1
|
Cacace E, Tietgen M, Steinhauer M, Mateus A, Schultze TG, Eckermann M, Galardini M, Varik V, Koumoutsi A, Parzeller JJ, Corona F, Orakov A, Knopp M, Brauer-Nikonow A, Bork P, Romao CV, Zimmermann M, Cloetens P, Savitski MM, Typas A, Göttig S. Uncovering nitroxoline activity spectrum, mode of action and resistance across Gram-negative bacteria. Nat Commun 2025; 16:3783. [PMID: 40263263 PMCID: PMC12015411 DOI: 10.1038/s41467-025-58730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 03/27/2025] [Indexed: 04/24/2025] Open
Abstract
Nitroxoline is a bacteriostatic quinoline antibiotic, known to form complexes with metals. Its clinical indications are limited to uncomplicated urinary tract infections, with a susceptibility breakpoint only available for Escherichia coli. Here, we test > 1000 clinical isolates and demonstrate a much broader activity spectrum and species-specific bactericidal activity, including Gram-negative bacteria for which therapeutic options are limited due to multidrug resistance. By combining genetic and proteomic approaches with direct measurement of intracellular metals, we show that nitroxoline acts as a metallophore, inducing copper and zinc intoxication in bacterial cells. The compound displays additional effects on bacterial physiology, including alteration of outer membrane integrity, which underpins nitroxoline's synergies with large-scaffold antibiotics and resensitization of colistin-resistant Enterobacteriaceae in vitro and in vivo. Furthermore, we identify conserved resistance mechanisms across bacterial species, often leading to nitroxoline efflux.
Collapse
Affiliation(s)
- Elisabetta Cacace
- Goethe University Frankfurt, University Hospital, Institute for Medical Microbiology and Infection Control, Frankfurt, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Manuela Tietgen
- Goethe University Frankfurt, University Hospital, Institute for Medical Microbiology and Infection Control, Frankfurt, Germany
| | - Meike Steinhauer
- Goethe University Frankfurt, University Hospital, Institute for Medical Microbiology and Infection Control, Frankfurt, Germany
| | - André Mateus
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Tilman G Schultze
- Goethe University Frankfurt, University Hospital, Institute for Medical Microbiology and Infection Control, Frankfurt, Germany
| | - Marina Eckermann
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Marco Galardini
- Institute for Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | - Vallo Varik
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Alexandra Koumoutsi
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Jordan J Parzeller
- Goethe University Frankfurt, University Hospital, Institute for Medical Microbiology and Infection Control, Frankfurt, Germany
| | - Federico Corona
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Askarbek Orakov
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Michael Knopp
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Amber Brauer-Nikonow
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Celia V Romao
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Michael Zimmermann
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | - Peter Cloetens
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Mikhail M Savitski
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Athanasios Typas
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Stephan Göttig
- Goethe University Frankfurt, University Hospital, Institute for Medical Microbiology and Infection Control, Frankfurt, Germany.
| |
Collapse
|
2
|
Pivarcsik T, Kiss MA, Rapuš U, Kljun J, Spengler G, Frank É, Turel I, Enyedy ÉA. Organometallic Ru(II), Rh(III) and Re(I) complexes of sterane-based bidentate ligands: synthesis, solution speciation, interaction with biomolecules and anticancer activity. Dalton Trans 2024; 53:4984-5000. [PMID: 38406993 DOI: 10.1039/d3dt04138g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In this study, we present the synthesis, characterization and in vitro cytotoxicity of six organometallic [Ru(II)(η6-p-cymene)(N,N)Cl]Cl, [Rh(III)(η5-C5Me5)(N,N)Cl]Cl and [Re(I)(CO)3(N,N)Cl] complexes, in which the (N,N) ligands are sterane-based 2,2'-bipyridine derivatives (4-Me-bpy-St-OH, 4-Ph-bpy-St-OH). The solution chemical behavior of the ligands and the complexes was explored by UV-visible spectrophotometry and 1H NMR spectroscopy. The ligands and their Re(I) complexes are neutral at pH = 7.40; this contributes to their highly lipophilic character (log D7.40 > +3). The Ru(II) and Rh(III) half-sandwich complexes are much more hydrophilic, and this property is greatly affected by the actual chloride ion content of the medium. The half-sandwich Ru and Rh complexes are highly stable in 30% (v/v) DMSO/water (<5% dissociation at pH = 7.40); this is further increased in water. The Rh(III)(η5-C5Me5) complexes were characterized by higher water/chloride exchange and pKa constants compared to their Ru(II)(η6-p-cymene) counterparts. The Re(I)(CO)3 complexes are also stable in solution over a wide pH range (2-12) without the release of the bidentate ligand; only the chlorido co-ligand can be replaced with OH- at higher pH values. A comprehensive discussion of the binding affinity of the half-sandwich Ru(II) and Rh(III) complexes toward human serum albumin and calf-thymus DNA is also provided. The Ru(II)(η6-p-cymene) complexes interact with human serum albumin via intermolecular forces, while for the Rh(III)(η5-C5Me5) complexes the coordinative binding mode is suggested as well. They are also able to interact with calf-thymus DNA, most likely via the coordination of the guanine nitrogen. The Ru(II)(η6-p-cymene) complexes were found to be the most promising among the tested compounds as they exhibited moderate-to-strong cytotoxic activity (IC50 = 3-11 μM) in LNCaP as well as in PC3 prostate cells in an androgen receptor-independent manner. They were also significantly cytotoxic in breast and colon adenocarcinoma cancer cell lines and showed good selectivity for cancer cells.
Collapse
Affiliation(s)
- Tamás Pivarcsik
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8., H-6720 Szeged, Hungary.
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8., H-6720 Szeged, Hungary
| | - Márton A Kiss
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8., H-6720 Szeged, Hungary
| | - Uroš Rapuš
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8., H-6720 Szeged, Hungary.
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Éva Frank
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8., H-6720 Szeged, Hungary
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Éva A Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8., H-6720 Szeged, Hungary.
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8., H-6720 Szeged, Hungary
| |
Collapse
|
3
|
Geri A, Massai L, Novinec M, Turel I, Messori L. Reactions of Medicinal Gold Compounds with Cathepsin B Explored through Electrospray Mass Spectrometry Measurements. Chempluschem 2024; 89:e202300321. [PMID: 37930642 DOI: 10.1002/cplu.202300321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Medicinal gold compounds, a novel class of potential anticancer drugs, are believed to produce their pharmacological effects mainly through direct gold binding to protein targets at the level of solvent exposed cysteine (or selenocysteine) residues. We have explored therein the reactions of a panel of seven representative gold compounds with the cysteine protease cathepsin B according to an established ESI MS approach. Detailed information on the mode of protein binding of these gold compounds is gained; notably, quite distinct patterns of cathepsin B metalation have emerged from these studies. It is shown that panel gold compounds interact preferentially, often exclusively, with the free cysteine located in the active site of the enzyme.
Collapse
Affiliation(s)
- Andrea Geri
- Department of Chemistry "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Marko Novinec
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Sumithaa C, Gajda-Morszewski P, Ishaniya W, Khamrang T, Velusamy M, Bhuvanesh N, Brindell M, Mazuryk O, Ganeshpandian M. Design of an anticancer organoruthenium complex as the guest and polydiacetylene-coated fluorogenic nanocarrier as the host: engineering nanocarrier using ene-yne conjugation for sustained guest release, enhanced anticancer activity and reduced in vivo toxicity. Dalton Trans 2024; 53:966-985. [PMID: 38054338 DOI: 10.1039/d3dt03358a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Despite the enormous efforts made over the past two decades to develop metallodrugs and nanocarriers for metallodrug delivery, there are still few precise strategies that aim to optimize the design of both metallodrugs and metallodrug carriers jointly in a concerted effort. In this work, three half-sandwich ruthenium(II) complexes with pyridylimidazo[1,5-a]pyridine ligand functionalized with polycyclic aromatic moiety (Ru(nap), Ru(ant), Ru(pyr)) are evaluated as possible anticancer candidates and polydiacetylene (PDA)-coated amino-functionalized mesoporous silica nanoparticles (AMSNs) are designed as a functional nanocarrier for drug delivery. Ru(pyr) exhibits higher cytotoxicity in HT-29 colorectal cancer cells compared to other complexes and cis-platin, but it does not exhibit better cellular uptake. Ru(pyr) is found to be preferentially accumulated in plasma, mitochondria, and ER-Golgi membrane. The complex induces cell cycle arrest in the G0/G1 phase, while higher concentrations cause programmed cell death via apoptosis. Ru(pyr) influences cancer cell adhesion property and acts as an antioxidant in HT-29 cells. In order to modulate the anticancer potency of Ru(pyr), AMSNs are used to encapsulate the complex, and then diacetylene self-assembly is allowed to deposit on the surface of the nanoparticles. Subsequently, the nanoparticles undergo topopolymerization, which results in π-conjugated PDA-Ru(pyr)@AMSNs. Owing to the ene-yne polymeric skeleton in the backbone, the non-fluorescent AMSNs turn into red-emissive particles, which are exploited for cell imaging applications. The release profile analysis reveals that such a π-conjugated polymer prevents the premature release of the complex from porous silica nanoparticles with the accelerated release of the complex in an acidic medium compared to physiological conditions. The PDA gatekeepers have also been proven to enhance the cellular internalization of Ru(pyr) with slow continuous release from the nanoformulation. Zebrafish embryo toxicity analysis suggests that the PDA-coated nanocarriers could be suitable candidates for in vivo investigations.
Collapse
Affiliation(s)
- Chezhiyan Sumithaa
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Przemyslaw Gajda-Morszewski
- Faculty of Chemistry, Department of Inorganic Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland.
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348 Cracow, Poland
| | - Wickneswaran Ishaniya
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Themmila Khamrang
- Department of Chemistry, Dhanamanjuri University, Manipur 795001, India
| | - Marappan Velusamy
- Department of Chemistry, North Eastern Hill University, Shillong 793022, India
| | - Nattamai Bhuvanesh
- X-ray Diffraction Lab, Department of Chemistry, Texas A&M University, College Station, TX 77842, USA
| | - Malgorzata Brindell
- Faculty of Chemistry, Department of Inorganic Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland.
| | - Olga Mazuryk
- Faculty of Chemistry, Department of Inorganic Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland.
| | - Mani Ganeshpandian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
5
|
Csuvik O, Szatmári I. Synthesis of Bioactive Aminomethylated 8-Hydroxyquinolines via the Modified Mannich Reaction. Int J Mol Sci 2023; 24:ijms24097915. [PMID: 37175622 PMCID: PMC10177806 DOI: 10.3390/ijms24097915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
8-hydroxyquinoline (oxine) is a widely known and frequently used chelating agent, and the pharmacological effects of the core molecule and its derivatives have been studied since the 19th century. There are several synthetic methods to modify this core. The Mannich reaction is one of the most easily implementable examples, which requires mild reaction conditions and simple chemical reagents. The three components of the Mannich reaction are a primary or secondary amine, an aldehyde and a compound having a hydrogen with pronounced activity. In the modified Mannich reaction, naphthol or a nitrogen-containing naphthol analogue (e.g., 8-hydroxyquinoline) is utilised as the active hydrogen provider compound, thus affording the formation of aminoalkylated products. The amine component can be ammonia and primary or secondary amines. The aldehyde component is highly variable, including aliphatic and aromatic aldehydes. Based on the pharmacological relevance of aminomethylated 8-hydroxyquinolines, this review summarises their syntheses via the modified Mannich reaction starting from 8-hydroxyquinoline, formaldehyde and various amines.
Collapse
Affiliation(s)
- Oszkár Csuvik
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- Stereochemistry Research Group, Eötvös Loránd Research Network, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| |
Collapse
|
6
|
Kljun J, Rebernik M, Balsa LM, Kladnik J, Rapuš U, Trobec T, Sepčić K, Frangež R, León IE, Turel I. Exploring pta Alternatives in the Development of Ruthenium-Arene Anticancer Compounds. Molecules 2023; 28:molecules28062499. [PMID: 36985471 PMCID: PMC10058425 DOI: 10.3390/molecules28062499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Organoruthenium pyrithione (1-hydroxypyridine-2-thione) complexes have been shown in our recent studies to be a promising family of compounds for development of new anticancer drugs. The complex [(η6-p-cymene)Ru(pyrithionato)(pta)]PF6 contains phosphine ligand pta (1,3,5-triaza-7-phosphaadamantane) as a functionality that improves the stability of the complex and its aqueous solubility. Here, we report our efforts to find pta alternatives and discover new structural elements to improve the biological properties of ruthenium anticancer drugs. The pta ligand was replaced by a selection of phosphine, phosphite, and arsine ligands to identify new functionalities, leading to improvement in inhibitory potency towards enzyme glutathione S-transferase. In addition, cytotoxicity in breast, bone, and colon cancers was investigated.
Collapse
Affiliation(s)
- Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Mihaela Rebernik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Lucía M Balsa
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N°1465, La Plata 1900, Argentina
| | - Jerneja Kladnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Uroš Rapuš
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Tomaž Trobec
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of LjubljanaJamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Robert Frangež
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N°1465, La Plata 1900, Argentina
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Sumithaa C, Ganeshpandian M. Half-Sandwich Ruthenium Arene Complexes Bearing Clinically Approved Drugs as Ligands: The Importance of Metal-Drug Synergism in Metallodrug Design. Mol Pharm 2023; 20:1453-1479. [PMID: 36802711 DOI: 10.1021/acs.molpharmaceut.2c01027] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
A novel strategy in metallodrug discovery today is incorporating clinically approved drugs into metal complexes as coordinating ligands. Using this strategy, various drugs have been repurposed to prepare organometallic complexes to overcome the resistance of drugs and to design promising alternatives to currently available metal-based drugs. Notably, the combination of organoruthenium moiety and clinical drug in a single molecule has been shown, in some instances, to enhance pharmacological activity and reduce toxicity in comparison to the parent drug. Thus, for the past two decades, there has been increasing interest in exploiting metal-drug synergism to develop multifunctional organoruthenium drug candidates. Herein, we summarized the recent reports of rationally designed half-sandwich Ru(arene) complexes containing different FDA-approved drugs. This review also focuses on the mode of coordination of drugs, ligand-exchange kinetics, mechanism of action, and structure-activity relationship of organoruthenated complexes containing drugs. We hope this discussion may serve to shed light on future developments in ruthenium-based metallopharmaceuticals.
Collapse
Affiliation(s)
- Chezhiyan Sumithaa
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| | - Mani Ganeshpandian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| |
Collapse
|
8
|
Ren L, Jiang M, Xue D, Wang H, Lu Z, Ding L, Xie H, Wang R, Luo W, Xu L, Wang M, Yu S, Cheng S, Xia L, Yu H, Huang P, Xu N, Li G. Nitroxoline suppresses metastasis in bladder cancer via EGR1/circNDRG1/miR-520h/smad7/EMT signaling pathway. Int J Biol Sci 2022; 18:5207-5220. [PMID: 35982887 PMCID: PMC9379395 DOI: 10.7150/ijbs.69373] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/31/2022] [Indexed: 11/13/2022] Open
Abstract
Bladder cancer is one of the most common and deadly cancer worldwide. Current chemotherapy has shown limited efficacy in improving outcomes for patients. Nitroxoline, an old and widely used oral antibiotic, which was known to treat for urinary tract infection for decades. Recent studies suggested that nitroxoline suppressed the tumor progression and metastasis, especially in bladder cancer. However, the underlying mechanism for anti-tumor activity of nitroxoline remains unclear. Methods: CircRNA microarray was used to explore the nitroxoline-mediated circRNA expression profile of bladder cancer lines. Transwell and wound-healing assay were applied to evaluate the capacity of metastasis. ChIP assay was chosen to prove the binding of promotor and transcription factor. RNA-pulldown assay was performed to explore the sponge of circRNA and microRNA. Results: We first identified the circNDRG1 (has_circ_0085656) as a novel candidate circRNA. Transwell and wound-healing assay demonstrated that circNDRG1 inhibited the metastasis of bladder cancer. ChIP assay showed that circNDRG1 was regulated by the transcription factor EGR1 by binding the promotor of host gene NDRG1. RNA-pulldown assay proved that circNDRG1 sponged miR-520h leading to the overexpression of smad7, which was a negative regulatory protein of EMT. Conclusions: Our research revealed that nitroxoline may suppress metastasis in bladder cancer via EGR1/circNDRG1/miR-520h/smad7/EMT signaling pathway.
Collapse
Affiliation(s)
- Liangliang Ren
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minxiao Jiang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dingwei Xue
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyun Xie
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenqin Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Xu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingchao Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shicheng Yu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Cheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haifeng Yu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Huang
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Naijin Xu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Kljun J, Pavlič R, Hafner E, Lipec T, Moreno-Da Silva S, Tič P, Turel I, Büdefeld T, Stojan J, Rižner TL. Ruthenium complexes show potent inhibition of AKR1C1, AKR1C2, and AKR1C3 enzymes and anti-proliferative action against chemoresistant ovarian cancer cell line. Front Pharmacol 2022; 13:920379. [PMID: 36034868 PMCID: PMC9403717 DOI: 10.3389/fphar.2022.920379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, we present the synthesis, kinetic studies of inhibitory activity toward aldo-keto reductase 1C (AKR1C) enzymes, and anticancer potential toward chemoresistant ovarian cancer of 10 organoruthenium compounds bearing diketonate (1–6) and hydroxyquinolinate (7–10) chelating ligands with the general formula [(η6-p-cymene)Ru(chel)(X)]n+ where chel represents the chelating ligand and X the chlorido or pta ligand. Our studies show that these compounds are potent inhibitors of the AKR enzymes with an uncommon inhibitory mechanism, where two inhibitor molecules bind to the enzyme in a first fast and reversible step and a second slower and irreversible step. The binding potency of each step is dependent on the chemical structure of the monodentate ligands in the metalloinhibitors with the chlorido complexes generally acting as reversible inhibitors and pta complexes as irreversible inhibitors. Our study also shows that compounds 1–9 have a moderate yet better anti-proliferative and anti-migration action on the chemoresistant ovarian cancer cell line COV362 compared to carboplatin and similar effects to cisplatin.
Collapse
Affiliation(s)
- Jakob Kljun
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Renata Pavlič
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Hafner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Lipec
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Moreno-Da Silva
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Chemical Sciences, Universidad Complutense de Madrid, Madrid, Spain
| | - Primož Tič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Iztok Turel
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Iztok Turel, ; Tea Lanišnik Rižner,
| | - Tomaž Büdefeld
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jure Stojan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Iztok Turel, ; Tea Lanišnik Rižner,
| |
Collapse
|
10
|
Camouflaged liposomes by 11A4-nanobody for co-delivery of cisplatin and nitroxoline in breast cancer tumors: An in vitro/in vivo study. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Sanz Garcia J, Gaschard M, Navizet I, Sahihi M, Top S, Wang Y, Pigeon P, Vessières A, Salmain M, Jaouen G. Inhibition of cathepsin B by ferrocenyl indenes highlights a new pharmacological facet of ferrocifens. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Juan Sanz Garcia
- Université Gustave Eiffel: Universite Gustave Eiffel MSME FRANCE
| | - Marie Gaschard
- Sorbonne Université: Sorbonne Universite Institut Parisien de Chimie Moléculaire FRANCE
| | - Isabelle Navizet
- Université Gustave Eiffel: Universite Gustave Eiffel MSME FRANCE
| | - Mehdi Sahihi
- Université Gustave Eiffel: Universite Gustave Eiffel MSME FRANCE
| | - Siden Top
- Sorbonne Université: Sorbonne Universite Institut Parisien de Chimie Moléculaire FRANCE
| | - Yong Wang
- Sorbonne Université: Sorbonne Universite Institut Parisien de Chimie Moléculaire FRANCE
| | - Pascal Pigeon
- PSL Research University: Universite PSL chimie Paristech FRANCE
| | - Anne Vessières
- Sorbonne Université: Sorbonne Universite Institut Parisien de Chimie Moléculaire FRANCE
| | - Michèle Salmain
- Sorbonne Université: Sorbonne Universite Institut Parisien de Chimie Moleculaire 4 place Jussieucase courrier 229 75005 Paris FRANCE
| | - Gerard Jaouen
- PSL Research University: Universite PSL chimie paristech FRANCE
| |
Collapse
|
12
|
Mukherjee A, Koley TS, Chakraborty A, Purkait K, Mukherjee A. Synthesis, Structure and Cytotoxicity of N,N and N,O-Coordinated Ru II Complexes of 3-Aminobenzoate Schiff Bases against Triple-negative Breast Cancer. Chem Asian J 2021; 16:3729-3742. [PMID: 34549886 DOI: 10.1002/asia.202100917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/17/2021] [Indexed: 11/07/2022]
Abstract
Half-sandwich RuII complexes, [(YZ)RuII (η6 -arene)(X)]+, (YZ=chelating bidentate ligand, X=halide), with N,N and N,O coordination (1-9) show significant antiproliferative activity against the metastatic triple-negative breast carcinoma (MDA-MB-231). 3-aminobenzoic acid or its methyl ester is used in all the ligands while varying the aldehyde for N,N and N,O coordination. In the N,N coordinated complex the coordinated halide(X) is varied for enhancing stability in solution (X=Cl, I). Rapid aquation and halide exchange of the pyridine analogues, 2 and 3, in solution are a major bane towards their antiproliferative activity. Presence of free -COOH group (1 and 4) make complexes hydrophilic and reduces toxicity. The imidazolyl 3-aminobenzoate based N,N coordinated 5 and 6 display better solution stability and efficient antiproliferative activity (IC50 ca. 2.3-2.5 μM) compared to the pyridine based 2 and 3 (IC50 >100 μM) or the N,O coordinated complexes (7-9) (IC50 ca. 7-10 μM). The iodido coordinated, 6, is resistant towards aquation and halide exchange. The N,O coordinated 7-9 underwent instantaneous aquation at pH 7.4 generating monoaquated complexes stable for at least 6 h. Complexes 5 and 6, bind to 9-ethylguanine (9-EtG) showing propensity to interact with DNA bases. The complexes may kill via apoptosis as displayed from the study of 8. The change in coordination mode and the aldehyde affected the solution stability, antiproliferative activity and mechanistic pathways. The N,N coordinated (5 and 6) exhibit arrest in the G2/M phase while the N,O coordinated 8 showed arrest in the G0/G1 phase.
Collapse
Affiliation(s)
- Arpan Mukherjee
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Tuhin Subhra Koley
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Ayan Chakraborty
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Kallol Purkait
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Arindam Mukherjee
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
13
|
Biancalana L, Zanda E, Hadiji M, Zacchini S, Pratesi A, Pampaloni G, Dyson PJ, Marchetti F. Role of the (pseudo)halido ligand in ruthenium(II) p-cymene α-amino acid complexes in speciation, protein reactivity and cytotoxicity. Dalton Trans 2021; 50:15760-15777. [PMID: 34704998 DOI: 10.1039/d1dt03274g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of the dimeric complexes [RuX2(η6-p-cymene)]2 (X = Br, I, SCN) with L-proline (ProH) and trans-4-hydroxy-L-proline (HypH), in methanol in the presence of NaOH, afforded [RuX(κ2N,O-Pro)(η6-p-cymene)] (X = Br, 1b; I, 1c; SCN, 1d) and [RuX(κ2N,O-Hyp)(η6-p-cymene)] (X = Br, 2b; I, 2c; SCN, 2d), respectively. Alternatively, the one-pot, sequential addition of the appropriate α-amino carboxylate and X- salt to [RuCl2(η6-p-cymene)]2 led to [RuX(κ2N,O-Pro)(η6-p-cymene)] (X = N3, 1e; NO2, 1f; CN 1g) and [Ru(N3)(κ2N,O-Hyp)(η6-p-cymene)] (2e). Complexes [Ru(κ3N,O,O'-O2CCH(NH2)(R)O)(η6-p-cymene)] (R = CH2, 3h; R = CHMe, 4h; R = CH2CH2, 5h) were prepared from the reaction of [RuCl2(η6-p-cymene)]2 with the appropriate α-amino acid and NaOH in refluxing isopropanol. Treatment of the L-serine (SerH2) derivative [RuCl(κ2N,O-SerH)(η6-p-cymene)] (3a) with 1,3,5-triaza-7-phosphaadamantane (PTA) in water at reflux produced [Ru(κ2N,O-Ser)(κP-PTA)(η6-p-cymene)]Cl ([3i]Cl). The products were isolated in good to excellent yields, and were characterized by elemental analysis, IR and multinuclear NMR spectroscopy. The structures of 1f and 2b-e were ascertained by X-ray diffraction studies. The behaviour of the complexes in water and cell culture medium was investigated by multinuclear NMR and UV-Vis spectroscopy, revealing a considerable influence of the monodentate ligand on the aqueous chemistry. Complexes 1d-e, 2d-e, 3h, 4h and [3i]Cl, showing substantial inertness in aqueous media, were assessed for their cytotoxicity towards A2780 and A2780cisR cancer cell lines and the noncancerous HEK 293T cell line. A selection of compounds was also investigated for Ru uptake in A2780 cells and interactions with cytochrome c as a model protein. Combined, these studies provide insights into the previously debated role of the 'leaving' ligand on the biological activity of Ru(II) arene α-amino acid complexes.
Collapse
Affiliation(s)
- Lorenzo Biancalana
- University of Pisa, Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| | - Emanuele Zanda
- University of Pisa, Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| | - Mouna Hadiji
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Stefano Zacchini
- University of Bologna, Dipartimento di Chimica Industriale "Toso Montanari", Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Alessandro Pratesi
- University of Pisa, Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| | - Guido Pampaloni
- University of Pisa, Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Fabio Marchetti
- University of Pisa, Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| |
Collapse
|
14
|
Pivarcsik T, Dömötör O, Mészáros JP, May NV, Spengler G, Csuvik O, Szatmári I, Enyedy ÉA. 8-Hydroxyquinoline-Amino Acid Hybrids and Their Half-Sandwich Rh and Ru Complexes: Synthesis, Anticancer Activities, Solution Chemistry and Interaction with Biomolecules. Int J Mol Sci 2021; 22:ijms222011281. [PMID: 34681939 PMCID: PMC8570331 DOI: 10.3390/ijms222011281] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022] Open
Abstract
Solution chemical properties of two novel 8-hydroxyquinoline-D-proline and homo-proline hybrids were investigated along with their complex formation with [Rh(η5-C5Me5)(H2O)3]2+ and [Ru(η6-p-cymene)(H2O)3]2+ ions by pH-potentiometry, UV-visible spectrophotometry and 1H NMR spectroscopy. Due to the zwitterionic structure of the ligands, they possess excellent water solubility as well as their complexes. The complexes exhibit high solution stability in a wide pH range; no significant dissociation occurs at physiological pH. The hybrids and their Rh(η5-C5Me5) complexes displayed enhanced cytotoxicity in human colon adenocarcinoma cell lines and exhibited multidrug resistance selectivity. In addition, the Rh(η5-C5Me5) complexes showed increased selectivity to the chemosensitive cancer cells over the normal cells; meanwhile, the Ru(η6-p-cymene) complexes were inactive, most likely due to arene loss. Interaction of the complexes with human serum albumin (HSA) and calf-thymus DNA (ct-DNA) was investigated by capillary electrophoresis, fluorometry and circular dichroism. The complexes are able to bind strongly to HSA and ct-DNA, but DNA cleavage was not observed. Changing the five-membered proline ring to the six-membered homoproline resulted in increased lipophilicity and cytotoxicity of the Rh(η5-C5Me5) complexes while changing the configuration (L vs. D) rather has an impact on HSA or ct-DNA binding.
Collapse
Affiliation(s)
- Tamás Pivarcsik
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (O.D.); (J.P.M.); (G.S.)
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary
| | - Orsolya Dömötör
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (O.D.); (J.P.M.); (G.S.)
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary
| | - János P. Mészáros
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (O.D.); (J.P.M.); (G.S.)
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary
| | - Nóra V. May
- Centre for Structural Science, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary;
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (O.D.); (J.P.M.); (G.S.)
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis U. 6, H-6725 Szeged, Hungary
| | - Oszkár Csuvik
- Institute of Pharmaceutical Chemistry and Stereochemistry Research Group of Hungarian Academy of Sciences, University of Szeged, Eötvös U. 6, H-6720 Szeged, Hungary; (O.C.); (I.S.)
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and Stereochemistry Research Group of Hungarian Academy of Sciences, University of Szeged, Eötvös U. 6, H-6720 Szeged, Hungary; (O.C.); (I.S.)
| | - Éva A. Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (O.D.); (J.P.M.); (G.S.)
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary
- Correspondence:
| |
Collapse
|
15
|
Design concepts of half-sandwich organoruthenium anticancer agents based on bidentate bioactive ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Trobec T, Sepčić K, Žužek MC, Kladnik J, Podjed N, Cardoso Páscoa C, Turel I, Frangež R. Fine Tuning of Cholinesterase and Glutathione-S-Transferase Activities by Organoruthenium(II) Complexes. Biomedicines 2021; 9:biomedicines9091243. [PMID: 34572429 PMCID: PMC8467340 DOI: 10.3390/biomedicines9091243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/26/2021] [Accepted: 09/13/2021] [Indexed: 11/27/2022] Open
Abstract
Cholinesterases (ChEs) show increased activities in patients with Alzheimer’s disease, and remain one of the main therapeutic targets for treatment of this neurodegenerative disorder. A library of organoruthenium(II) complexes was prepared to investigate the influence of their structural elements on inhibition of ChEs, and on another pharmacologically important group of enzymes, glutathione S-transferases (GSTs). Two groups of organoruthenium(II) compounds were considered: (i) organoruthenium(II) complexes with p-cymene as an arene ligand, and (ii) organoruthenium(II) carbonyl complexes as CO-releasing molecules. Eight organoruthenium complexes were screened for inhibitory activities against ChEs and GSTs of human and animal origins. Some compounds inhibited all of these enzymes at low micromolar concentrations, while others selectively inhibited either ChEs or GSTs. This study demonstrates the importance of the different structural elements of organoruthenium complexes for their inhibitory activities against ChEs and GSTs, and also proposes some interesting compounds for further preclinical testing as ChE or GST inhibitory drugs.
Collapse
Affiliation(s)
- Tomaž Trobec
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.T.); (M.C.Ž.)
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: (K.S.); (I.T.); (R.F.); Tel.: +386-1-3203419 (K.S.); +386-1-4798525 (I.T.); +386-1-4779131 (R.F.)
| | - Monika Cecilija Žužek
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.T.); (M.C.Ž.)
| | - Jerneja Kladnik
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (N.P.); (C.C.P.)
| | - Nina Podjed
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (N.P.); (C.C.P.)
| | - Catarina Cardoso Páscoa
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (N.P.); (C.C.P.)
- NOVA School of Science and Technology, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Iztok Turel
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (N.P.); (C.C.P.)
- Correspondence: (K.S.); (I.T.); (R.F.); Tel.: +386-1-3203419 (K.S.); +386-1-4798525 (I.T.); +386-1-4779131 (R.F.)
| | - Robert Frangež
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.T.); (M.C.Ž.)
- Correspondence: (K.S.); (I.T.); (R.F.); Tel.: +386-1-3203419 (K.S.); +386-1-4798525 (I.T.); +386-1-4779131 (R.F.)
| |
Collapse
|
17
|
Chatterjee R, Bhattacharya I, Roy S, Purkait K, Koley TS, Gupta A, Mukherjee A. Synthesis, Characterization, and Cytotoxicity of Morpholine-Containing Ruthenium(II) p-Cymene Complexes. Inorg Chem 2021; 60:12172-12185. [PMID: 34346215 DOI: 10.1021/acs.inorgchem.1c01363] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Morpholine motif is an important pharmacophore and, depending on the molecular design, may localize in cellular acidic vesicles. To understand the importance of the presence of pendant morpholine in a metal complex, six bidentate N,O-donor ligands with or without a pendant morpholine unit and their corresponding ruthenium(II) p-cymene complexes (1-6) are synthesized, purified, and structurally characterized by various analytical methods including X-ray diffraction. Complexes 2-4 crystallized in the P21/c space group, whereas 5 and 6 crystallized in the P1̅ space group. The solution stability studies using 1H NMR support instantaneous hydrolysis of the native complexes to form monoaquated species in a solution of 3:7 (v/v) dimethyl sulfoxide-d6 and 20 mM phosphate buffer (pH* 7.4, containing 4 mM NaCl). The monoaquated complexes are stable for at least up to 24 h. The complexes display excellent in vitro antiproliferative activity (IC50 ca. 1-14 μM) in various cancer cell lines, viz., MDA-MB-231, MiaPaCa2, and Hep-G2. The presence of the pendant morpholine does not improve the dose efficacy, but rather, with 2-[[(2,6-dimethylphenyl)imino]methyl]phenol (HL1) and its pendant morpholine analogue (HL3) giving complexes 1 and 3, respectively, the antiproliferative activity was poorer with 3. MDA-MB-231 cells treated with the complexes show that the acidic vesicles remain acidic, but the population of acidic vesicles increases or decreases with time of exposure, as observed from the dispersed red puncta, depending on the complex used. The presence of the 2,6-disubstituted aniline and the naphthyl group seems to improve the antiproliferative dose. The complex treated MDA-MB-231 cells show that cathepsin D, which is otherwise present in the cytosolic lysosomes, translocates to the nucleus as a result of exposure to the complexes. Irrespective of the presence of a morpholine motif, the complexes do not activate caspase-3 to induce apoptosis and seem to favor the necrotic pathway of cell killing.
Collapse
|
18
|
Ji Y, Zhou Q, Liu G, Zhu T, Wang Y, Fu Y, Li Y, Li R, Zhang X, Dong M, Sauriol F, Gu Y, Shi Q, Lu X, Ni Z. New protein tyrosine phosphatase inhibitors from fungus Aspergillus gorakhpurensis F07ZB1707. RSC Adv 2021; 11:10144-10153. [PMID: 35423499 PMCID: PMC8695591 DOI: 10.1039/d1ra00788b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/18/2021] [Indexed: 01/03/2023] Open
Abstract
Twelve new compounds, aspergorakhins A-L (1-12) coupled with one known xanthone leptosphaerin D (13), were isolated from the extract of soil-derived fungus Aspergillus gorakhpurensis F07ZB1707. Their structures were elucidated by spectroscopic data analysis including UV, IR, NMR, and HRESIMS. The absolute configurations of 5 and 8-11 were identified using ECD and OR calculations. All compounds were tested by enzyme inhibitory activity assay in vitro. Aspergorakhin A (1) showed selective activities against PTP1B and SHP1 over TCPTP with IC50 values 0.57, 1.19, and 22.97 μM, respectively. Compounds 1 and 2 exhibited modest cytotoxicity against tumor cell lines A549, HeLa, Bel-7402, and SMMC-7721 with IC50 values in the range of 6.75-83.4 μM.
Collapse
Affiliation(s)
- Yannan Ji
- School of Pharmaceutical Sciences, Hebei Medical University Shijiazhuang 050017 China
| | - Qiqi Zhou
- School of Pharmaceutical Sciences, Hebei Medical University Shijiazhuang 050017 China
| | - Guosheng Liu
- School of Pharmaceutical Sciences, Hebei Medical University Shijiazhuang 050017 China
| | - Tianhui Zhu
- School of Pharmaceutical Sciences, Hebei Medical University Shijiazhuang 050017 China
| | - Yufang Wang
- School of Pharmaceutical Sciences, Hebei Medical University Shijiazhuang 050017 China
| | - Yan Fu
- School of Pharmaceutical Sciences, Hebei Medical University Shijiazhuang 050017 China
| | - Yeying Li
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering & Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Key Laboratory for New Drug Screening Technology of Shijiazhuang City Shijiazhuang 050015 China
| | - Ruolan Li
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering & Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Key Laboratory for New Drug Screening Technology of Shijiazhuang City Shijiazhuang 050015 China
| | - Xuexia Zhang
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering & Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Key Laboratory for New Drug Screening Technology of Shijiazhuang City Shijiazhuang 050015 China
| | - Mei Dong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University Shijiazhuang 050017 China
| | | | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre Bracknell Berkshire RG42 6EY UK
| | - Qingwen Shi
- School of Pharmaceutical Sciences, Hebei Medical University Shijiazhuang 050017 China .,Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University Shijiazhuang 050017 China
| | - Xinhua Lu
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering & Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Key Laboratory for New Drug Screening Technology of Shijiazhuang City Shijiazhuang 050015 China
| | - Zhiyu Ni
- The Affiliated Hospital of Hebei University, School of Basic Medical Science, Hebei University Baoding 071000 China
| |
Collapse
|
19
|
Mészáros JP, Pape VFS, Szakács G, Németi G, Dénes M, Holczbauer T, May NV, Enyedy ÉA. Half-sandwich organometallic Ru and Rh complexes of (N,N) donor compounds: effect of ligand methylation on solution speciation and anticancer activity. Dalton Trans 2021; 50:8218-8231. [PMID: 34032247 DOI: 10.1039/d1dt00808k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of half-sandwich polypyridyl complexes was synthesized and compared focusing on structural, cytotoxic and aqueous solution behaviour. The formula of the synthesized complexes is [M(arene)(N,N)Cl]Cl, where M: Ru or Rh, arene: p-cymene, toluene or C5Me5-, (N,N): 2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (dmb), 1,10-phenanthroline (phen) or 2,9-dimethyl-1,10-phenanthroline (neo). The structures of five half-sandwich complexes were determined by X-ray crystallography. It was found that introducing methyl groups next to the coordinating nitrogen atoms of the bidentate ligand causes steric congestion around the metal centre which changes the angle between ligand planes. The ligands and the Rh complexes showed significant cytotoxicity in A2780 and MES-SA cancer cell lines (IC50 = 0.1-56 μM) and in the cisplatin-resistant A2780cis cells. Paradoxically, phen and dmb as well as their half-sandwich Rh complexes showed increased toxicity against multidrug resistant MES-SA/Dx5 cells. In contrast, coordination to Ru caused loss of toxicity. Solution equilibrium constants showed that the studied metal complexes have high stability, and no dissociation was found for Ru and Rh complexes even at micromolar concentrations in a wide pH range. However, in the case of Ru complexes a slow and irreversible decomposition, namely arene loss, was also observed, which was more pronounced in light exposure in aqueous solution. In the case of neo, the methyl groups next to the nitrogen atoms significantly decrease the stability of complexes. For Rh complexes, the order of the stability constants corrected with ligand basicity (log K*): 9.78 (phen) > 9.01 (dmb) > 8.89 (bpy) > 3.93 (neo). The coordinated neo resulted in an enormous decrease in the chloride ion affinity of Ru compounds. Based on the results, a universal model was introduced for the prediction of chloride ion capability of half-sandwich Rh and Ru complexes. It combines the effects of the bidentate ligand and the M(arene) part using only two terms, performing multilinear regression procedure.
Collapse
Affiliation(s)
- János P Mészáros
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary. and MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Veronika F S Pape
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary and Department of Physiology, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary and Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Gábor Németi
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.
| | - Márk Dénes
- Centre for Structural Science, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Tamás Holczbauer
- Centre for Structural Science, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary and Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Nóra V May
- Centre for Structural Science, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Éva A Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary. and MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| |
Collapse
|
20
|
Van de Walle T, Briand M, Mitrović A, Sosič I, Gobec S, Kos J, Persoons L, Daelemans D, De Jonghe S, Ubiparip Z, Desmet T, Van Hecke K, Mangelinckx S, D'hooghe M. Synthesis of Novel Nitroxoline Analogs with Potent Cathepsin B Exopeptidase Inhibitory Activity. ChemMedChem 2020; 15:2477-2490. [PMID: 32744405 DOI: 10.1002/cmdc.202000402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 01/02/2023]
Abstract
Nitroxoline, a well-known antimicrobial agent, has been identified in several independent studies, and on different molecular targets, as a promising candidate to be repurposed for cancer treatment. One specific target of interest concerns cathepsin B, a lysosomal peptidase involved in the degradation of the extracellular matrix (ECM), leading to tumor invasion, metastasis and angiogenesis. However, dedicated optimization of the nitroxoline core is needed to actually deliver a nitroxoline-based antitumor drug candidate. Within that context, 34 novel nitroxoline analogs were synthesized and evaluated for their relative cathepsin B inhibitory activity, their antiproliferative properties and their antimicrobial activity. More than twenty analogs were shown to exert a similar or even slightly higher cathepsin B inhibitory activity compared to nitroxoline. The implemented modifications of the nitroxoline scaffold and the resulting SAR information can form an eligible basis for further optimization toward more potent cathepsin B inhibitors in the quest for a clinical nitroxoline-based antitumor agent.
Collapse
Affiliation(s)
- Tim Van de Walle
- SynbioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Marina Briand
- SynbioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Ana Mitrović
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Izidor Sosič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Stanislav Gobec
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.,Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Leentje Persoons
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Dirk Daelemans
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Steven De Jonghe
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Zorica Ubiparip
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Kristof Van Hecke
- Xstruct, Department of Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S3, 9000, Ghent, Belgium
| | - Sven Mangelinckx
- SynbioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Matthias D'hooghe
- SynbioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
21
|
Xu N, Lin W, Sun J, Sadahira T, Xu A, Watanabe M, Guo K, Araki M, Li G, Liu C, Nasu Y, Huang P. Nitroxoline inhibits bladder cancer progression by reversing EMT process and enhancing anti-tumor immunity. J Cancer 2020; 11:6633-6641. [PMID: 33046984 PMCID: PMC7545671 DOI: 10.7150/jca.47025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022] Open
Abstract
Nitroxoline is considered to be an effective treatment for the urinary tract infections. Recently, it has been found to be effective against several cancers. However, few studies have examined the anti-tumor activity of nitroxoline in bladder cancer. The purpose of the study was to reveal the possible mechanisms how nitroxoline inhibited bladder cancer progression. In vitro assay, we demonstrated that nitroxoline inhibited bladder cancer cell growth and migration in a concentration-related manner. Western blot analysis demonstrated that nitroxoline downregulated the expressions of epithelial mesenchymal transition (EMT)-related proteins. Furthermore, treatment with nitroxoline in the C3H/He mice bladder cancer subcutaneous model resulted in significant inhibition of tumor growth. Moreover, the percentage of myeloid-derived suppressor cells (MDSC) in peripheral blood cells significantly decreased after treatment of nitroxoline. Taken together, our results suggested that nitroxoline may be used as a potential drug for bladder cancer.
Collapse
Affiliation(s)
- Naijin Xu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenfeng Lin
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jingkai Sun
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Takuya Sadahira
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital
| | - Kai Guo
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Motoo Araki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yasutomo Nasu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital
| | - Peng Huang
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Okayama Medical Innovation Center, Okayama University, Okayama, Japan
| |
Collapse
|
22
|
Litecká M, Prachařová J, Kašpárková J, Brabec V, Smolková R, Gyepes R, Obuch J, Kubíček V, Potočňák I. Low-dimensional compounds containing bioactive ligands. Part XV: Antiproliferative activity of tris(5-nitro-8-quinolinolato)gallium(III) complex with noticeable selectivity against the cancerous cells. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Knez D, Sosič I, Mitrović A, Pišlar A, Kos J, Gobec S. 8-Hydroxyquinoline-based anti-Alzheimer multimodal agents. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02651-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Mészáros JP, Poljarević JM, Szatmári I, Csuvik O, Fülöp F, Szoboszlai N, Spengler G, Enyedy ÉA. An 8-hydroxyquinoline-proline hybrid with multidrug resistance reversal activity and the solution chemistry of its half-sandwich organometallic Ru and Rh complexes. Dalton Trans 2020; 49:7977-7992. [PMID: 32500882 DOI: 10.1039/d0dt01256d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein the design and synthesis of a new 8-hydroxyquinoline derivative, (S)-5-chloro-7-((proline-1-yl)methyl)8-hydroxyquinoline (HQCl-Pro), with good water solubility and multidrug resistance reversal activity are reported. In this work the proton dissociation processes of HQCl-Pro and its complex formation with [Rh(η5-C5Me5)(H2O)3]2+, [Ru(η6-p-cymene)(H2O)3]2+ and [Ru(η6-toluene)(H2O)3]2+ were investigated by the combined use of pH-potentiometry, UV-visible spectrometry and 1H NMR spectroscopy. Our results revealed the prominent solution stability of the complexes in all cases. The lipophilicity of the complexes increased with the chloride ion concentration, and the complexes showed moderate log D values (-0.8 to +0.4) at pH 7.4 at all tested Cl- concentrations. The formation of mixed hydroxido complexes from the aqua complexes was characterized by relatively high pKa values (8.45-9.62 in chloride-free medium). Complexation processes are much slower with the Ru(η6-arene) triaqua cations than with [Rh(η5-C5Me5)(H2O)3]2+. Both the pKa values and H2O/Cl- exchange constants of the Ru-complexes are lower by 0.5-1.0 orders of magnitude than those of the Rh analogue. Arene loss (p-cymene and toluene) and oxidation were found in the case of Ru-complexes when an excess of HQCl-Pro and aromatic (N,N) bidentate ligands was added. The cytotoxicity and antiproliferative effect of HQCl-Pro and its complexes were assayed in vitro. In contrast to the structurally familiar 8-hydroxyquinoline, HQCl-Pro and its Rh(η5-C5Me5) complex were somewhat more effective against drug resistant Colo 320 adenocarcinoma human cells compared to the drug sensitive Colo 205 cells. The Ru- and Rh-complexes showed a similar metal uptake level after 4 h, while a longer incubation time resulted in higher cellular Rh concentration.
Collapse
Affiliation(s)
- János P Mészáros
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Structural and functional characterization of an organometallic ruthenium complex as a potential myorelaxant drug. Biomed Pharmacother 2020; 127:110161. [PMID: 32380389 DOI: 10.1016/j.biopha.2020.110161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/14/2022] Open
Abstract
In addition to antibacterial and antitumor effects, synthetic ruthenium complexes have been reported to inhibit several medicinally important enzymes, including acetylcholinesterase (AChE). They may also interact with muscle-type nicotinic acetylcholine receptors (nAChRs) and thus affect the neuromuscular transmission and muscle function. In the present study, the effects of the organometallic ruthenium complex of 5-nitro-1,10-phenanthroline (nitrophen) were evaluated on these systems. The organoruthenium-nitrophen complex [(η6-p-cymene)Ru(nitrophen)Cl]Cl; C22H21Cl2N3O2Ru (C1-Cl) was synthesized, structurally characterized and evaluated in vitro for its inhibitory activity against electric eel acetylcholinesterase (eeAChE), human recombinant acetylcholinesterase (hrAChE), horse serum butyrylcholinesterase (hsBChE) and horse liver glutathione-S-transferase. The physiological effects of C1-Cl were then studied on isolated mouse phrenic nerve-hemidiaphragm muscle preparations, by means of single twitch measurements and electrophysiological recordings. The compound C1-Cl acted as a competitive inhibitor of eeAChE, hrAChE and hsBChE with concentrations producing 50 % inhibition (IC50) of enzyme activity ranging from 16 to 26 μM. Moreover, C1-Cl inhibited the nerve-evoked isometric muscle contraction (IC50 = 19.44 μM), without affecting the directly-evoked muscle single twitch up to 40 μM. The blocking effect of C1-Cl was rapid and almost completely reversed by neostigmine, a reversible cholinesterase inhibitor. The endplate potentials were also inhibited by C1-Cl in a concentration-dependent manner (IC50 = 7.6 μM) without any significant change in the resting membrane potential of muscle fibers up to 40 μM. Finally, C1-Cl (5-40 μM) decreased (i) the amplitude of miniature endplate potentials until a complete block by concentrations higher than 25 μM and (ii) their frequency at 10 μM or higher concentrations. The compound C1-Cl reversibly blocked the neuromuscular transmission in vitro by a non-depolarizing mechanism and mainly through an action on postsynaptic nAChRs. The compound C1-Cl may be therefore interesting for further preclinical testing as a new competitive neuromuscular blocking, and thus myorelaxant, drug.
Collapse
|
26
|
Mukherjee A, Acharya S, Purkait K, Chakraborty K, Bhattacharjee A, Mukherjee A. Effect of N, N Coordination and Ru II Halide Bond in Enhancing Selective Toxicity of a Tyramine-Based Ru II ( p-Cymene) Complex. Inorg Chem 2020; 59:6581-6594. [PMID: 32295347 DOI: 10.1021/acs.inorgchem.0c00694] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ruthenium compounds are promising anticancer candidates owing to their lower side-effects and encouraging activities against resistant tumors. Half-sandwich piano-stool type RuII compounds of general formula [(L)RuII(η6-arene)(X)]+ (L = chelating bidentate ligand, X = halide) have exhibited significant therapeutic potential against cisplatin-resistant tumor cell lines. In RuII (p-cymene) based complexes, the change of the halide leaving group has led to several interesting features, viz., hydrolytic stability, resistance toward thiols, and alteration in pathways of action. Tyramine is a naturally occurring monoamine which acts as a catecholamine precursor in humans. We synthesized a family of N,N and N,O coordinated RuII (p-cymene) complexes, [(L)RuII(η6-arene)(X)]+ (1-4), with tyramine and varied the halide (X = Cl, I) to investigate the difference in reactivity. Our studies showed that complex 2 bearing N,N coordination with an iodido leaving group shows selective in vitro cytotoxicity against the pancreatic cancer cell line MIA PaCa-2 (IC50 ca. 5 μM) but is less toxic to triple-negative breast cancer (MDA-MB-231), hepatocellular carcinoma (Hep G2), and the normal human foreskin fibroblasts (HFF-1). Complex 2 displays stability toward hydrolysis and does not bind with glutathione, as confirmed by 1H NMR and ESI-HRMS experiments. The inert nature of 2 leads to enhancement of cytotoxicity (IC50 = 5.3 ± 1 μM) upon increasing the cellular treatment time from 48 to 72 h.
Collapse
Affiliation(s)
- Arpan Mukherjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur-741246, India
| | - Sourav Acharya
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur-741246, India
| | - Kallol Purkait
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur-741246, India
| | - Kaustav Chakraborty
- Amity Institute of Biotechnology, Amity University Kolkata, Major Arterial Road, AA II, Newtown, Kolkata-700135, India
| | - Ashima Bhattacharjee
- Amity Institute of Biotechnology, Amity University Kolkata, Major Arterial Road, AA II, Newtown, Kolkata-700135, India
| | - Arindam Mukherjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur-741246, India
| |
Collapse
|