1
|
Wan Y, Shao R, Norton JR. Hydrocyclization/Defluorination of CF 3-Substituted Acrylamides: Insights from Kinetics of Hydrogen Atom Transfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501799. [PMID: 40277463 DOI: 10.1002/advs.202501799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/03/2025] [Indexed: 04/26/2025]
Abstract
The introduction of F-containing groups into organic molecules can significantly alter their physical and chemical properties. Particularly, gem-difluoroalkenes serve as versatile precursors for a broad variety of organofluorine compounds, commonly used in agrochemicals, pharmaceuticals, and materials science. Based on the kinetics of H• transfer to acrylamide (kH = 2.28 × 10-4 M-1 s-1 at 300 K in toluene), the study describes a nickel-hydride-(or Li[BEt3H]) initiated hydrocyclization/defluorination of CF3-substituted acrylamides, offering alternative access to 4-fluorovinyl-substituted 2-pyrrolidones (Seletracetam derivatives that are antiepileptic drug candidates). This process proceeds with high yields and remarkable chemo- and regioselectivity. The hydrocyclization/defluorination can be initiated by either H• or H- transfer, followed by a 5-exo-trig cyclization and subsequent fluorine elimination. The strategy has been applied in the late-stage functionalization of drug molecules, providing a valuable tool in the synthesis of pharmaceutical compounds.
Collapse
Affiliation(s)
- Yanjun Wan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ronghui Shao
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
- College of Chemistry, Naikai University, Tianjin, 300071, China
| | - Jack R Norton
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| |
Collapse
|
2
|
Campbell JW, Cotnam MJ, Annan FR, Hilborn JW, Thompson A. Synthesis of chiral systems featuring the pyrrole unit: a review. Chem Commun (Camb) 2024; 60:11385-11414. [PMID: 39292192 DOI: 10.1039/d4cc03601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Synthetic strategies towards pyrroles within chiral frameworks are summarised, focussing on reports published 2010-2023. The synthesis of pyrroles featuring substituents bearing chiral centres are summarised, as are those whereby pyrroles are located within axially chiral systems courtesy of restricted bond rotation.
Collapse
Affiliation(s)
- Jacob W Campbell
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Michael J Cotnam
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Francisca R Annan
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - James W Hilborn
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Alison Thompson
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
3
|
Ott JC, Bürgy D, Guan H, Gade LH. 3d Metal Complexes in T-shaped Geometry as a Gateway to Metalloradical Reactivity. Acc Chem Res 2022; 55:857-868. [PMID: 35164502 DOI: 10.1021/acs.accounts.1c00737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ConspectusLow-valent, low-coordinate 3d metal complexes represent a class of extraordinarily reactive compounds that can act as reagents and catalysts for challenging bond-activation reactions. The pursuit of these electron-deficient metal complexes in low oxidation states demands ancillary ligands capable of providing not only energetic stabilization but also sufficiently high steric bulk at the metal center. From this perspective, pincer ligands are particularly advantageous, as their prearranged, meridional coordination mode scaffolds the active center while the substituents of the peripheral donor atoms provide effective steric shielding for the coordination sphere. In a T-shaped geometry, the transition metal complexes possess a precisely defined vacant coordination site, which, combined with the often observed high-spin electron configuration, exhibits unusually high selectivity of these compounds with respect to one-electron redox chemistry. In light of the intractable reaction pathways typically observed with related electronically unsaturated 3d transition metal complexes, the pincer coordination mode enables the isolation of low-valent compounds with more controlled and unique reactivity. We have thus investigated a series of T-shaped metal(I) complexes using three different types of pincer ligands, which may be regarded as "metalloradicals" due to their selectively exposed unpaired electrons.These compounds display remarkably high thermal stability and represent rarely observed "naked" monovalent metal species featuring both monomeric and dimeric structures. Extensive reactivity studies using various organic substrates highlight a strong tendency of these paramagnetic compounds to undergo one-electron oxidation, leading to the isolation of a plethora of metal(II) species with reduced organic ligands as unusual structural elements. The exploration of C2 symmetric T-shaped Ni(I) complexes as asymmetric catalysts also shows success in enantioselective hydrodehalogenation of geminal dihalogenides. In addition, this specific class of low-valent, low-coordinate complexes can be further diversified by introducing redox-active pincer ligands or building homobimetallic systems with two T-shaped units.This Account focuses on the discussion of selected examples of iron, cobalt, and nickel pincer complexes bearing a [P,N,P] or [N,N,N] donor set; however, their electronic structure and radical-type reactivity can be broadly extended to other pincer systems. The availability of various types of pincer ligands should allow fine-tuning of the reactivity of the T-shaped complexes. Given the unprecedented reactivity observed with these compounds, we expect the studies of T-shaped 3d metal complexes to be a fertile field for advancing base metal catalysis.
Collapse
Affiliation(s)
- Jonas C. Ott
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - David Bürgy
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Hairong Guan
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Lutz H. Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Sudharsan M, Nethaji M, Bhuvanesh NS, Suresh D. Heteroleptic Palladium(II) Complexes of Thiazolinyl‐picolinamide Derived N
∩
N
∩
N Pincer Ligand: An Efficient Catalyst for Acylative Suzuki Coupling Reactions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Murugesan Sudharsan
- Department of Chemistry School of Chemical and Biotechnology SASTRA Deemed University Thanjavur Tamil Nadu 613 401 India
| | - Munirathinam Nethaji
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore Karnataka 560 012 India
| | | | - Devarajan Suresh
- Department of Chemistry School of Chemical and Biotechnology SASTRA Deemed University Thanjavur Tamil Nadu 613 401 India
| |
Collapse
|
5
|
Zhu B, Sakaki S. C(sp 3)–F Bond Activation and Hydrodefluorination of the CF 3 Group Catalyzed by a Nickel(II) Hydride Complex: Theoretical Insight into the Mechanism with a Spin-State Change and Two Ion-Pair Intermediates. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bo Zhu
- Element Strategy Initiative for Catalysts and Batteries, Kyoto University, Goryo-Ohara 1-30, Nishikyo-ku, Kyoto 615-8245, Japan
| | - Shigeyoshi Sakaki
- Element Strategy Initiative for Catalysts and Batteries, Kyoto University, Goryo-Ohara 1-30, Nishikyo-ku, Kyoto 615-8245, Japan
| |
Collapse
|
6
|
Cabelof AC, Carta V, Chen C, Pink M, Caulton KG. Pincers with diverse donors and their interconversion: application to Ni(II). Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alyssa C. Cabelof
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN, 47401 USA
| | - Veronica Carta
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN, 47401 USA
| | - Chun‐Hsing Chen
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN, 47401 USA
| | - Maren Pink
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN, 47401 USA
| | - Kenneth G. Caulton
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN, 47401 USA
| |
Collapse
|
7
|
Chisholm DT, Hayes PG. Synthesis and characterization of group 13 dichloride (M = Ga, In), dimethyl (M = Al) and cationic methyl aluminum complexes supported by monoanionic NNN-pincer ligands. NEW J CHEM 2021. [DOI: 10.1039/d1nj01064f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of monoanionic NNN-pincer ligands effectively stabilize five-coordinate gallium and indium dichloride complexes, as well as neutral dimethyl aluminum species, and organometallic cations thereof.
Collapse
Affiliation(s)
- Desmond T. Chisholm
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4
| | - Paul G. Hayes
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4
| |
Collapse
|
8
|
Uvarov VM, de Vekki DA. Recent progress in the development of catalytic systems for homogenous asymmetric hydrosilylation of ketones. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
McNeece AJ, Jesse KA, Xie J, Filatov AS, Anderson JS. Generation and Oxidative Reactivity of a Ni(II) Superoxo Complex via Ligand-Based Redox Non-Innocence. J Am Chem Soc 2020; 142:10824-10832. [PMID: 32429663 DOI: 10.1021/jacs.0c03244] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal ligand cooperativity is a powerful strategy in transition metal chemistry. This type of mechanism for the activation of O2 is best exemplified by heme centers in biological systems. While aerobic oxidations with Fe and Cu are well precedented, Ni-based oxidations are frequently less common due to less-accessible metal-based redox couples. Some Ni enzymes utilize special ligand environments for tuning the Ni(II)/(III) redox couple such as strongly donating thiolates in Ni superoxide dismutase. A recently characterized example of a Ni-containing protein, however, suggests an alternative strategy for mediating redox chemistry with Ni by utilizing ligand-based reducing equivalents to enable oxygen binding. While this mechanism has little synthetic precedent, we show here that Ni complexes of the redox-active ligand tBu,TolDHP (tBu,TolDHP = 2,5-bis((2-t-butylhydrazono)(p-tolyl)methyl)-pyrrole) activate O2 to generate a Ni(II) superoxo complex via ligand-based electron transfer. This superoxo complex is competent for stoichiometric oxidation chemistry with alcohols and hydrocarbons. This work demonstrates that coupling ligand-based redox chemistry with functionally redox-inactive Ni centers enables oxidative transformations more commonly mediated by metals such as Fe and Cu.
Collapse
Affiliation(s)
- Andrew J McNeece
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Kate A Jesse
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Jiaze Xie
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
10
|
Liu G, Hao F, He X, Xu Y, Jin Z, Jiang H, Wu J. Catalyst‐ and Additive‐free Synthesis of α‐Pyrrolyl Amides upon Treatment of α‐Keto Amides with 4‐Hydroxy‐L‐proline. ChemistrySelect 2020. [DOI: 10.1002/slct.202002037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Guyue Liu
- School of Pharmaceutical and Materials EngineeringTaizhou UniversityJiaojiang 318000Zhejiang Province China
| | - Feiyue Hao
- School of Pharmaceutical and Materials EngineeringTaizhou UniversityJiaojiang 318000Zhejiang Province China
| | - Xiaoyu He
- School of Pharmaceutical and Materials EngineeringTaizhou UniversityJiaojiang 318000Zhejiang Province China
| | - Yan Xu
- School of Pharmaceutical and Materials EngineeringTaizhou UniversityJiaojiang 318000Zhejiang Province China
| | - Zhengneng Jin
- School of Pharmaceutical and Materials EngineeringTaizhou UniversityJiaojiang 318000Zhejiang Province China
| | - Huajiang Jiang
- School of Pharmaceutical and Materials EngineeringTaizhou UniversityJiaojiang 318000Zhejiang Province China
| | - Jiashou Wu
- School of Pharmaceutical and Materials EngineeringTaizhou UniversityJiaojiang 318000Zhejiang Province China
| |
Collapse
|
11
|
Yang J, Postils V, Lipschutz MI, Fasulo M, Raynaud C, Clot E, Eisenstein O, Tilley TD. Efficient alkene hydrosilation with bis(8-quinolyl)phosphine (NPN) nickel catalysts. The dominant role of silyl-over hydrido-nickel catalytic intermediates. Chem Sci 2020; 11:5043-5051. [PMID: 34122961 PMCID: PMC8159242 DOI: 10.1039/d0sc00997k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/23/2020] [Indexed: 12/04/2022] Open
Abstract
A cationic nickel complex of the bis(8-quinolyl)(3,5-di-tert-butylphenoxy)phosphine (NPN) ligand, [(NPN)NiCl]+, is a precursor to efficient catalysts for the hydrosilation of alkenes with a variety of hydrosilanes under mild conditions and low catalyst loadings. DFT studies reveal the presence of two coupled catalytic cycles based on [(NPN)NiH]+ and [(NPN)NiSiR3]+ active species, with the latter being more efficient for producing the product. The preferred silyl-based catalysis is not due to a more facile insertion of alkene into the Ni-Si (vs. Ni-H) bond, but by consistent and efficient conversions of the hydride to the silyl complex.
Collapse
Affiliation(s)
- Jian Yang
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - Verònica Postils
- ICGM, Université de Montpellier, CNRS, ENSCM Montpellier France
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona Campus Montilivi Girona 17071 Spain
- Kimika Fakultatea, Euskal Herriko Unibertsitatea PK 1072 Donostia 20080 Spain
| | - Michael I Lipschutz
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - Meg Fasulo
- Department of Chemistry, University of California Berkeley California 94720 USA
| | | | - Eric Clot
- ICGM, Université de Montpellier, CNRS, ENSCM Montpellier France
| | - Odile Eisenstein
- ICGM, Université de Montpellier, CNRS, ENSCM Montpellier France
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo P.O. Box 1033 Blindern Oslo N-0315 Norway
| | - T Don Tilley
- Department of Chemistry, University of California Berkeley California 94720 USA
| |
Collapse
|
12
|
Yao C, Wang S, Norton J, Hammond M. Catalyzing the Hydrodefluorination of CF 3-Substituted Alkenes by PhSiH 3. H• Transfer from a Nickel Hydride. J Am Chem Soc 2020; 142:4793-4799. [PMID: 31935083 DOI: 10.1021/jacs.9b13757] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hydrodefluorination of CF3-substituted alkenes can be catalyzed by a nickel(II) hydride bearing a pincer ligand. The catalyst loading can be as low as 1 mol%. gem-Difluoroalkenes containing a number of functional groups can be formed in good to excellent yields by a radical mechanism initiated by H• transfer from the nickel hydride. The relative reactivity of various substrates supports the proposed mechanism, as does a TEMPO trapping experiment.
Collapse
Affiliation(s)
- Chengbo Yao
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Shuai Wang
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Jack Norton
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Matthew Hammond
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
13
|
Pluth MD, Tonzetich ZJ. Hydrosulfide complexes of the transition elements: diverse roles in bioinorganic, cluster, coordination, and organometallic chemistry. Chem Soc Rev 2020; 49:4070-4134. [DOI: 10.1039/c9cs00570f] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecules containing transition metal hydrosulfide linkages are diverse, spanning a variety of elements, coordination environments, and redox states, and carrying out multiple roles across several fields of chemistry.
Collapse
Affiliation(s)
- Michael D. Pluth
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Knight Campus for Accelerating Scientific Impact
- Institute of Molecular Biology
- University of Oregon
| | | |
Collapse
|
14
|
Thompson CV, Tonzetich ZJ. Pincer ligands incorporating pyrrolyl units: Versatile platforms for organometallic chemistry and catalysis. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2020.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Park S. Catalytic Reduction of Cyclic Ethers with Hydrosilanes. Chem Asian J 2019; 14:2048-2066. [DOI: 10.1002/asia.201900330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Sehoon Park
- Guangdong Technion Israel Institute of Technology 241 Daxue Road Shantou Guangdong Province 515603 P.R. China
| |
Collapse
|
16
|
Merz LS, Blasius CK, Wadepohl H, Gade LH. Square Planar Cobalt(II) Hydride versus T-Shaped Cobalt(I): Structural Characterization and Dihydrogen Activation with PNP–Cobalt Pincer Complexes. Inorg Chem 2019; 58:6102-6113. [DOI: 10.1021/acs.inorgchem.9b00384] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lukas S. Merz
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Clemens K. Blasius
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Hubert Wadepohl
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Lutz H. Gade
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| |
Collapse
|
17
|
Das S, Subramaniyan V, Mani G. Nickel(II) and Palladium(II) Complexes Bearing an Unsymmetrical Pyrrole-Based PNN Pincer and Their Norbornene Polymerization Behaviors versus the Symmetrical NNN and PNP Pincers. Inorg Chem 2019; 58:3444-3456. [PMID: 30767515 DOI: 10.1021/acs.inorgchem.8b03562] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Unsymmetrical pincers have been shown to be better than the corresponding symmetrical pincers in several catalysis reactions. A new unsymmetrical PNN propincer, 2-(3,5-dimethylpyrazolylmethyl)-5-(diphenylphosphinomethyl)pyrrole (1), was synthesized from pyrrole through Mannich bases in a good yield. In addition, the new byproduct 2-(3,5-dimethylpyrazolylmethyl)-5-(dimethylaminomethyl)- N-(hydroxymethyl)pyrrole was also isolated. The reaction of 1 with [PdCl2(PhCN)2] and Et3N in toluene yielded [PdCl{C4H2N-2-(CH2Me2pz)-5-(CH2PPh2)-κ3 P,N,N}] (2). The analogous reaction between 1 and [NiCl2(DME)] or NiX2 (X = Br, I) in the presence of NEt3 in acetonitrile afforded [NiX{C4H2N-2-(CH2Me2pz)-5-(CH2PPh2)-κ3 P,N,N}] (3; X = Cl, Br, I). All complexes were structurally characterized. The norbornene polymerization behaviors of the unsymmetrical pincer complexes 2 and 3 in the presence of MMAO or EtAlCl2 were compared with those of the symmetrical pincer complexes chloro[2,5-bis(3,5-dimethylpyrazolylmethyl)pyrrolido]palladium(II) (NNN), chloro[2,5-bis(diphenylphosphinomethyl)pyrrolido]palladium(II), and chloro[2,5-bis(diphenylphosphinomethyl)pyrrolido]nickel(II) (PNP) at different temperatures. The PNN and NNN complexes exhibited far greater activity on the order of 107 g of PNB/mol/h, with quantitative yields in some cases, in comparison to the PNP pincer palladium and nickel complexes. This trend was also supported by the iPr group substituted PNP nickel and palladium pincer complexes. These polymerization behaviors are explained using steric crowding around the metal atom with the support of NMR studies and suggested that the activity increases as the Npyrazole donor increases. Polymers were characterized by 1H NMR, IR, TGA, and powder XRD methods.
Collapse
Affiliation(s)
- Sanghamitra Das
- Department of Chemistry , Indian Institute of Technology Kharagpur , Kharagpur , West Bengal , India 721 302
| | - Vasudevan Subramaniyan
- Department of Chemistry , Indian Institute of Technology Kharagpur , Kharagpur , West Bengal , India 721 302
| | - Ganesan Mani
- Department of Chemistry , Indian Institute of Technology Kharagpur , Kharagpur , West Bengal , India 721 302
| |
Collapse
|
18
|
Chang MC, Jesse KA, Filatov AS, Anderson JS. Reversible homolytic activation of water via metal-ligand cooperativity in a T-shaped Ni(ii) complex. Chem Sci 2019; 10:1360-1367. [PMID: 30809351 PMCID: PMC6354739 DOI: 10.1039/c8sc03719a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022] Open
Abstract
A T-shaped Ni(ii) complex [Tol,PhDHPy]Ni has been prepared and characterized. EPR spectra and DFT calculations of this complex suggest that the electronic structure is best described as a high-spin Ni(ii) center antiferromagnetically coupled with a ligand-based radical. This complex reacts with water at room temperature to generate the dimeric complex [Tol,PhDHPy]Ni(μ-OH)Ni[Tol,PhDHPyH] which has been thoroughly characterized by SXRD, NMR, IR and deuterium-labeling experiments. Addition of simple ligands such as phosphines or pyridine displaces water and demonstrates the reversibility of water activation in this system. The water activation step has been examined by kinetic studies and DFT calculations which suggest an unusual homolytic reaction via a bimetallic mechanism. The ΔH ‡, ΔS ‡ and KIE (k H/k D) of the reaction are 5.5 kcal mol-1, -23.8 cal mol-1 K-1, and 2.4(1), respectively. In addition to the reversibility of water addition, this system is capable of activating water towards net O-atom transfer to substrates such as aromatic C-H bonds and phosphines. This reactivity is facilitated by the ability of the dihydrazonopyrrole ligand to accept H-atoms and illustrates the utility of metal ligand cooperation in activating O-H bonds with high bond dissociation energies.
Collapse
Affiliation(s)
- Mu-Chieh Chang
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , USA .
| | - Kate A Jesse
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , USA .
| | - Alexander S Filatov
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , USA .
| | - John S Anderson
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , USA .
| |
Collapse
|
19
|
Yan J, Wang YB, Zhu ZH, Li Y, Zhu X, Hao XQ, Song MP. Synthesis, Characterization, and Catalytic Studies of Unsymmetrical Chiral NCC Pincer Pd(II) and Ni(II) Complexes Bearing (Imidazolinyl)aryl NHC Ligands. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00300] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jing Yan
- College of Chemistry and Molecular Engineering, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, People’s Republic of China
| | - Yan-Bing Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, People’s Republic of China
| | - Zhi-Hui Zhu
- College of Chemistry and Molecular Engineering, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, People’s Republic of China
| | - Yigao Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, People’s Republic of China
| | - Xinju Zhu
- College of Chemistry and Molecular Engineering, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, People’s Republic of China
| | - Xin-Qi Hao
- College of Chemistry and Molecular Engineering, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, People’s Republic of China
| | - Mao-Ping Song
- College of Chemistry and Molecular Engineering, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, People’s Republic of China
| |
Collapse
|
20
|
Schiwek CH, Vasilenko V, Wadepohl H, Gade LH. The open d-shell enforces the active space in 3d metal catalysis: highly enantioselective chromium(ii) pincer catalysed hydrosilylation of ketones. Chem Commun (Camb) 2018; 54:9139-9142. [DOI: 10.1039/c8cc05172k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A square-planar chromium precatalyst with its active space shaped by the metal centre was employed in an unprecedented enantioselective hydrosilylation of ketones.
Collapse
Affiliation(s)
| | - Vladislav Vasilenko
- Anorganisch-Chemisches Institut
- University of Heidelberg
- 69120 Heidelberg
- Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut
- University of Heidelberg
- 69120 Heidelberg
- Germany
| | - Lutz H. Gade
- Anorganisch-Chemisches Institut
- University of Heidelberg
- 69120 Heidelberg
- Germany
| |
Collapse
|
21
|
Wenz J, Vasilenko V, Kochan A, Wadepohl H, Gade LH. Coordination Chemistry of the PdmBOX Pincer Ligand: Reactivity at the Metal and the Ligand. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201701195] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jan Wenz
- Anorganisch-Chemisches Institut; Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Vladislav Vasilenko
- Anorganisch-Chemisches Institut; Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Alexander Kochan
- Anorganisch-Chemisches Institut; Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut; Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz H. Gade
- Anorganisch-Chemisches Institut; Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
22
|
Wenz J, Wadepohl H, Gade LH. Regioselective hydrosilylation of epoxides catalysed by nickel(ii) hydrido complexes. Chem Commun (Camb) 2017; 53:4308-4311. [DOI: 10.1039/c7cc01655g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bench-stable nickel fluoride complexes bearing NNN pincer ligands have been employed as precursors for the regioselective hydrosilylation of epoxides at room temperature.
Collapse
Affiliation(s)
- Jan Wenz
- Anorganisch-Chemisches Institut
- University of Heidelberg
- 69120 Heidelberg
- Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut
- University of Heidelberg
- 69120 Heidelberg
- Germany
| | - Lutz H. Gade
- Anorganisch-Chemisches Institut
- University of Heidelberg
- 69120 Heidelberg
- Germany
| |
Collapse
|