1
|
Ren XY, Chen FY, Zhang CH, Liang ZG, Yu XY, Han SD, Wang GM. Regulating the Topologies and Photoresponsive Properties of Lanthanum-Organic Frameworks. Chemistry 2024; 30:e202402581. [PMID: 39143837 DOI: 10.1002/chem.202402581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
Metal-organic frameworks (MOFs) show potential application in many domains, in which photochromic MOFs (PMOFs) have received enormous attention. Researchers mainly utilize photoactive ligands to build PMOFs. Recently, the mixed electron donating and accepting ligands strategies have also been used to construct PMOFs driven by the electron transfer between nonphotochromic moieties. However, the potential interligand competition inhibits the formation of PMOFs. Therefore, the exploration of single-ligand-guided assembly is conductive for building PMOFs. Considering the existing electron accepting and donating role of pyridyl and carboxyl, the pyridinecarboxyate derived from the fusion of pyridyl and carboxyl units may serve as single ligand to yield PMOFs (Figure 1d). In this work, the coordination assembly of bipyridinedicarboxylate (2,2'-bipyridine-4,4'-dicarboxylic acid, H2bpdc; 1,10-phenanthroline-2,9-dicarboxylic acid, H2pda) and LaCl3 generate two PMOFs, [La(bpdc)(H2O)Cl] (1) and [La(pda)(H2O)2Cl]⋅2H2O (2). Both complexes feature dinuclear lanthanum as building blocks with differences in the connecting number of likers, in which 1 has (4,8)-connected topology and 2 exhibits sql topology. Their structural differences result in the diversities of photoresponsive functionalities. Compared with reported PMOFs built from photoactive ligands and mixed ligands, this study provides new available categories of single ligand for generating PMOFs and tuning the structure and photoresponsive properties via ligand substitution and external photostimulus.
Collapse
Affiliation(s)
- Xin-Ye Ren
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong, 266071, P. R. China
| | - Fan-Yao Chen
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong, 266071, P. R. China
| | - Chun-Hua Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong, 266071, P. R. China
| | - Zhen-Gang Liang
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong, 266071, P. R. China
| | - Xiao-Yue Yu
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong, 266071, P. R. China
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong, 266071, P. R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong, 266071, P. R. China
| |
Collapse
|
2
|
Jiang C, Wang X, Ouyang Y, Lu K, Jiang W, Xu H, Wei X, Wang Z, Dai F, Sun D. Recent advances in metal-organic frameworks for gas adsorption/separation. NANOSCALE ADVANCES 2022; 4:2077-2089. [PMID: 36133454 PMCID: PMC9418345 DOI: 10.1039/d2na00061j] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/22/2022] [Indexed: 06/16/2023]
Abstract
The unique structural advantage of metal-organic frameworks (MOFs) determines the great prospect and developability in gas adsorption and separation. Both ligand design and microporous engineering based on crystal structure are significant lever for coping with new application exploration and requirements. Focusing on the designable pore and modifiable frameworks of MOFs, this review discussed the recent advances in the field of gas adsorption and separation, and analyzed the host-guest interaction, structure-performance relations, and the adsorption/separation mechanism from ligand design, skeleton optimization, metal node regulation, and active sites construction. Based on the function-oriented perspective, we summarized the main research recently, and made an outlook based on the focus of microporous MOFs that require further attention in the structure design and industrial application.
Collapse
Affiliation(s)
- Chuanhai Jiang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Xiaokang Wang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Yuguo Ouyang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Kebin Lu
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Weifeng Jiang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Huakai Xu
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Xiaofei Wei
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Zhifei Wang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Fangna Dai
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Daofeng Sun
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| |
Collapse
|
3
|
Phytic Acid Doped Polyaniline as a Binding Coating Promoting Growth of Prussian Blue on Cotton Fibers for Adsorption of Copper Ions. COATINGS 2022. [DOI: 10.3390/coatings12020138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In recent years, the elimination of heavy metals from wastewater has become an important topic due to rapid industrialization, and it is of considerable interest to develop renewable and degradable materials for this purpose. In this work, a novel Prussian blue/polyaniline@cotton fibers (PB/PANI@CFs) composite was fabricated by a two-step process. Phytic acid doped PANI as a binding coating greatly promoted both the growth of PB and the adsorption of Cu2+. The deposition ratio of PB was as high as 24.68%. Scanning electron microscopy (SEM) displayed that PB nanoparticles were grown more uniformly in the composite and formed a perfect nanocube structure compared with PB@CFs. The successful deposition of both PB and PANI on CFs was demonstrated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FITR), and X-ray photoelectron spectroscopy (XPS). The effect of adsorption time, adsorbent dose, initial pH value, and initial copper sulphate concentration on the adsorption of PB/PANI@CFs composite for Cu2+ was studied by static adsorption and was compared with those of PANI@CFs and PB@CFs. The results showed that the maximum removal efficiency of Cu2+ by PB/PANI@CFs can reach 93.4% within 5 h, and the maximum adsorption capacity of Cu2+ can reach 31.93 mg·g−1. The adsorption of Cu2+ on PB/PANI@CFs followed the pseudo-second order kinetic model and conformed to the Freundlich adsorption isothermal model. The PB-functionalized CFs provided new insights into the design of efficient and low-cost absorbents for heavy metal remediation. The proposed process solves two problems simultaneously, i.e., the utilization of environmentally friendly and biodegradable biomass resources and the adsorption of heavy metal ions, and is a good approach to achieve high-quality and sustainable development.
Collapse
|
4
|
Ursueguía D, Díaz E, Ordóñez S. Metal-Organic Frameworks (MOFs) as methane adsorbents: From storage to diluted coal mining streams concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148211. [PMID: 34111784 DOI: 10.1016/j.scitotenv.2021.148211] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 05/25/2023]
Abstract
Ventilation Air Methane emissions (VAM) from coal mines lead to environmental concern because their high global warming potential and the loss of methane resources. VAM upgrading requires pre-concentration processes dealing with high flow rates of very diluted streams (<1% methane). Therefore, methane separation and concentration is technically challenging and has important environmental and safety concerns. Among the alternatives, adsorption on Metal-Organic Frameworks (MOFs) could be an interesting option to methane selective separation, due to its tuneable character and outstanding physical properties. Most of the works devoted to the methane adsorption on MOFs deal with methane storage. Therefore, these works were reviewed to determine the properties governing methane-MOF interactions. In addition, the metallic ions and organic linkers roles have been identified. With these premises, decisive effects in the methane adsorption selectivity in nitrogen/methane lean mixtures have been discussed, since nitrogen is the most concentrated gas in the VAM stream, and it is very similar to methane molecule. In order to fulfill this overview, the effect of other aspects, such as the presence of polar compounds (moisture and carbon dioxide), was also considered. In addition, engineering considerations in the operation of fixed bed adsorption units and the main challenges associated to MOFs as adsorbents were also discussed.
Collapse
Affiliation(s)
- David Ursueguía
- Catalysis, Reactors and Control Research Group (CRC), Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain
| | - Eva Díaz
- Catalysis, Reactors and Control Research Group (CRC), Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain
| | - Salvador Ordóñez
- Catalysis, Reactors and Control Research Group (CRC), Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain.
| |
Collapse
|
5
|
Tang X, Luo Y, Zhang Z, Ding W, Liu D, Wang J, Guo L, Wen M. Effects of functional groups of –NH2 and –NO2 on water adsorption ability of Zr-based MOFs (UiO-66). Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Qiao Y, Chang X, Zheng J, Yi M, Chang Z, Yu MH, Bu XH. Self-Interpenetrated Water-Stable Microporous Metal-Organic Framework toward Storage and Purification of Light Hydrocarbons. Inorg Chem 2021; 60:2749-2755. [PMID: 33535744 DOI: 10.1021/acs.inorgchem.0c03618] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Storage and purification of light hydrocarbons are very meaningful for their high-purity requirements and safety utilization in the fields of industry and clean energy. It is a simple and effective way to achieve this goal utilizing the physical adsorption properties of stable porous metal-organic frameworks (MOFs). In this work, a stable self-interpenetrated three-dimensional MOF with a new 3,4-connected topology, {[Zn2(tpda)2(4,4'-bpy)]·4DMF}n (NKM-101; H2tpda = 4,4'-[4-(4H-1,2,4-triazol-4-yl)phenyl]dibenzoic acid, 4,4'-bpy = 4,4'-bipyridine, and DMF = N,N-dimethylformamide), has been successfully constructed based on a triazole-carboxyl ligand. The dense functional active sites existing on the inner walls of one-dimensional channels of NKM-101 are beneficial to enhancement of the binding affinities between the framework and specific molecules (CO2, C2-C4). Therefore, the selective adsorption and separation performance of the material on CO2/CH4 and C2-C4/CH4 are effectively improved. In addition, NKM-101 also exhibits excellent water stability, making it possible to be a practical material for the storage and purification of light hydrocarbons.
Collapse
Affiliation(s)
- Yang Qiao
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xue Chang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jinyu Zheng
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing (RIPP, SINOPEC), Beijing 100083, China
| | - Mao Yi
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ze Chang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mei-Hui Yu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.,College of Chemistry, State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Zhang L, Fang WX, Wang C, Dong H, Ma SH, Luo YH. Porous frameworks for effective water adsorption: from 3D bulk to 2D nanosheets. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01362e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The latest progress relating to the development of porous frameworks for water harvesting has been summarized, highlighting design strategies for next-generation sorbent materials.
Collapse
Affiliation(s)
- Lan Zhang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- PR. China
| | - Wen-Xia Fang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- PR. China
| | - Cong Wang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- PR. China
| | - Hui Dong
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- PR. China
| | - Shu-Hua Ma
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- PR. China
| | - Yang-Hui Luo
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- PR. China
| |
Collapse
|
8
|
Luo YH, Zhang L, Fang WX, Ma SH, Dong H, Su S, Zheng ZY, Li DN, Zhai LH. 2D hydrogen-bonded organic frameworks: in-site generation and subsequent exfoliation. Chem Commun (Camb) 2021; 57:5901-5904. [PMID: 34008620 DOI: 10.1039/d1cc01626a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
By using in-site generated formate, 2D HOFs of TCPP, with excellent stability and permanent porosity (BET surface area larger than 560 m2 g-1), have been obtained. The constructed 2D square-like TCPP-HCO2 grid sheets have shown considerable in-plane stability that comparable to the TCPP-based 2D MOFs, that can be exfoliated into atomically thin 2D nanosheets with efficient photocatalytic activity in aqueous system. These results are expected to shed light on the application-orientated one-pot synthesis for new kinds of multi-dimensional HOFs.
Collapse
Affiliation(s)
- Yang-Hui Luo
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China.
| | - Lan Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China.
| | - Wen-Xia Fang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China.
| | - Shu-Hua Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China.
| | - Hui Dong
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China.
| | - Shan Su
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China.
| | - Zi-Yue Zheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China.
| | - Di-Ning Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China.
| | - Li-Hai Zhai
- Lunan Pharmaceutical Co. Ltd, Linyi 276000, Shandong, China
| |
Collapse
|
9
|
Liu X, Wang X, Kapteijn F. Water and Metal-Organic Frameworks: From Interaction toward Utilization. Chem Rev 2020; 120:8303-8377. [PMID: 32412734 PMCID: PMC7453405 DOI: 10.1021/acs.chemrev.9b00746] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Indexed: 12/25/2022]
Abstract
The steep stepwise uptake of water vapor and easy release at low relative pressures and moderate temperatures together with high working capacities make metal-organic frameworks (MOFs) attractive, promising materials for energy efficient applications in adsorption devices for humidity control (evaporation and condensation processes) and heat reallocation (heating and cooling) by utilizing water as benign sorptive and low-grade renewable or waste heat. Emerging MOF-based process applications covered are desiccation, heat pumps/chillers, water harvesting, air conditioning, and desalination. Governing parameters of the intrinsic sorption properties and stability under humid conditions and cyclic operation are identified. Transport of mass and heat in MOF structures, at least as important, is still an underexposed topic. Essential engineering elements of operation and implementation are presented. An update on stability of MOFs in water vapor and liquid systems is provided, and a suite of 18 MOFs are identified for selective use in heat pumps and chillers, while several can be used for air conditioning, water harvesting, and desalination. Most applications with MOFs are still in an exploratory state. An outlook is given for further R&D to realize these applications, providing essential kinetic parameters, performing smart engineering in the design of systems, and conceptual process designs to benchmark them against existing technologies. A concerted effort bridging chemistry, materials science, and engineering is required.
Collapse
Affiliation(s)
- Xinlei Liu
- Catalysis
Engineering, Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Chemical
Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
- Tianjin
Key Laboratory of Membrane Science and Desalination Technology, State
Key Laboratory of Chemical Engineering, Tianjin University, 300072 Tianjin, China
| | - Xuerui Wang
- Catalysis
Engineering, Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- State
Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu
National Synergetic Innovation Center for Advanced Materials, College
of Chemical Engineering, Nanjing Tech University, 210009 Nanjing, China
| | - Freek Kapteijn
- Catalysis
Engineering, Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
10
|
Zhong F, Zhang X, Zheng C, Xu H, Gao J, Xu S. A fluorescent titanium-based metal-organic framework sensor for nitroaromatics and nanomolar Fe3+ detection. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Mulchandani A, Westerhoff P. Geospatial Climatic Factors Influence Water Production of Solar Desiccant Driven Atmospheric Water Capture Devices. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8310-8322. [PMID: 32433870 DOI: 10.1021/acs.est.0c00534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atmospheric water capture (AWC) can provide clean drinking water in locations not connected to the centralized water grid for disaster relief, rural, military, and other applications. The atmosphere contains 14% of the equivalent freshwater volume stored in lakes and rivers and is universally accessible without pipelines or dams. A growing number of solar-based materials and devices to capture water vapor off the electrical grid have been reported, all of which assume varying relative humidity, solar irradiance, and desiccant materials (e.g., silica gel, zeolite, metal organic frameworks). This work uses Monte Carlo simulations and geospatial mapping to integrate material and system parameters from literature with United States spatial and temporal climate data to pinpoint key driving parameters for solar desiccant driven AWC and forecast atmospheric water harvesting potential (L/m2/day). Solar irradiance provides energy to desorb water vapor adsorbed to desiccants and determines maximum AWC capacity with respect to location and season; 4-8 L/m2 system footprint/day can be captured across the United States in spring and summer, while capacity lowers to 0-5 L/m2/day in fall and winter. Desiccants can be designed with Langmuir specific surface area >1500 m2/g and Langmuir constant (kL) > 0.1 to adsorb water vapor and meet these maximum potentials.
Collapse
Affiliation(s)
- Anjali Mulchandani
- NSF Nanosystems Engineering Research Center on Nanotechnology Enabled Water Treatment; School of Sustainable Engineering and the Built Environment, Houston, Texas 77005, United States
| | - Paul Westerhoff
- NSF Nanosystems Engineering Research Center on Nanotechnology Enabled Water Treatment; School of Sustainable Engineering and the Built Environment, Houston, Texas 77005, United States
| |
Collapse
|
12
|
|
13
|
Ivolgina VA, Chernov’yants MS, Popov LD, Suslonov VV, Avtushenko NA, Luanguzov NV. Structural study and thermal behavior of novel interaction product of 4-amino-5-(furan-2-yl)-4H-1,2,4-triazole-3-thione with molecular iodine. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2019.1700414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | | | - Leonid D. Popov
- Department of Chemistry, Southern Federal University, Rostov-on-Don, Russia
| | | | | | | |
Collapse
|
14
|
Golla R, Kumar PR, Suchethan P, Foro S, Nagaraju G. Synthesis, photophysical, electrochemical properties and crystal structures and Hirschfeld surface analysis of 4′-dimethoxyphenyl-(2,6-di-2-pyrazinyl) pyridines. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Two 2D isostructural coordination polymers: Syntheses, structure analysis and effective detection of Cr(VI) and Fe(III) ions in water. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Li Q, Shi X, Luo Q, Guo A, Guo Y. A new Ni(II)-based coordination polymer: structural characterization and protective effect on type 2 diabetes by regulating PKC and MAPK expression. INORG NANO-MET CHEM 2019. [DOI: 10.1080/24701556.2019.1695837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Qin Li
- Department of Endocrinology, General Hospital of the Yangtze River Shipping, Wuhan, China
| | - Xiuzhen Shi
- Department of Endocrinology, General Hospital of the Yangtze River Shipping, Wuhan, China
| | - Qiong Luo
- Department of Endocrinology, General Hospital of the Yangtze River Shipping, Wuhan, China
| | - Aili Guo
- Department of Endocrinology, General Hospital of the Yangtze River Shipping, Wuhan, China
| | - Yijing Guo
- Department of Chemistry, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Sun Y, Han H. A novel 3D Ag-based metal–organic framework: Synthesis, structure and property. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|