1
|
Tarlton M, Carpenter SH, Tondreau AM. Alkyl Coordination in meso-(ONO) 2- Supported Uranium(IV) Complexes. Organometallics 2024; 43:1329-1333. [PMID: 38938898 PMCID: PMC11203667 DOI: 10.1021/acs.organomet.4c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 06/29/2024]
Abstract
A series of U(IV) complexes bearing alkyl and chloride ligands in the trans configuration was synthesized and characterized. Starting with the diastereopure U(IV) trans-dichloride complex meso-( tBu2PONO)UCl2(dtbpy) (1, tBu2PONO = 2,6-bis((di-tert-butylphosphino)methanolato)pyridine), four distinct alkyl groups were employed to prepare ( tBu2PONO)U(R)Cl(dtbpy), where R = (trimethylsilyl)methyl (neosilyl), 2a, R = 2,2-dimethyl propyl (neopentyl), 2b, and R = 2-methyl-2-phenyl propyl (neophyl), 2c. Alkylation occurs with specificity but generates a predominant species and a minor species corresponding to anti/syn regioisomers relative to the tBu2P groups of the ligand. For synthesis using R = methyl, the dimethyl complex ( tBu2PONO)U(Me)2(dtbpy), 2d, was prepared; the addition of 1 equiv of MeLi produced a mixture of products. Complexes 2a-2d were characterized using single crystal X-ray diffraction (SC-XRD), UV-vis-nIR, and 1H and 31P NMR spectroscopies.
Collapse
Affiliation(s)
- Michael
L. Tarlton
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | | | - Aaron M. Tondreau
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| |
Collapse
|
2
|
Du J, Cobb PJ, Ding J, Mills DP, Liddle ST. f-Element heavy pnictogen chemistry. Chem Sci 2023; 15:13-45. [PMID: 38131077 PMCID: PMC10732230 DOI: 10.1039/d3sc05056d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The coordination and organometallic chemistry of the f-elements, that is group 3, lanthanide, and actinide ions, supported by nitrogen ligands, e.g. amides, imides, and nitrides, has become well developed over many decades. In contrast, the corresponding f-element chemisty with the heavier pnictogen analogues phosphorus, arsenic, antimony, and bismuth has remained significantly underdeveloped, due largely to a lack of suitable synthetic methodologies and also the inherent hard(f-element)-soft(heavier pnictogen) acid-base mismatch, but has begun to flourish in recent years. Here, we review complexes containing chemical bonds between the f-elements and heavy pnictogens from phosphorus to bismuth that spans five decades of endeavour. We focus on complexes whose identity has been unambiguously established by structural authentication by single-crystal X-ray diffraction with respect to their synthesis, characterisation, bonding, and reactivity, in order to provide a representative overview of this burgeoning area. By highlighting that much has been achieved but that there is still much to do this review aims to inspire, focus and guide future efforts in this area.
Collapse
Affiliation(s)
- Jingzhen Du
- College of Chemistry, Zhengzhou University Zhengzhou 450001 China
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Philip J Cobb
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Junru Ding
- College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| | - David P Mills
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T Liddle
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
3
|
Du J, Hurd J, Seed JA, Balázs G, Scheer M, Adams RW, Lee D, Liddle ST. 31P Nuclear Magnetic Resonance Spectroscopy as a Probe of Thorium-Phosphorus Bond Covalency: Correlating Phosphorus Chemical Shift to Metal-Phosphorus Bond Order. J Am Chem Soc 2023; 145:21766-21784. [PMID: 37768555 PMCID: PMC10571089 DOI: 10.1021/jacs.3c02775] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 09/29/2023]
Abstract
We report the use of solution and solid-state 31P Nuclear Magnetic Resonance (NMR) spectroscopy combined with Density Functional Theory calculations to benchmark the covalency of actinide-phosphorus bonds, thus introducing 31P NMR spectroscopy to the investigation of molecular f-element chemical bond covalency. The 31P NMR data for [Th(PH2)(TrenTIPS)] (1, TrenTIPS = {N(CH2CH2NSiPri3)3}3-), [Th(PH)(TrenTIPS)][Na(12C4)2] (2, 12C4 = 12-crown-4 ether), [{Th(TrenTIPS)}2(μ-PH)] (3), and [{Th(TrenTIPS)}2(μ-P)][Na(12C4)2] (4) demonstrate a chemical shift anisotropy (CSA) ordering of (μ-P)3- > (═PH)2- > (μ-PH)2- > (-PH2)1- and for 4 the largest CSA for any bridging phosphido unit. The B3LYP functional with 50% Hartree-Fock mixing produced spin-orbit δiso values that closely match the experimental data, providing experimentally benchmarked quantification of the nature and extent of covalency in the Th-P linkages in 1-4 via Natural Bond Orbital and Natural Localized Molecular Orbital analyses. Shielding analysis revealed that the 31P δiso values are essentially only due to the nature of the Th-P bonds in 1-4, with largely invariant diamagnetic but variable paramagnetic and spin-orbit shieldings that reflect the Th-P bond multiplicities and s-orbital mediated transmission of spin-orbit effects from Th to P. This study has permitted correlation of Th-P δiso values to Mayer bond orders, revealing qualitative correlations generally, but which should be examined with respect to specific ancillary ligand families rather than generally to be quantitative, reflecting that 31P δiso values are a very sensitive reporter due to phosphorus being a soft donor that responds to the rest of the ligand field much more than stronger, harder donors like nitrogen.
Collapse
Affiliation(s)
- Jingzhen Du
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Joseph Hurd
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - John A. Seed
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Gábor Balázs
- Institute
of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Manfred Scheer
- Institute
of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Ralph W. Adams
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Daniel Lee
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Stephen T. Liddle
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| |
Collapse
|
4
|
Carpenter SH, Wolford NJ, Billow BS, Fetrow TV, Cajiao N, Radović A, Janicke MT, Neidig ML, Tondreau AM. Homoleptic Uranium-Bis(acyl)phosphide Complexes. Inorg Chem 2022; 61:12508-12517. [PMID: 35905438 DOI: 10.1021/acs.inorgchem.2c00639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first uranium bis(acyl)phosphide (BAP) complexes were synthesized from the reaction between sodium bis(mesitoyl)phosphide (Na(mesBAP)) or sodium bis(2,4,6-triisopropylbenzoyl)phosphide (Na(trippBAP)) and UI3(1,4-dioxane)1.5. Thermally stable, homoleptic BAP complexes were characterized by single-crystal X-ray diffraction and electron paramagnetic resonance (EPR) spectroscopy, when appropriate, for the elucidation of the electronic structure and bonding of these complexes. EPR spectroscopy revealed that the BAP ligands on the uranium center retain a significant amount of electron density. The EPR spectrum of the trivalent U(trippBAP)3 has a rhombic signal near g = 2 (g1 = 2.03; g2 = 2.01; and g3 = 1.98) that is consistent with the EPR-observed unpaired electron being located in a molecular orbital that appears ligand-derived. However, upon warming the complex to room temperature, no resonance was observed, indicating the presence of uranium character.
Collapse
Affiliation(s)
| | - Nikki J Wolford
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Brennan S Billow
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Taylor V Fetrow
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nathalia Cajiao
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Aleksa Radović
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Michael T Janicke
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Michael L Neidig
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Aaron M Tondreau
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
5
|
Tarlton ML, Vilanova SP, Kaumini MG, Kelley SP, Huang P, Walensky JR. Structural, Spectroscopic, and Computational Analysis of Heterometallic Thorium Phosphinidiide Complexes. Inorg Chem 2021; 60:14932-14943. [PMID: 34528785 DOI: 10.1021/acs.inorgchem.1c02308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To synthesize complexes with thorium-phosphorus multiple-bond character, reactions of (C5Me5)2Th[P(H)Mes]2 with monovalent alkali-metal bases, MN(SiMe3)2, as well as CuMes, have been investigated. The results with MN(SiMe3)2 are phosphinidiide complexes of the form {(C5Me5)2Th[μ2-P(Mes)][μ2-P(H)Mes]M(L)n}2 (M = Na, n = 0; M = K, L = THF, n = 1; M = Rb, L = THF, n = 1; M = Cs, L = Et2O, n = 1). With CuMes, the product is a Th2Cu3P5 heterometallic structure, {(C5Me5)2Th[(μ2-P(H)Mes)P(Mes)]Cu}2Cu[μ2-P(H)Mes]. All complexes have been characterized using heteronuclear NMR and IR spectroscopy, density functional theory calculations, and their solid-state structure identified by X-ray crystallography. We also report the structure of {(C5Me5)2Th[(μ2-As(H)Mes)As(Mes)]Cu}2Cu[μ2-As(H)Mes] obtained from (C5Me5)2Th[As(H)Mes]2 with CuMes.
Collapse
Affiliation(s)
- Michael L Tarlton
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Sean P Vilanova
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - M Gayanethra Kaumini
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Steven P Kelley
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Patrick Huang
- Department of Chemistry and Biochemistry, California State University, East Bay, Hayward, California 94542, United States
| | - Justin R Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
6
|
Tarlton ML, Yang Y, Kelley SP, Maron L, Walensky JR. Formation and Reactivity with tBuCN of a Thorium Phosphinidiide through a Combined Experimental and Computational Analysis. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Michael L. Tarlton
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Yan Yang
- Université de Toulouse and CNRS, INSA, UPS, CNRS, UMR, UMR 5215, LPCNO, Toulouse 31077, France
| | - Steven P. Kelley
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Laurent Maron
- Université de Toulouse and CNRS, INSA, UPS, CNRS, UMR, UMR 5215, LPCNO, Toulouse 31077, France
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
7
|
Tarlton ML, Fajen OJ, Kelley SP, Kerridge A, Malcomson T, Morrison TL, Shores MP, Xhani X, Walensky JR. Systematic Investigation of the Molecular and Electronic Structure of Thorium and Uranium Phosphorus and Arsenic Complexes. Inorg Chem 2021; 60:10614-10630. [DOI: 10.1021/acs.inorgchem.1c01256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michael L. Tarlton
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| | - O. Jonathan Fajen
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| | - Steven P. Kelley
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| | - Andrew Kerridge
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K
| | - Thomas Malcomson
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K
| | - Thomas L. Morrison
- Department of Chemistry, Colorado State University, Fort Collins 80523, Colorado, United States
| | - Matthew P. Shores
- Department of Chemistry, Colorado State University, Fort Collins 80523, Colorado, United States
| | - Xhensila Xhani
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| |
Collapse
|
8
|
Watt FA, Krishna A, Golovanov G, Ott H, Schoch R, Wölper C, Neuba AG, Hohloch S. Monoanionic Anilidophosphine Ligand in Lanthanide Chemistry: Scope, Reactivity, and Electrochemistry. Inorg Chem 2020; 59:2719-2732. [PMID: 31961137 DOI: 10.1021/acs.inorgchem.9b03071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We present the synthesis of a series of new lanthanide(III) complexes supported by a monoanionic bidentate anilidophosphine ligand (N-(2-(diisopropylphosphanyl)-4-methylphenyl)-2,4,6-trimethylanilide, short PN-). The work comprises the characterization of a variety of heteroleptic complexes containing either one or two PN ligands as well as a study on further functionalization possibilities. The new heteroleptic complexes cover selected examples over the whole lanthanide(III) series including lanthanum, cerium, neodymium, gadolinium, terbium, dysprosium, and lutetium. In case of the two diamagnetic metal cations lanthanum(III) and lutetium(III), we have furthermore studied the influence of the lanthanide ion (early vs. late) on the reactivity of these complexes. Thereby we found that the radius of the lanthanide ion has a major influence on the reactivity. Using sterically demanding, multidentate ligand systems, e.g., cyclopentadienide (Cp-), we found that the lanthanum complex La(PN)2Cl (1-La) reacts well to the corresponding cyclopentadienide complex, while for Lu(PN)2Cl (1-Lu) no reaction was observed under any conditions tested. On the contrary, employing monodentate ligands such as mesitolate, thiomesitolate, 2,4,6-trimethylanilide or 2,4,6-trimethylphenylphosphide, results in the clean formation of the desired complexes for both lanthanum and lutetium. All complexes have been studied by various techniques, including multi nuclear NMR spectroscopy and X-ray crystallography. 31P NMR spectroscopy was furthermore used to evaluate the presence of open coordination sites on the complexes using coordinating and noncoordinating solvents, and as a probe for estimating the Ce-P distance in the corresponding complexes. Additionally, we present cyclic voltammetry (CV) data for Ce(PN)2Cl (1-Ce), La(PN)2Cl (1-La), Ce(PN)(HMDS)2 (8-Ce) and La(PN)(HMDS)2 (8-La) (with HMDS = hexamethyldisilazide, (Me3Si)2N-) exploring the potential of the anilidophosphane ligand framework to stabilize a potential Ce(IV) ion.
Collapse
Affiliation(s)
- Fabian A Watt
- Faculty of Science, Department of Chemistry, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Athul Krishna
- Faculty of Science, Department of Chemistry, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Grigoriy Golovanov
- Faculty of Science, Department of Chemistry, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Holger Ott
- Training Center, Bruker AXS GmbH, Östliche Rheinbrückenstraße 49, 76187 Karlsruhe, Germany
| | - Roland Schoch
- Faculty of Science, Department of Chemistry, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Christoph Wölper
- Faculty of Chemistry, University of Essen-Duisburg, Universitätsstraße 5-7, 45141 Essen, Germany
| | - Adam G Neuba
- Faculty of Science, Department of Chemistry, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Stephan Hohloch
- Faculty of Chemistry and Pharmacy, Institute of General, Inorganic and Theoretical Chemistry, Leopold-Franzens-University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
9
|
Edelmann FT, Farnaby JH, Jaroschik F, Wilson B. Lanthanides and actinides: Annual survey of their organometallic chemistry covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Abstract
The synthesis of tetravalent thorium and uranium complexes with the phosphaazaallene moiety, [N(tBu)C=P(C6H5)]2−, is described. The reaction of the bis(phosphido) complexes, (C5Me5)2An[P(C6H5)(SiMe3)]2, An = Th, U, with two equivalents of tBuNC produces (C5Me5)2An(CNtBu)[η2-(N,C)-N(tBu)C=P(C6H5)] with concomitant formation of P(SiMe3)2(C6H5) via silyl migration. These complexes are characterized by NMR and IR spectroscopy, as well as structurally determined using X-ray crystallography.
Collapse
|
11
|
Rungthanaphatsophon P, Rosal ID, Ward RJ, Vilanova SP, Kelley SP, Maron L, Walensky JR. Formation of an α-Diimine from Isocyanide Coupling Using Thorium(IV) and Uranium(IV) Phosphido–Methyl Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Pokpong Rungthanaphatsophon
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia, Missouri 65211, United States
| | - Iker del Rosal
- Laboratoire de Physique et Chimie de Nano-objets, Universite de Toulouse, INSA-CNRS-UPS, 135 Avenue de Ranguiel, 31077 Toulouse, France
| | - Robert J. Ward
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia, Missouri 65211, United States
| | - Sean P. Vilanova
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia, Missouri 65211, United States
| | - Steven P. Kelley
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia, Missouri 65211, United States
| | - Laurent Maron
- Laboratoire de Physique et Chimie de Nano-objets, Universite de Toulouse, INSA-CNRS-UPS, 135 Avenue de Ranguiel, 31077 Toulouse, France
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia, Missouri 65211, United States
| |
Collapse
|
12
|
Zhang C, Wang Y, Hou G, Ding W, Zi G, Walter MD. Experimental and computational studies on a three-membered diphosphido thorium metallaheterocycle [η5-1,3-(Me3C)2C5H3]2Th[η2-P2(2,4,6-iPr3C6H2)2]. Dalton Trans 2019; 48:6921-6930. [DOI: 10.1039/c9dt01160a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A three-membered diphosphido thorium metallaheterocycle complex was prepared and its reactivity was investigated.
Collapse
Affiliation(s)
- Congcong Zhang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Yongsong Wang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guohua Hou
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Wanjian Ding
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guofu Zi
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie
- Technische Universität Braunschweig
- 38106 Braunschweig
- Germany
| |
Collapse
|