometry of the ligand.
Collapse
Affiliation(s)
- Brian J J Timmer
- Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Oleksandr Kravchenko
- Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Biaobiao Zhang
- Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Tianqi Liu
- Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Licheng Sun
- Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.,Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, 310024 Hangzhou, China.,State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), 116024 Dalian, China
| |
Collapse
|
16
|
Johansson MP, Niederegger L, Rauhalahti M, Hess CR, Kaila VRI. Dispersion forces drive water oxidation in molecular ruthenium catalysts. RSC Adv 2020; 11:425-432. [PMID: 35423068 PMCID: PMC8691110 DOI: 10.1039/d0ra09004b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/01/2020] [Indexed: 11/21/2022] Open
Abstract
Rational design of artificial water-splitting catalysts is central for developing new sustainable energy technology. However, the catalytic efficiency of the natural light-driven water-splitting enzyme, photosystem II, has been remarkably difficult to achieve artificially. Here we study the molecular mechanism of ruthenium-based molecular catalysts by integrating quantum chemical calculations with inorganic synthesis and functional studies. By employing correlated ab initio calculations, we show that the thermodynamic driving force for the catalysis is obtained by modulation of π-stacking dispersion interactions within the catalytically active dimer core, supporting recently suggested mechanistic principles of Ru-based water-splitting catalysts. The dioxygen bond forms in a semi-concerted radical coupling mechanism, similar to the suggested water-splitting mechanism in photosystem II. By rationally tuning the dispersion effects, we design a new catalyst with a low activation barrier for the water-splitting. The catalytic principles are probed by synthesis, structural, and electrochemical characterization of the new catalyst, supporting enhanced water-splitting activity under the examined conditions. Our combined findings show that modulation of dispersive interactions provides a rational catalyst design principle for controlling challenging chemistries.
Collapse
Affiliation(s)
- Mikael P Johansson
- Department of Chemistry, University of Helsinki P.O. Box 55 FI-00014 Helsinki Finland.,Department of Chemistry, Technical University of Munich (TUM) Lichtenbergstraße 4 Garching D-85747 Germany .,Helsinki Institute of Sustainability Science (Helsus) FI-00014 Helsinki Finland.,CSC-IT Center for Science P.O. Box 405 FI-02101 Espoo Finland
| | - Lukas Niederegger
- Department of Chemistry, Technical University of Munich (TUM) Lichtenbergstraße 4 Garching D-85747 Germany
| | - Markus Rauhalahti
- Department of Chemistry, University of Helsinki P.O. Box 55 FI-00014 Helsinki Finland
| | - Corinna R Hess
- Department of Chemistry, Technical University of Munich (TUM) Lichtenbergstraße 4 Garching D-85747 Germany
| | - Ville R I Kaila
- Department of Chemistry, Technical University of Munich (TUM) Lichtenbergstraße 4 Garching D-85747 Germany .,Department of Biochemistry and Biophysics, Stockholm University Stockholm Sweden
| |
Collapse
|
17
|
Luque-Urrutia JA, Solà M, Poater A. The influence of the pH on the reaction mechanism of water oxidation by a Ru(bda) catalyst. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Yang Y, Yang J, Li F, Liao R, Duan L. Water Oxidation Catalyzed by Ruthenium Complexes with 4‐Hydroxypyridine‐2,6‐dicarboxylate as a Negatively Charged Tridentate Ligand. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yang Yang
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power Southern University of Science and Technology (SUSTech) 518055 Shenzhen P. R. China
- School of Chemistry and Chemical Engineering Harbin Institute of Technology 92 west Da‐Zhi Street 150001 Harbin P. R. China
| | - Jing Yang
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power Southern University of Science and Technology (SUSTech) 518055 Shenzhen P. R. China
| | - Fei Li
- State Key Laboratory of Fine Chemicals Dalian University of Technology 116024 Dalian P. R. China
| | - Rongzhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology 430074 Wuhan P. R. China
| | - Lele Duan
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power Southern University of Science and Technology (SUSTech) 518055 Shenzhen P. R. China
- State Key Laboratory of Fine Chemicals Dalian University of Technology 116024 Dalian P. R. China
| |
Collapse
|
19
|
Meza-Chincha AL, Lindner JO, Schindler D, Schmidt D, Krause AM, Röhr MIS, Mitrić R, Würthner F. Impact of substituents on molecular properties and catalytic activities of trinuclear Ru macrocycles in water oxidation. Chem Sci 2020; 11:7654-7664. [PMID: 34094143 PMCID: PMC8159484 DOI: 10.1039/d0sc01097a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Herein we report a broad series of new trinuclear supramolecular Ru(bda) macrocycles bearing different substituents at the axial or equatorial ligands which enabled investigation of substituent effects on the catalytic activities in chemical and photocatalytic water oxidation. Our detailed investigations revealed that the activities of these functionalized macrocycles in water oxidation are significantly affected by the position at which the substituents were introduced. Interestingly, this effect could not be explained based on the redox properties of the catalysts since these are not markedly influenced by the functionalization of the ligands. Instead, detailed investigations by X-ray crystal structure analysis and theoretical simulations showed that conformational changes imparted by the substituents are responsible for the variation of catalytic activities of the Ru macrocycles. For the first time, macrocyclic structure of this class of water oxidation catalysts is unequivocally confirmed and experimental indication for a hydrogen-bonded water network present in the cavity of the macrocycles is provided by crystal structure analysis. We ascribe the high catalytic efficiency of our Ru(bda) macrocycles to cooperative proton abstractions facilitated by such a network of preorganized water molecules in their cavity, which is reminiscent of catalytic activities of enzymes at active sites. Conformational changes induced by ligand substituents in macrocyclic Ru complexes strongly affect their chemical and photocatalytic efficiencies in water oxidation.![]()
Collapse
Affiliation(s)
| | - Joachim O Lindner
- Universität Würzburg, Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Dorothee Schindler
- Universität Würzburg, Institut für Organische Chemie Am Hubland 97074 Würzburg Germany
| | - David Schmidt
- Universität Würzburg, Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Ana-Maria Krause
- Universität Würzburg, Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Merle I S Röhr
- Universität Würzburg, Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Germany.,Universität Würzburg, Institut für Physikalische und Theoretische Chemie Emil-Fischer-Str. 42 97074 Würzburg Germany
| | - Roland Mitrić
- Universität Würzburg, Institut für Physikalische und Theoretische Chemie Emil-Fischer-Str. 42 97074 Würzburg Germany
| | - Frank Würthner
- Universität Würzburg, Institut für Organische Chemie Am Hubland 97074 Würzburg Germany .,Universität Würzburg, Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
20
|
Ertem MZ, Concepcion JJ. Oxygen Atom Transfer as an Alternative Pathway for Oxygen–Oxygen Bond Formation. Inorg Chem 2020; 59:5966-5974. [DOI: 10.1021/acs.inorgchem.9b03751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mehmed Z. Ertem
- Chemistry Division, Energy & Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Javier J. Concepcion
- Chemistry Division, Energy & Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
21
|
Yang QQ, Jiang X, Yang B, Wang Y, Tung CH, Wu LZ. Amphiphilic Oxo-Bridged Ruthenium "Green Dimer" for Water Oxidation. iScience 2020; 23:100969. [PMID: 32200095 PMCID: PMC7090326 DOI: 10.1016/j.isci.2020.100969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/27/2020] [Accepted: 03/04/2020] [Indexed: 11/24/2022] Open
Abstract
In 1982, an oxo-bridged dinuclear ruthenium(III) complex, known as “blue dimer,” was discovered to be active for water oxidation. In this work, a new amphiphilic ruthenium “green dimer” 2, obtained from an amphiphilic mononuclear Ru(bda) (N-OTEG) (L1) (1; N-OTEG = 4-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-pyridine; L1 = vinylpyridine) is reported. An array of mechanistic studies identifies “green dimer” 2 as a mixed valence of RuII-O-RuIII oxo-bridged structure. Bearing the same bda2- and amphiphilic axial ligands, monomer 1 and green dimer 2 can be reversibly converted by ascorbic acid and oxygen, respectively, in aqueous solution. More importantly, the oxo-bridged “green dimer” 2 was found to take water nucleophilic attack for oxygen evolution, in contrast to monomer 1 via radical coupling pathway for O-O bond formation. This is the first report of an amphiphilic oxo-bridged catalyst, which possesses a new oxygen evolution pathway of Ru-bda catalysts. Green dimer (RuII-O-RuIII), referring to “blue dimer” of RuIII-O-RuIII, is disclosed The first amphiphilic μ-oxido-bridged catalyst is reported active for water oxidation The oxo-bridged “green dimer” 2 takes water nucleophilic attack for O-O bond formation This is the first Ru-bda catalyst, which possesses a new oxygen evolution pathway
Collapse
Affiliation(s)
- Qing-Qing Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xin Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Bing Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yang Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
22
|
Luque-Urrutia JA, Kamdar JM, Grotjahn DB, Solà M, Poater A. Understanding the performance of a bisphosphonate Ru water oxidation catalyst. Dalton Trans 2020; 49:14052-14060. [DOI: 10.1039/d0dt02253e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Water oxidation catalysts (WOCs) are a key part of generating H2 from water and sunlight, consequently, it is a promising process for the production of clean energy.
Collapse
Affiliation(s)
- Jesús A. Luque-Urrutia
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Jayneil M. Kamdar
- Department of Chemistry and Biochemistry
- San Diego State University
- San Diego
- USA
| | - Douglas B. Grotjahn
- Department of Chemistry and Biochemistry
- San Diego State University
- San Diego
- USA
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| |
Collapse
|
23
|
Wang L, Shaffer DW, Manbeck GF, Polyansky DE, Concepcion JJ. High-Redox-Potential Chromophores for Visible-Light-Driven Water Oxidation at Low pH. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lei Wang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | | | - Gerald F. Manbeck
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Dmitry E. Polyansky
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Javier J. Concepcion
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
24
|
Nastasi F, Santoro A, Serroni S, Campagna S, Kaveevivitchai N, Thummel RP. Early photophysical events of a ruthenium(ii) molecular dyad capable of performing photochemical water oxidation and of its model compounds. Photochem Photobiol Sci 2019; 18:2164-2173. [PMID: 30793142 DOI: 10.1039/c8pp00530c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The early photophysical events occurring in the dinuclear metal complex [(ttb-terpy)(I)Ru(μ-dntpz)Ru(bpy)2]3+ (2; ttb-terpy = 4,4',4''-tri-tert-butyl-terpy; bpy = 2,2'-bipyridine; dntpz = 2,5-di-(1,8-dinaphthyrid-2-yl)pyrazine) - a species containing the chromophoric {(bpy)2Ru(μ-dntpz)}2+ subunit and the catalytic {(I)(ttb-terpy)Ru(μ-dntpz)}+ unit, already reported to be able to perform photocatalytic water oxidation - have been studied by ultrafast pump-probe spectroscopy in acetonitrile solution. The model species [Ru(bpy)2(dntpz)]2+ (1), [(bpy)2Ru(μ-dntpz)Ru(bpy)2]4+ (3), and [(ttb-terpy)(I)Ru((μ-dntpz)Ru[(ttb-terpy)(I)]2+ (4) have also been studied. For completeness, the absorption spectra, redox behavior of 1-4 and the spectroelectrochemistry of the dinuclear species 2-4 have been investigated. The usual 3MLCT (metal-to-ligand charge transfer) decay, characterized by relatively long lifetimes on the ns timescale, takes place in 1 and 3, whose lowest-energy level involves a {(bpy)2Ru(dntpz)}2+ unit, whereas for 2 and 4, whose lowest-energy excited state involves a 3MLCT centered on the {(I)(ttb-terpy)Ru(μ-dntpz)}+ subunit, the excited-state lifetimes are on the ps timescale, possibly involving population of a low-lying 3MC (metal-centered) level. Compound 2 also exhibits a fast process, with a time constant of 170 fs, which is attributed to intercomponent energy transfer from the MLCT state centered in the {(bpy)2Ru(μ-dntpz)}2+ unit to the MLCT state involving the {(I)(ttb-terpy)Ru(μ-dntpz)}+ unit. Both the intercomponent energy transfer and the MLCT-to-MC activation process take place from non-equilibrated MLCT states.
Collapse
Affiliation(s)
- Francesco Nastasi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, and Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SOLARCHEM, sezione di Messina), 98166 Messina, Italy
| | - Antonio Santoro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, and Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SOLARCHEM, sezione di Messina), 98166 Messina, Italy
| | - Scolastica Serroni
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, and Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SOLARCHEM, sezione di Messina), 98166 Messina, Italy
| | - Sebastiano Campagna
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, and Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SOLARCHEM, sezione di Messina), 98166 Messina, Italy
| | - Nattawut Kaveevivitchai
- Department of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204-5003, USA
| | - Randolph P Thummel
- Department of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204-5003, USA
| |
Collapse
|
25
|
Hoque MA, Benet-Buchholz J, Llobet A, Gimbert-Suriñach C. Catalytic Oxidation of Water to Dioxygen by Mononuclear Ru Complexes Bearing a 2,6-Pyridinedicarboxylato Ligand. CHEMSUSCHEM 2019; 12:1949-1957. [PMID: 30633841 DOI: 10.1002/cssc.201802996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/11/2019] [Indexed: 06/09/2023]
Abstract
The synthesis, purification, and isolation of mononuclear Ru complexes containing the tridentate dianionic meridional ligand pyridyl-2,6-dicarboxylato (pdc2- ) of general formula [RuIII (pdc-κ3 -N1 O2 )(bpy)Cl] (1III ) and [RuII (pdc-κ2 -N1 O1 )(bpy)2 ] (2II ) (bpy is 2,2'-bipyridine) is reported. These two complexes and their derivatives were thoroughly characterized through spectroscopic (UV/Vis, NMR) and electrochemical (cyclic voltammetry, differential pulse voltammetry, and coulometry) analyses, and three of the complexes were analyzed by single-crystal X-ray diffraction techniques. Under a high anodic applied potential, both complexes evolve towards the formation of Ru-aquo/oxo derivative species, namely, [RuIII (pdc-κ3 -N1 O2 )(bpy)(OH2 )]+ (1-O) and [RuIV (O)(pdc-κ2 -N1 O1 )(bpy)2 ] (2-O). These two complexes are active catalysts for the oxidation of water to dioxygen and their catalytic activity was analyzed through electrochemical techniques. A maximum turnover frequency (TOFmax )=2.4-3.4×103 s-1 was calculated for 2-O.
Collapse
Affiliation(s)
- Md Asmaul Hoque
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| |
Collapse
|
26
|
Zhang B, Sun L. Ru-bda: Unique Molecular Water-Oxidation Catalysts with Distortion Induced Open Site and Negatively Charged Ligands. J Am Chem Soc 2019; 141:5565-5580. [PMID: 30889353 DOI: 10.1021/jacs.8b12862] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A water-oxidation catalyst with high intrinsic activity is the foundation for developing any type of water-splitting device. To celebrate its 10 years anniversary, in this Perspective we focus on the state-of-the-art molecular water-oxidation catalysts (MWOCs), the Ru-bda series (bda = 2,2'-bipyridine-6,6'-dicarboxylate), to offer strategies for the design and synthesis of more advanced MWOCs. The O-O bond formation mechanisms, derivatives, applications, and reasons behind the outstanding catalytic activities of Ru-bda catalysts are summarized and discussed. The excellent performance of the Ru-bda catalyst is owing to its unique structural features: the distortion induced 7-coordination and the carboxylate ligands with coordination flexibility, proton-transfer function as well as small steric hindrance. Inspired by the Ru-bda catalysts, we emphasize that the introduction of negatively charged groups, such as the carboxylate group, into ligands is an effective strategy to lower the onset potential of MWOCs. Moreover, distortion of the regular configuration of a transition metal complex by ligand design to generate a wide open site as the catalytic site for binding the substrate as an extra-coordination is proposed as a new concept for the design of efficient molecular catalysts. These inspirations can be expected to play a great role in not only water-oxidation catalysis but also other small molecule activation and conversion reactions involving artificial photosynthesis, such as CO2 reduction and N2 fixation reactions.
Collapse
Affiliation(s)
- Biaobiao Zhang
- Department of Chemistry , KTH Royal Institute of Technology , 10044 Stockholm , Sweden
| | - Licheng Sun
- Department of Chemistry , KTH Royal Institute of Technology , 10044 Stockholm , Sweden.,State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT) , 116024 Dalian , China
| |
Collapse
|
27
|
Liu Q, Wu L, Chen M, Guo Y, Xie T, Wang P. Aromatic TpyRu2+(L)2Cl derivatives as water oxidation catalysts (Tpy = 2,2′:6′,2″-terpyridine, Ru = ruthenium, L = pyridine or isoquinoline). CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2018.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
28
|
Matheu R, Ertem MZ, Gimbert-Suriñach C, Sala X, Llobet A. Seven Coordinated Molecular Ruthenium–Water Oxidation Catalysts: A Coordination Chemistry Journey. Chem Rev 2019; 119:3453-3471. [DOI: 10.1021/acs.chemrev.8b00537] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Roc Matheu
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Mehmed Z. Ertem
- Chemistry Division, Energy & Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Xavier Sala
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
29
|
Richmond CJ, Escayola S, Poater A. Axial Ligand Effects of Ru-BDA Complexes in the O-O Bond Formation via the I2M Bimolecular Mechanism in Water Oxidation Catalysis. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801450] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Craig J. Richmond
- Level 5; RMIT Europe Media-TIC Building; c/ Roc Boronat, 117 08018 Barcelona Catalonia Spain
| | - Sílvia Escayola
- Institut de Química Computacional i Catàlisi and Departament de Química; Universitat de Girona; c/ Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química; Universitat de Girona; c/ Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
| |
Collapse
|
30
|
Fukuzumi S, Lee YM, Nam W. Kinetics and mechanisms of catalytic water oxidation. Dalton Trans 2019; 48:779-798. [PMID: 30560964 DOI: 10.1039/c8dt04341h] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetics and mechanisms of thermal and photochemical oxidation of water with homogeneous and heterogeneous catalysts, including conversion from homogeneous to heterogeneous catalysts in the course of water oxidation, are discussed in this review article. Molecular and homogeneous catalysts have the advantage to clarify the catalytic mechanisms by detecting active intermediates in catalytic water oxidation. On the other hand, heterogeneous nanoparticle catalysts have advantages for practical applications due to high catalytic activity, robustness and easier separation of catalysts by filtration as compared with molecular homogeneous precursors. Ligand oxidation of homogeneous catalysts sometimes results in the dissociation of ligands to form nanoparticles, which act as much more efficient catalysts for water oxidation. Since it is quite difficult to identify active intermediates on the heterogeneous catalyst surface, the mechanism of water oxidation has hardly been clarified under heterogeneous catalytic conditions. This review focuses on the kinetics and mechanisms of catalytic water oxidation with homogeneous catalysts, which may be converted to heterogeneous nanoparticle catalysts depending on various reaction conditions.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | | | | |
Collapse
|
31
|
Badiei YM, Xie Y, Renderos G, Concepcion JJ, Szalda D, Guevara J, Rosales R, Ortiz E, Hankins M. Rapid identification of homogeneous O2 evolution catalysts and comparative studies of Ru(II)-carboxamides vs. Ru(II)-carboxylates in water-oxidation. J Catal 2019. [DOI: 10.1016/j.jcat.2018.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Haschke S, Mader M, Schlicht S, Roberts AM, Angeles-Boza AM, Barth JAC, Bachmann J. Direct oxygen isotope effect identifies the rate-determining step of electrocatalytic OER at an oxidic surface. Nat Commun 2018; 9:4565. [PMID: 30385759 PMCID: PMC6212532 DOI: 10.1038/s41467-018-07031-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 11/22/2022] Open
Abstract
Understanding the mechanism of water oxidation to dioxygen represents the bottleneck towards the design of efficient energy storage schemes based on water splitting. The investigation of kinetic isotope effects has long been established for mechanistic studies of various such reactions. However, so far natural isotope abundance determination of O2 produced at solid electrode surfaces has not been applied. Here, we demonstrate that such measurements are possible. Moreover, they are experimentally simple and sufficiently accurate to observe significant effects. Our measured kinetic isotope effects depend strongly on the electrode material and on the applied electrode potential. They suggest that in the case of iron oxide as the electrode material, the oxygen evolution reaction occurs via a rate-determining O−O bond formation via nucleophilic water attack on a ferryl unit. Understanding reaction mechanisms is crucial for catalyst design. Here, natural-abundance isotope quantifications of O2 yield mechanistically significant reaction kinetic isotope effects for water oxidation over metal oxide electrodes, the bottleneck step of water electrolysis.
Collapse
Affiliation(s)
- Sandra Haschke
- Department of Chemistry and Pharmacy, Chemistry of Thin Film Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 4, 91058, Erlangen, Germany
| | - Michael Mader
- Department für Geographie und Geowissenschaften, GeoZentrum NordBayern, Applied Geology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 5, 91054, Erlangen, Germany
| | - Stefanie Schlicht
- Department of Chemistry and Pharmacy, Chemistry of Thin Film Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 4, 91058, Erlangen, Germany
| | - André M Roberts
- Department für Geographie und Geowissenschaften, GeoZentrum NordBayern, Applied Geology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 5, 91054, Erlangen, Germany
| | - Alfredo M Angeles-Boza
- Department of Chemistry and Institute of Materials Science, University of Connecticut, 55 North Eagleville Rd., Storrs, CT, 06269, USA.
| | - Johannes A C Barth
- Department für Geographie und Geowissenschaften, GeoZentrum NordBayern, Applied Geology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 5, 91054, Erlangen, Germany.
| | - Julien Bachmann
- Department of Chemistry and Pharmacy, Chemistry of Thin Film Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 4, 91058, Erlangen, Germany. .,Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg, Russian Federation, 198504.
| |
Collapse
|
33
|
Wang Y, Zhan S, Ahlquist MSG. Nucleophilic Attack by OH2 or OH–: A Detailed Investigation on pH-Dependent Performance of a Ru Catalyst. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ying Wang
- Department of Theoretical Chemistry & Biology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Shaoqi Zhan
- Department of Theoretical Chemistry & Biology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Mårten S. G. Ahlquist
- Department of Theoretical Chemistry & Biology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| |
Collapse
|
34
|
Yu F, Poole D, Mathew S, Yan N, Hessels J, Orth N, Ivanović‐Burmazović I, Reek JNH. Control over Electrochemical Water Oxidation Catalysis by Preorganization of Molecular Ruthenium Catalysts in Self-Assembled Nanospheres. Angew Chem Int Ed Engl 2018; 57:11247-11251. [PMID: 29975448 PMCID: PMC6120458 DOI: 10.1002/anie.201805244] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/15/2018] [Indexed: 11/08/2022]
Abstract
Oxygen formation through water oxidation catalysis is a key reaction in the context of fuel generation from renewable energies. The number of homogeneous catalysts that catalyze water oxidation at high rate with low overpotential is limited. Ruthenium complexes can be particularly active, especially if they facilitate a dinuclear pathway for oxygen bond formation step. A supramolecular encapsulation strategy is reported that involves preorganization of dilute solutions (10-5 m) of ruthenium complexes to yield high local catalyst concentrations (up to 0.54 m). The preorganization strategy enhances the water oxidation rate by two-orders of magnitude to 125 s-1 , as it facilitates the diffusion-controlled rate-limiting dinuclear coupling step. Moreover, it modulates reaction rates, enabling comprehensive elucidation of electrocatalytic reaction mechanisms.
Collapse
Affiliation(s)
- Fengshou Yu
- Homogeneous, Supramolecular and Bio-Inspired CatalysisVan't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | - David Poole
- Homogeneous, Supramolecular and Bio-Inspired CatalysisVan't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | - Simon Mathew
- Homogeneous, Supramolecular and Bio-Inspired CatalysisVan't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | - Ning Yan
- Homogeneous, Supramolecular and Bio-Inspired CatalysisVan't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | - Joeri Hessels
- Homogeneous, Supramolecular and Bio-Inspired CatalysisVan't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | - Nicole Orth
- Lehrstuhl für Bioanorganische ChemieDepartment Chemie und PharmazieFriedrich-Alexander-UniversitaetEgerlandstrasse 391058ErlangenGermany
| | - Ivana Ivanović‐Burmazović
- Lehrstuhl für Bioanorganische ChemieDepartment Chemie und PharmazieFriedrich-Alexander-UniversitaetEgerlandstrasse 391058ErlangenGermany
| | - Joost N. H. Reek
- Homogeneous, Supramolecular and Bio-Inspired CatalysisVan't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| |
Collapse
|
35
|
Kärkäs MD, Li YY, Siegbahn PEM, Liao RZ, Åkermark B. Metal–Ligand Cooperation in Single-Site Ruthenium Water Oxidation Catalysts: A Combined Experimental and Quantum Chemical Approach. Inorg Chem 2018; 57:10881-10895. [DOI: 10.1021/acs.inorgchem.8b01527] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Markus D. Kärkäs
- Department of Chemistry, Organic Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Ying-Ying Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Per E. M. Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Björn Åkermark
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
36
|
Control over Electrochemical Water Oxidation Catalysis by Preorganization of Molecular Ruthenium Catalysts in Self-Assembled Nanospheres. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805244] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Xie Y, Shaffer DW, Concepcion JJ. O–O Radical Coupling: From Detailed Mechanistic Understanding to Enhanced Water Oxidation Catalysis. Inorg Chem 2018; 57:10533-10542. [DOI: 10.1021/acs.inorgchem.8b00329] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan Xie
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - David W. Shaffer
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Javier J. Concepcion
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
38
|
Crystal structure of catena-poly[diaqua-(μ 2-5-methylisophthalato-κ 2
O: O′)(μ 2-1,4-bis((1 H-1,2,4-triazol-1-yl)methyl)benzene-κ 2
N: N′)], NiC 21H 22O 6N 6. Z KRIST-NEW CRYST ST 2018. [DOI: 10.1515/ncrs-2017-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
NiC21H22O6N6, orthorhombic, Pnma, a = 18.214(3) Å, b = 20.934(3) Å, c = 5.5296(8) Å, V = 2108.3(5) Å3, Z = 4, R
gt(F) = 0.0279, wR
ref(F
2) = 0.798, T = 296(2) K.
Collapse
|
39
|
Scherrer D, Schilling M, Luber S, Fox T, Spingler B, Alberto R, Richmond CJ. Ruthenium water oxidation catalysts containing the non-planar tetradentate ligand, biisoquinoline dicarboxylic acid (biqaH 2). Dalton Trans 2018; 45:19361-19367. [PMID: 27878157 DOI: 10.1039/c6dt03880h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two ruthenium complexes containing the tetradentate ligand [1,1'-biisoquinoline]-3,3'-dicarboxylic acid, and 4-picoline or 6-bromoisoquinoline as axial ligands have been prepared. The complexes have been fully characterised and initial studies on their potential to function as molecular water oxidation catalysts have been performed. Both complexes catalyse the oxidation of water in acidic media with CeIV as a stoichiometric chemical oxidant, although turnover numbers and turnover frequencies are modest when compared with the closely related Ru-bda and Ru-pda analogues. Barriers for the water nucleophilic attack and intermolecular coupling pathways were obtained from density functional theory calculations and the crucial influence of the ligand framework in determining the most favourable reaction pathway was elucidated from a combined analysis of the theoretical and experimental results.
Collapse
Affiliation(s)
- Dominik Scherrer
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| | - Mauro Schilling
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| | - Sandra Luber
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| | - Thomas Fox
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| | | | - Roger Alberto
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| | - Craig J Richmond
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
40
|
Wang D, Marquard SL, Troian-Gautier L, Sheridan MV, Sherman BD, Wang Y, Eberhart MS, Farnum BH, Dares CJ, Meyer TJ. Interfacial Deposition of Ru(II) Bipyridine-Dicarboxylate Complexes by Ligand Substitution for Applications in Water Oxidation Catalysis. J Am Chem Soc 2018; 140:719-726. [DOI: 10.1021/jacs.7b10809] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Degao Wang
- Department
of Chemistry, University of North Carolina Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Seth L. Marquard
- Department
of Chemistry, University of North Carolina Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Ludovic Troian-Gautier
- Department
of Chemistry, University of North Carolina Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Matthew V. Sheridan
- Department
of Chemistry, University of North Carolina Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Benjamin D. Sherman
- Department
of Chemistry, University of North Carolina Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Ying Wang
- Department
of Chemistry, University of North Carolina Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Michael S. Eberhart
- Department
of Chemistry, University of North Carolina Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Byron H. Farnum
- Department
of Chemistry, University of North Carolina Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Christopher J. Dares
- Department
of Chemistry and Biochemistry, Florida International University, 11200 SW
Eighth Street, Miami, Florida 33199, United States
| | - Thomas J. Meyer
- Department
of Chemistry, University of North Carolina Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| |
Collapse
|
41
|
Shaffer DW, Xie Y, Szalda DJ, Concepcion JJ. Lability and Basicity of Bipyridine-Carboxylate-Phosphonate Ligand Accelerate Single-Site Water Oxidation by Ruthenium-Based Molecular Catalysts. J Am Chem Soc 2017; 139:15347-15355. [DOI: 10.1021/jacs.7b06096] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- David W. Shaffer
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Yan Xie
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - David J. Szalda
- Department
of Natural Sciences, Baruch College, CUNY, New York, New York 10010, United States
| | - Javier J. Concepcion
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
42
|
Matheu R, Ertem MZ, Gimbert-Suriñach C, Benet-Buchholz J, Sala X, Llobet A. Hydrogen Bonding Rescues Overpotential in Seven-Coordinated Ru Water Oxidation Catalysts. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01860] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roc Matheu
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Mehmed Z. Ertem
- Chemistry Division, Energy & Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Xavier Sala
- Departament
de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
43
|
Odrobina J, Scholz J, Risch M, Dechert S, Jooss C, Meyer F. Chasing the Achilles’ Heel in Hybrid Systems of Diruthenium Water Oxidation Catalysts Anchored on Indium Tin Oxide: The Stability of the Anchor. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01883] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jann Odrobina
- University of Goettingen, Institute of Inorganic
Chemistry, Tammannstraße
4, D-37077 Göttingen, Germany
| | - Julius Scholz
- University of Goettingen, Institute of Materials
Physics, Friedrich-Hund-Platz
1, D-37077 Göttingen, Germany
| | - Marcel Risch
- University of Goettingen, Institute of Materials
Physics, Friedrich-Hund-Platz
1, D-37077 Göttingen, Germany
| | - Sebastian Dechert
- University of Goettingen, Institute of Inorganic
Chemistry, Tammannstraße
4, D-37077 Göttingen, Germany
| | - Christian Jooss
- University of Goettingen, Institute of Materials
Physics, Friedrich-Hund-Platz
1, D-37077 Göttingen, Germany
- University of Goettingen, International Center
for Advanced Studies of Energy Conversion (ICASEC), D-37077 Göttingen, Germany
| | - Franc Meyer
- University of Goettingen, Institute of Inorganic
Chemistry, Tammannstraße
4, D-37077 Göttingen, Germany
- University of Goettingen, International Center
for Advanced Studies of Energy Conversion (ICASEC), D-37077 Göttingen, Germany
| |
Collapse
|
44
|
Patel J, Majee K, Raj M, Vatsa A, Rai S, Padhi SK. Effect of Quinoline Substitution on Water Oxidation by [Ru(Ql-tpy)(bpy)(OH2
)](PF6
)2. ChemistrySelect 2017. [DOI: 10.1002/slct.201700074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jully Patel
- Artificial Photosynthesis Laboratory; Department of Applied Chemistry; Indian Institute of Technology (Indian School of Mines); Dhanbad India 826004
| | - Karunamay Majee
- Artificial Photosynthesis Laboratory; Department of Applied Chemistry; Indian Institute of Technology (Indian School of Mines); Dhanbad India 826004
| | - Manaswini Raj
- Artificial Photosynthesis Laboratory; Department of Applied Chemistry; Indian Institute of Technology (Indian School of Mines); Dhanbad India 826004
| | - Aditi Vatsa
- Artificial Photosynthesis Laboratory; Department of Applied Chemistry; Indian Institute of Technology (Indian School of Mines); Dhanbad India 826004
| | - Surabhi Rai
- Artificial Photosynthesis Laboratory; Department of Applied Chemistry; Indian Institute of Technology (Indian School of Mines); Dhanbad India 826004
| | - Sumanta Kumar Padhi
- Artificial Photosynthesis Laboratory; Department of Applied Chemistry; Indian Institute of Technology (Indian School of Mines); Dhanbad India 826004
| |
Collapse
|
45
|
Shaffer DW, Xie Y, Concepcion JJ. O–O bond formation in ruthenium-catalyzed water oxidation: single-site nucleophilic attack vs. O–O radical coupling. Chem Soc Rev 2017; 46:6170-6193. [DOI: 10.1039/c7cs00542c] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A review of water oxidation by ruthenium-based molecular catalysts, with emphasis on the mechanism of O–O bond formation.
Collapse
Affiliation(s)
| | - Yan Xie
- Chemistry Division
- Brookhaven National Laboratory
- Upton
- USA
| | | |
Collapse
|
46
|
Meyer TJ, Sheridan MV, Sherman BD. Mechanisms of molecular water oxidation in solution and on oxide surfaces. Chem Soc Rev 2017; 46:6148-6169. [DOI: 10.1039/c7cs00465f] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Initial experiments on water oxidation by well-defined molecular catalysts were initiated with the goal of finding solutions to solar energy conversion.
Collapse
Affiliation(s)
- Thomas J. Meyer
- Department of Chemistry
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| | - Matthew V. Sheridan
- Department of Chemistry
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| | - Benjamin D. Sherman
- Department of Chemistry
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| |
Collapse
|