1
|
Sedó Molina GE, Shetty R, Jacobsen C, Duedahl-Olesen L, Hansen EB, Bang-Berthelsen CH. Synergistic effect of the coculture of Leuconostoc pseudomesenteroides and Lactococcus lactis, isolated from honeybees, on the generation of plant-based dairy alternatives based on soy, pea, oat, and potato drinks. Food Microbiol 2024; 118:104427. [PMID: 38049267 DOI: 10.1016/j.fm.2023.104427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023]
Abstract
The production of plant-based dairy alternatives has been majorly focused on the improvement of sensorial, technological and nutritional properties, to be able to mimic and replace milk-based fermented products. The presence of off-flavours and antinutrients, the lack of production of dairy-like flavours or the metabolic inaccessibility of plant proteins are some of the challenges to overcome to generate plant-based dairy alternatives. However, in the present study, it is demonstrated how the synergistic effect of two LAB strains, when cocultured, can simultaneously solve those challenges when fermenting in four different plant-based raw materials: soy, pea, oat, and potato drinks (SPOP). The fermentation was performed through the mono- and co-culture of the two LAB strains isolated from Apis mellifera (honeybee): Leuconostoc pseudomesenteroides NFICC 2004 and Lactococcus lactis NFICC 2005. Firstly, the coculture of both strains demonstrated to increase the acidification rate of the four plant matrices. Moreover, L. pseudomesenteroides (LP) demonstrated to in situ produce high concentrations of mannitol when fructose was present as C-source. Furthermore, L. pseudomesenteroides, which encoded for PII-proteinase, demonstrated to break down SPOP proteins, releasing free amino acids that were used by L.lactis (LL) for growth and metabolism. Lastly, the analysis of their co-metabolic volatile performance showed the principal ability of removal of the main off-flavours found in SPOP, such as hexanal, 1-octen-3-ol, 2-pentylfuran, pentanal, octanal, heptanal, and nonanal, mainly led by L. pseudomesenteroides, as well as the production of dairy-like flavours, such as diacetyl and 3-methyl-1-butanol, triggered by L. lactis metabolism. Overall, these findings endorsed the use of honeybee isolated strains as starter cultures, demonstrated the potential of coupling genotypes and phenotypes of multiple strains to improve the organoleptic properties suggesting a potential of combining plant-based matrices for the generation of future high-quality plant-based dairy alternatives.
Collapse
Affiliation(s)
- Guillermo Eduardo Sedó Molina
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Denmark
| | - Radhakrishna Shetty
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Denmark
| | - Charlotte Jacobsen
- Research Group for Bioactives - Analysis and Application, National Food Institute, Technical University of Denmark, Denmark
| | - Lene Duedahl-Olesen
- Research Group for Analytical Food Chemistry, National Food Institute, Technical University of Denmark, Denmark
| | - Egon Bech Hansen
- Research Group for Gut, Microbes and Health, National Food Institute, Technical University of Denmark, Denmark
| | - Claus Heiner Bang-Berthelsen
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Denmark.
| |
Collapse
|
2
|
Tenea GN. Metabiotics Signature through Genome Sequencing and In Vitro Inhibitory Assessment of a Novel Lactococcus lactis Strain UTNCys6-1 Isolated from Amazonian Camu-Camu Fruits. Int J Mol Sci 2023; 24:ijms24076127. [PMID: 37047101 PMCID: PMC10094308 DOI: 10.3390/ijms24076127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023] Open
Abstract
Metabiotics are the structural components of probiotic bacteria, functional metabolites, and/or signaling molecules with numerous beneficial properties. A novel Lactococcus lactis strain, UTNCys6-1, was isolated from wild Amazonian camu-camu fruits (Myrciaria dubia), and various functional metabolites with antibacterial capacity were found. The genome size is 2,226,248 base pairs, and it contains 2248 genes, 2191 protein-coding genes (CDSs), 50 tRNAs, 6 rRNAs, 1 16S rRNA, 1 23S rRNA, and 1 tmRNA. The average GC content is 34.88%. In total, 2148 proteins have been mapped to the EggNOG database. The specific annotation consisted of four incomplete prophage regions, one CRISPR-Cas array, six genomic islands (GIs), four insertion sequences (ISs), and four regions of interest (AOI regions) spanning three classes of bacteriocins (enterolysin_A, nisin_Z, and sactipeptides). Based on pangenome analysis, there were 6932 gene clusters, of which 751 (core genes) were commonly observed within the 11 lactococcal strains. Among them, 3883 were sample-specific genes (cloud genes) and 2298 were shell genes, indicating high genetic diversity. A sucrose transporter of the SemiSWEET family (PTS system: phosphoenolpyruvate-dependent transport system) was detected in the genome of UTNCys6-1 but not the other 11 lactococcal strains. In addition, the metabolic profile, antimicrobial susceptibility, and inhibitory activity of both protein–peptide extract (PPE) and exopolysaccharides (EPSs) against several foodborne pathogens were assessed in vitro. Furthermore, UTNCys6-1 was predicted to be a non-human pathogen that was unable to tolerate all tested antibiotics except gentamicin; metabolized several substrates; and lacks virulence factors (VFs), genes related to the production of biogenic amines, and acquired antibiotic resistance genes (ARGs). Overall, this study highlighted the potential of this strain for producing bioactive metabolites (PPE and EPSs) for agri-food and pharmaceutical industry use.
Collapse
|
3
|
Türkeş C, Demir Y, Beydemir Ş. In Vitro
Inhibitory Activity and Molecular Docking Study of Selected Natural Phenolic Compounds as AR and SDH Inhibitors**. ChemistrySelect 2022. [DOI: 10.1002/slct.202204050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24002 Turkey
| | - Yeliz Demir
- Department of Pharmacy Services Nihat Delibalta Göle Vocational High School Ardahan University Ardahan 75700 Turkey
| | - Şükrü Beydemir
- Department of Biochemistry Faculty of Pharmacy Anadolu University Eskişehir 26470 Turkey
- The Rectorate of Bilecik Şeyh Edebali University Bilecik 11230 Turkey
| |
Collapse
|
4
|
Mutlu C, Candal-Uslu C, Özhanlı H, Arslan-Tontul S, Erbas M. Modulating of food glycemic response by lactic acid bacteria. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Martínez-Miranda JG, Chairez I, Durán-Páramo E. Mannitol Production by Heterofermentative Lactic Acid Bacteria: a Review. Appl Biochem Biotechnol 2022; 194:2762-2795. [PMID: 35195836 DOI: 10.1007/s12010-022-03836-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 12/20/2022]
Abstract
Obesity, diabetes, and other cardiovascular diseases are directly related to the high consumption of processed sugars with high caloric content. The current food industry has novel trends related to replacing highly caloric sugars with non-caloric or low-calorie sweeteners. Mannitol, a polyol, represents a suitable substitute because it has a low caloric content and does not induce a glycemic response, which is crucial for diabetic people. Consequently, this polyol has multiple applications in the food, pharmaceutical, and medicine industries. Mannitol can be produced by plant extraction, chemical or enzymatic synthesis, or microbial fermentation. Different in vitro processes have been developed regarding enzymatic synthesis to obtain mannitol from fructose, glucose, or starch-derived substrates. Various microorganisms such as yeast, fungi, and bacteria are applied for microbial fermentation. Among them, heterofermentative lactic acid bacteria (LAB) represent a reliable and feasible alternative due to their metabolic characteristics. In this regard, the yield and productivity of mannitol depend on the culture system, the growing conditions, and the culture medium composition. In situ mannitol production represents a novel approach to decrease the sugar content in food and beverages. Also, genetic engineering offers an interesting option to obtain mannitol-producing strains. This review presents and discusses the most significant advances that have been made in the mannitol production through fermentation by heterofermentative LAB, including the pertinent and critical analysis of culture conditions considering broth composition, reaction systems, and their effects on productivities and yields.
Collapse
Affiliation(s)
- Juan Gilberto Martínez-Miranda
- Laboratorio de Bioconversiones, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna Ticomán, Alcaldía Gustavo A. Madero, 07340, Mexico City, Mexico
| | - Isaac Chairez
- Laboratorio de Bioconversiones, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna Ticomán, Alcaldía Gustavo A. Madero, 07340, Mexico City, Mexico
| | - Enrique Durán-Páramo
- Laboratorio de Bioconversiones, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna Ticomán, Alcaldía Gustavo A. Madero, 07340, Mexico City, Mexico.
| |
Collapse
|
6
|
High-efficiency genome editing based on endogenous CRISPR-Cas system enhances cell growth and lactic acid production in Pediococcus acidilactici. Appl Environ Microbiol 2021; 87:e0094821. [PMID: 34347520 DOI: 10.1128/aem.00948-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pediococcus acidilactici is commonly used for pediocin production and lactic acid fermentation. However, high-efficiency genome editing tool is unavailable for this species. In this study, we constructed the endogenous subtype II-A CRISPR-Cas system-based genome interference plasmids which carried a "Repeat-Spacer-Repeat" cassette in the pMG36e shuttle vector. These plasmids exhibited self-interference activities in P. acidilactici LA412. Then, the genome-editing plasmids were constructed by cloning the upstream/downstream donor DNA into the corresponding interference plasmids to exert high-efficiency markerless gene deletion, gene integration, and point mutation in P. acidilactici LA412. We found that endogenous CRISPR-mediated depletion of the native plasmids enhanced the cell growth, and integration of a L-lactate dehydrogenase gene into the chromosome both enhanced cell growth and lactic acid production. IMPORTANCE A rapid and precise genome editing tool will promote the practical application of Pediococcus acidilactici, one type of lactic acid bacteria with excellent stress tolerance and probiotic characteristics. This study established a high-efficiency endogenous CRISPR-Cas system-based genome editing tool for P. acidilactici and achieved different genetic manipulations, including gene deletion, gene insertion, mononucleotide mutation, and endogenous plasmid depletion. The engineered strain edited by this tool showed significant advantages in cell growth and lactic acid fermentation. Therefore, our tool can satisfy the requirements for genetic manipulations of P. acidilactici, thus making it a sophisticated chassis species for synthetic biology and bioindustry.
Collapse
|
7
|
Deciphering the Regulation of the Mannitol Operon Paves the Way for Efficient Production of Mannitol in Lactococcus lactis. Appl Environ Microbiol 2021; 87:e0077921. [PMID: 34105983 DOI: 10.1128/aem.00779-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis has great potential for high-yield production of mannitol, which has not yet been fully realized. In this study, we characterize how the mannitol genes in L. lactis are organized and regulated and use this information to establish efficient mannitol production. Although the organization of the mannitol genes in L. lactis was similar to that in other Gram-positive bacteria, mtlF and mtlD, encoding the enzyme IIA component (EIIAmtl) of the mannitol phosphotransferase system (PTS) and the mannitol-1-phosphate dehydrogenase, respectively, were separated by a transcriptional terminator, and the mannitol genes were found to be organized in two transcriptional units: an operon comprising mtlA, encoding the enzyme IIBC component (EIIBCmtl) of the mannitol PTS, mtlR, encoding a transcriptional activator, and mtlF, as well as a separately expressed mtlD gene. The promoters driving expression of the two transcriptional units were somewhat similar, and both contained predicted catabolite responsive element (cre) genes. The presence of carbon catabolite repression was demonstrated and was shown to be relieved in stationary-phase cells. The transcriptional activator MtlR (mtlR), in some Gram-positive bacteria, is repressed by phosphorylation by EIIAmtl, and when we knocked out mtlF, we indeed observed enhanced expression from the two promoters, which indicated that this mechanism was in place. Finally, by overexpressing the mtlD gene and using stationary-phase cells as biocatalysts, we attained 10.1 g/liter mannitol with a 55% yield, which, to the best of our knowledge, is the highest titer ever reported for L. lactis. Summing up, the results of our study should be useful for improving the mannitol-producing capacity of this important industrial organism. IMPORTANCE Lactococcus lactis is the most studied species of the lactic acid bacteria, and it is widely used in various food fermentations. To date, there have been several attempts to persuade L. lactis to produce mannitol, a sugar alcohol with important therapeutic and food applications. Until now, to achieve mannitol production in L. lactis with significant titer and yield, it has been necessary to introduce and express foreign genes, which precludes the use of such strains in foods, due to their recombinant status. In this study, we systematically characterize how the mannitol genes in L. lactis are regulated and demonstrate how this impacts mannitol production capability. We harnessed this information and managed to establish efficient mannitol production without introducing foreign genes.
Collapse
|
8
|
Mannitol: physiological functionalities, determination methods, biotechnological production, and applications. Appl Microbiol Biotechnol 2020; 104:6941-6951. [DOI: 10.1007/s00253-020-10757-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/13/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022]
|