1
|
Calatayud DG, Martín Arroyo MV, Caballero AC, Villegas M, Ge H, Botchway SW, Pascu SI, Peiteado M, Jardiel T. Rare Earths-Doped and Ceria-Coated Strontium Aluminate PlateletsVersatile Luminescent Platforms for Correlated Lifetime Imaging by Multiphoton FLIM and PLIM. ACS OMEGA 2025; 10:19950-19965. [PMID: 40415853 PMCID: PMC12096198 DOI: 10.1021/acsomega.5c01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 05/27/2025]
Abstract
We report our recent advances in the design and synthesis of functional and hybrid composite nanomaterials with properties geared toward life sciences assays and as platforms for biomedical imaging applications. Using a stepwise reverse micelle procedure, we synthesized hybrid platelets comprising rare earth-doped strontium aluminate cores labeled Eu,Dy:SrAlO, where the phase nominally denoted as Sr0.95Eu0.02Dy0.03Al2O4 dominates the nature of the composite, as demonstrated by extensive X-ray diffraction investigations. These were coated with a biocompatible cerium oxide shell, giving rise to the hierarchical hybrids denoted CeO2@Eu,Dy:SrAlO. Such Eu/Dy codoped strontium aluminates exhibit broad luminescent emissions with high optical sensitivity. The CeO2 shell further imparts biocompatibility and water dispersibility, resulting in kinetically stable nanoplatelets which can translocate into living cells in lifetime imaging protocols that were optimized for imaging across nano- and microscales. Multiphoton fluorescence lifetime imaging microscopy (MP FLIM) confirmed the luminescent properties in thin films and living cellular environments. These nanohybrids represent a significant step forward in the development of functional molecules and materials, leveraging directed and self-assembly strategies for their synthesis. Their luminescence (detectable by fluorescence as well as phosphorescence emission intensity correlated with emission lifetime), negligible toxicity on the time scale of imaging assays and up to 72 h, and biocompatibility with cellular milieu enabled their tracing with living cells. Their cellular activity was estimated by standard MTT assays in PC-3 and provided a further insight into their behavior in biological environments. The inclusion of heavy cerium and strontium atoms enhanced X-ray attenuation, supporting multimodal imaging by integrating optical and X-ray-based methods, which paves the way for potential applications in computed tomography correlated to confocal microscopy coupled with fluorescence lifetime imaging. These findings highlight the versatility of these luminescent hybrids for bioimaging and as synthetic scaffolds toward nanomedicine applications, bridging advanced imaging modalities with functional materials design.
Collapse
Affiliation(s)
- David G. Calatayud
- Electroceramics
Department, Instituto de Cerámica
y VidrioCSIC, Kelsen 5, Campus de Cantoblanco, 28049Madrid, Spain
- Inorganic
Chemistry, Universidad Autonoma de Madrid, Francisco Tomas y Valiente 7, Campus
de Cantoblanco, 28049Madrid, Spain
| | - María Victoria Martín Arroyo
- Electroceramics
Department, Instituto de Cerámica
y VidrioCSIC, Kelsen 5, Campus de Cantoblanco, 28049Madrid, Spain
| | - Amador C. Caballero
- Electroceramics
Department, Instituto de Cerámica
y VidrioCSIC, Kelsen 5, Campus de Cantoblanco, 28049Madrid, Spain
| | - Marina Villegas
- Electroceramics
Department, Instituto de Cerámica
y VidrioCSIC, Kelsen 5, Campus de Cantoblanco, 28049Madrid, Spain
| | - Haobo Ge
- Department
of Chemistry, University of Bath, BA2 7AYBath, U.K.
| | - Stanley W. Botchway
- STFC
Research Complex at Harwell, Rutherford
Appleton Laboratory, Harwell, Science and Innovation Campus, Harwell, OxfordshireOX11 0QX, U.K.
| | - Sofia I. Pascu
- Department
of Chemistry, University of Bath, BA2 7AYBath, U.K.
| | - Marco Peiteado
- Electroceramics
Department, Instituto de Cerámica
y VidrioCSIC, Kelsen 5, Campus de Cantoblanco, 28049Madrid, Spain
| | - Teresa Jardiel
- Electroceramics
Department, Instituto de Cerámica
y VidrioCSIC, Kelsen 5, Campus de Cantoblanco, 28049Madrid, Spain
| |
Collapse
|
2
|
Thomson CG, Lee AL, Vilela F. Heterogeneous photocatalysis in flow chemical reactors. Beilstein J Org Chem 2020; 16:1495-1549. [PMID: 32647551 PMCID: PMC7323633 DOI: 10.3762/bjoc.16.125] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022] Open
Abstract
The synergy between photocatalysis and continuous flow chemical reactors has shifted the paradigms of photochemistry, opening new avenues of research with safer and scalable processes that can be readily implemented in academia and industry. Current state-of-the-art photocatalysts are homogeneous transition metal complexes that have favourable photophysical properties, wide electrochemical redox potentials, and photostability. However, these photocatalysts present serious drawbacks, such as toxicity, limited availability, and the overall cost of rare transition metal elements. This reduces their long-term viability, especially at an industrial scale. Heterogeneous photocatalysts (HPCats) are an attractive alternative, as the requirement for the separation and purification is largely removed, but typically at the cost of efficiency. Flow chemical reactors can, to a large extent, mitigate the loss in efficiency through reactor designs that enhance mass transport and irradiation. Herein, we review some important developments of heterogeneous photocatalytic materials and their application in flow reactors for sustainable organic synthesis. Further, the application of continuous flow heterogeneous photocatalysis in environmental remediation is briefly discussed to present some interesting reactor designs that could be implemented to enhance organic synthesis.
Collapse
Affiliation(s)
- Christopher G Thomson
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, United Kingdom
| | - Ai-Lan Lee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, United Kingdom
| | - Filipe Vilela
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, United Kingdom
| |
Collapse
|
3
|
Wang Y, Gao J, Gao C, Ma H, Yang B, Han Y, Zhou E, Cheng Q, Jing S, Huang L. Modulation of lanthanide luminescence via an electric field. NANOSCALE 2019; 11:16562-16570. [PMID: 31460546 DOI: 10.1039/c9nr04684d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The modulation of luminescence via external stimuli such as temperature, mechanical stress, hydrostatic pressure, as well as electric and/or magnetic fields, has witnessed great progress, enabled the disclosure of new principles and energy transfer pathways, and widened applications. However, investigations on the luminescence modulation of lanthanide ions doped in semiconductors via an applied electric field are still absent. Herein, for the first time, we have demonstrated the in situ, real-time, and reversible modulation of the luminescence of Eu3+ doped in SnO2 nanocrystals by manipulating the recombination rate of photo-generated electrons and holes, and the accompanied energy transfer mode in terms of linear and quasi-sinusoidal, from semiconductor to lanthanide ions. Following the same principle, the modulation of near infrared responsive Er3+ in SnO2 and the visible luminescence of perovskite nanocrystals is further realized. This study offers extra methodologies for luminescence modulation, in addition to those already reported for ferro- and/or piezoelectric-hosted luminescent materials.
Collapse
Affiliation(s)
- Yangbo Wang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China. and School of Materials Science and Engineering, Liaocheng University, 1 Hunan Road, Liaocheng 252059, China
| | - Jiaxin Gao
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Chao Gao
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Hui Ma
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Bingxiao Yang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Yingdong Han
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China. and School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Enlong Zhou
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Qianya Cheng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Ling Huang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| |
Collapse
|
4
|
Wang W, Zhao M, Zhang C, Qian H. Recent Advances in Controlled Synthesis of Upconversion Nanoparticles and Semiconductor Heterostructures. CHEM REC 2019; 20:2-9. [DOI: 10.1002/tcr.201900006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/09/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Wanni Wang
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 P. R. China
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education InstitutesHefei University of Technology Hefei 230009 P. R. China
| | - Mengli Zhao
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 P. R. China
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education InstitutesHefei University of Technology Hefei 230009 P. R. China
| | - Chenyang Zhang
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 P. R. China
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education InstitutesHefei University of Technology Hefei 230009 P. R. China
| | - Haisheng Qian
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 P. R. China
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education InstitutesHefei University of Technology Hefei 230009 P. R. China
- Biomedical and Environmental Interdisciplinary Research Centre Hefei 230010 P. R. China
| |
Collapse
|
5
|
Lingeshwar Reddy K, Balaji R, Kumar A, Krishnan V. Lanthanide Doped Near Infrared Active Upconversion Nanophosphors: Fundamental Concepts, Synthesis Strategies, and Technological Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801304. [PMID: 30066489 DOI: 10.1002/smll.201801304] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Near infrared (NIR) light utilization in a range of current technologies has gained huge significance due to its abundance in nature and nondestructive properties. NIR active lanthanide (Ln) doped upconversion nanomaterials synthesized in controlled shape, size, and surface functionality can be combined with various pertinent materials for extensive applications in diverse fields. Upconversion nanophosphors (UCNP) possess unique abilities, such as deep tissue penetration, enhanced photostability, low toxicity, sharp emission peaks, long anti-Stokes shift, etc., which have bestowed them with prodigious advantages over other conventional luminescent materials. As new generation fluorophores, UCNP have found a wide range of applications in various fields. In this Review, a comprehensive overview of lanthanide doped NIR active UCNP is provided by discussing the fundamental concepts including the different mechanisms proposed for explaining the upconversion processes, followed by the different strategies employed for the synthesis of these materials, and finally the technological applications of UCNP, mainly in the fields of bioimaging, drug delivery, sensing, and photocatalysis by highlighting the recent works in these areas. In addition, a brief note on the applications of UCNP in other fields is also provided along with the summary and future perspectives of these materials.
Collapse
Affiliation(s)
- Kumbam Lingeshwar Reddy
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Ramachandran Balaji
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Ashish Kumar
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Venkata Krishnan
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175005, India
| |
Collapse
|
6
|
Zhao M, Wang W, Huang C, Dong W, Wang Y, Cheng S, Wang H, Qian H. Facile synthesis of UCNPs/Zn x Cd 1-x S nanocomposites excited by near-infrared light for photochemical reduction and removal of Cr(VI). CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63061-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Stolarczyk JK, Bhattacharyya S, Polavarapu L, Feldmann J. Challenges and Prospects in Solar Water Splitting and CO2 Reduction with Inorganic and Hybrid Nanostructures. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00791] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jacek K. Stolarczyk
- Photonics and Optoelectronics Group, Department of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, Amalienstraße 54, 80799 Munich, Germany
- Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 Munich, Germany
| | - Santanu Bhattacharyya
- Photonics and Optoelectronics Group, Department of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, Amalienstraße 54, 80799 Munich, Germany
- Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 Munich, Germany
| | - Lakshminarayana Polavarapu
- Photonics and Optoelectronics Group, Department of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, Amalienstraße 54, 80799 Munich, Germany
- Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 Munich, Germany
| | - Jochen Feldmann
- Photonics and Optoelectronics Group, Department of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, Amalienstraße 54, 80799 Munich, Germany
- Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 Munich, Germany
| |
Collapse
|
8
|
Su Y, Hao LN, Liu K, Zhang J, Dong L, Xu Y, Lu Y, Qian HS. Epitaxial growth of ultrathin layers on the surface of sub-10 nm nanoparticles: the case of β-NaGdF4:Yb/Er@NaDyF4 nanoparticles. RSC Adv 2018; 8:12944-12950. [PMID: 35541247 PMCID: PMC9079741 DOI: 10.1039/c8ra01752b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/19/2018] [Indexed: 12/18/2022] Open
Abstract
Upconversion core–shell nanoparticles have attracted a large amount of attention due to their multifunctionality and specific applications. In this work, based on a NaGdF4 sub-10 nm ultrasmall nanocore, a series of core–shell upconversion nanoparticles with uniform size doped with Yb3+, Er3+ and NaDyF4 shells with different thicknesses were synthesized by a facile sequential growth process. NaDyF4 coated upconversion luminescent nanoparticles showed an obvious fluorescence quenching under excitation at 980 nm as a result of energy resonance transfer between Yb3+, Er3+ and Dy3+. NaGdF4:Yb,Er@NaDyF4 core–shell nanoparticles with ultrathin layer shells exhibited a better T1-weighted MR contrast. In this work, a series of core–shell upconversion nanoparticles with uniform size doped with Yb3+, Er3+ and NaDyF4 shells with different thicknesses were synthesized by a facile sequential growth process.![]()
Collapse
Affiliation(s)
- Yang Su
- Department of Chemistry
- Hefei University of Technology
- Hefei 230009
- P. R. China
| | - Li-Na Hao
- Department of Medical Materials and Rehabilitation Engineering
- School of Medical Engineering
- Hefei University of Technology
- Hefei 230009
- P. R. China
| | - Kun Liu
- Department of Medical Materials and Rehabilitation Engineering
- School of Medical Engineering
- Hefei University of Technology
- Hefei 230009
- P. R. China
| | - Jun Zhang
- Analytical and Testing Center
- Hefei University of Technology
- Hefei 230009
- P. R. China
| | - Liang Dong
- Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Yunjun Xu
- Department of Radiology
- Anhui Provincial Hospital
- Hefei 230001
- P. R. China
| | - Yang Lu
- Department of Chemistry
- Hefei University of Technology
- Hefei 230009
- P. R. China
| | - Hai-Sheng Qian
- Department of Medical Materials and Rehabilitation Engineering
- School of Medical Engineering
- Hefei University of Technology
- Hefei 230009
- P. R. China
| |
Collapse
|
9
|
Zheng C, Teng CP, Yang DP, Lin M, Win KY, Li Z, Ye E. Fabrication of luminescent TiO 2:Eu 3+ and ZrO 2:Tb 3+ encapsulated PLGA microparticles for bioimaging application with enhanced biocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 92:1117-1123. [PMID: 30184733 DOI: 10.1016/j.msec.2017.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 12/19/2022]
Abstract
Rare earth is of great interest because of their unique optical properties, especially the rich luminescent spectra. In this study, we developed a facile one-pot microwave-assisted synthesis of luminescent Eu3+ doped TiO2 nanoparticles and Tb3+ doped ZrO2 nanoparticles. As a result, the emitting centers (Eu3+ and Tb3+) were all well dispersed in the amorphous host oxide materials, leading to high luminescence. The obtained TiO2:Eu3+ and ZrO2:Tb3+ nanoparticles were then encapsulated into PLGA microparticles for bio-applications. These luminescent microparticles were then proven to be highly stable, biocompatible and of low cytotoxicity. We successfully demonstrated the bioimaging of live cells using the red-luminescent TiO2:Eu3+ nanoparticles and green-luminescent ZrO2:Tb3+ nanoparticles embedded PLGA microparticles. The microwave-assisted synthetic methodology can be further developed to be general method to prepare oxide nanoparticles.
Collapse
Affiliation(s)
- Chaohui Zheng
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Choon Peng Teng
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #8-03, Singapore 138634, Singapore
| | - Da-Peng Yang
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; College of Chemical Engineering & Materials Science, Quanzhou Normal University, Quanzhou, China.
| | - Ming Lin
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #8-03, Singapore 138634, Singapore
| | - Khin Yin Win
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #8-03, Singapore 138634, Singapore.
| | - Zibiao Li
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #8-03, Singapore 138634, Singapore.
| | - Enyi Ye
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #8-03, Singapore 138634, Singapore.
| |
Collapse
|