1
|
Pirrone A, Naselli V, Gugino IM, Porrello A, Viola E, Craparo V, Vella A, Alongi D, Seminerio V, Carusi M, Radici C, Amato F, Guzzon R, Todaro A, Gaglio R, Settanni L, Maggio A, Moschetti G, Francesca N, Alfonzo A. Use of non-conventional yeasts for enhancing the sensory quality of craft beer. Food Res Int 2025; 208:116164. [PMID: 40263785 DOI: 10.1016/j.foodres.2025.116164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/18/2025] [Accepted: 03/09/2025] [Indexed: 04/24/2025]
Abstract
In recent years, craft beer production has grown significantly, sparking interest in using non-conventional yeasts to produce beers with distinctive flavors. This work investigated the impact of unconventional yeast strains, including Hanseniaspora uvarum YGA34 (EP1), Lachanchea thermotolerans MNF105 (EP2), Candida oleophila YS209 (EP3) and Starmerella lactis-condensi MN412 (EP4), as innovative co-starter cultures alongside the widely used Saccharomyces cerevisiae US-05 . The control trial was inoculated with S. cerevisiae US-05 (TC) alone. For the first time, C. oleophila and St. lactis-condensi have been applied for beer production and also result have been compared with H. uvarum and L. thermotolerans. These strains, selected from high-sugar matrices such as manna and fermented honey by-products, exhibited logarithmic growth cycles of 5-8 during fermentation. Starmerellalactis-condensi MN412 and L.thermotolerans MNF105 efficiently consumed fructose, glucose, and sucrose in beer must before the addition of S. cerevisiae US-05, with L.thermotolerans also effectively consuming maltose. The highest glycerol content (3.36 g/L) was observed in the EP4 trial with St. lactis-condensi MN412. Esters were the dominant volatile compounds in all samples (91.2-237.3 mg/L), with the EP2 trial showing the highest ester content (237.3 mg/L), primarily due to ethyl octanoate (125.5 mg/L). EP2 also had the most favourable sensory profile, excelling in 10 attributes, while other beers showed notable performances. These unconventional yeast strains exhibited significant differences compared to beers brewed with S. cerevisiae alone. Additionally, their application led to an increase in volatile organic compounds. In conclusion, novel yeast strains isolated from high-sugar matrices showed excellent technological properties, making them promising co-starters and starter in innovative craft beer production.
Collapse
Affiliation(s)
- Antonino Pirrone
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Vincenzo Naselli
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Ignazio Maria Gugino
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Antonella Porrello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d'Orleans II, 90128 Palermo, Bldg. 17, Italy
| | - Enrico Viola
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Valentina Craparo
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Azzurra Vella
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Davide Alongi
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Venera Seminerio
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Micaela Carusi
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Carmelo Radici
- Birra Epica, Area Artigianale - C/da Filippello 98069 - SINAGRA (ME), Sicily, Italy
| | - Filippo Amato
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Raffaele Guzzon
- Fondazione Edmund Mach, Via Mach 1, TN, San Michele all'Adige, 38010, Italy
| | - Aldo Todaro
- Department of Agriculture, Food and Enviroment, University of Catania, Via Santa Sofia 98, 95123 Catania, Italy
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Antonella Maggio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d'Orleans II, 90128 Palermo, Bldg. 17, Italy
| | - Giancarlo Moschetti
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Nicola Francesca
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy.
| | - Antonio Alfonzo
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| |
Collapse
|
2
|
Ma Y, Xu Y, Tang K. Olfactory perception complexity induced by key odorants perceptual interactions of alcoholic beverages: Wine as a focus case example. Food Chem 2025; 463:141433. [PMID: 39362100 DOI: 10.1016/j.foodchem.2024.141433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/30/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
The odorants in alcoholic beverages are frequently experienced as complex mixtures, and there is a complex array of influence factors and interactions involved during consumption that deeply increase its olfactory perception complexity, especially the complexity induced by perceptual interactions between different odorants. In this review, the effect of olfactory perceptual interactions and other factors related to the complexity of olfactory perception of alcoholic beverages are discussed. The classification, influencing factors, and mechanisms of olfactory perceptual interactions are outlined. Recent research progress as well as the methodologies applied in these studies on perceptual interactions between odorants observed in representative alcoholic beverages, especially wine, are briefly summarized. In the future, unified theory or systematic research methodology need to be established, since up to now, the rules of perceptual interaction between multiple odorants, which is critical to the alcoholic beverage industry to improve the flavor of their products, are still not revealed.
Collapse
Affiliation(s)
- Yue Ma
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, PR China; China Key Laboratory of microbiomics and Eco-brewing Technology for Light Industry, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, PR China; China Key Laboratory of microbiomics and Eco-brewing Technology for Light Industry, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| | - Ke Tang
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, PR China; China Key Laboratory of microbiomics and Eco-brewing Technology for Light Industry, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
3
|
Pirrone A, Naselli V, Prestianni R, Gugino IM, Viola E, Amato F, Porrello A, Todaro A, Maggio A, Bruno M, Settanni L, Radici C, Guzzon R, Schicchi R, Moschetti G, Francesca N, Alfonzo A. Exploring the diversity of native Lachancea thermotolerans strains isolated by sugary extracts from manna ash to modulate the flavour of sour beers. Food Res Int 2025; 199:115328. [PMID: 39658188 DOI: 10.1016/j.foodres.2024.115328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/30/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024]
Abstract
The craft beer industry is becoming increasingly interested in the production of innovative beers. A novel approach, designated as "primary souring," employs diverse yeast species, including Lachancea thermotolerans, to produce sour beers. Furthermore, there is a growing interest in utilising unconventional yeasts to produce beers with distinctive flavours. For the first time, yeast strains of L. thermotolerans, isolated from sugar extracts of manna ash, were evaluated for their ability to produce and improve the sensory properties of sour beers. In particular, five strains exhibited notable resistance to ethanol, sugar and hops, as well as comparable lactic acid production (ranging from 0.33 to 0.45 g/L). Experimental beers produced using MNF105 (T1) were perceived as the most "fruity". This is the first study to examine the impact of this novel indigenous strain, derived from unconventional matrixes such as manna, on the organoleptic quality of craft sour beers. Consequently, elevated levels of ethyl decanoate, ethyl hexanoate, ethyl octanoate and ethyl nonanoate were found in T1 beer, exceeding the perception threshold. The ability of this strain to perform light bio-acidification is a valuable feature for the development of new brewing techniques, particularly for the creation of sour beers with balanced acidity and innovative flavours. The yeast L. thermotolerans MNF105, which is related to manna, has excellent technological properties and is a promising starter for beer production with the ability to light bio-acidify and modulate flavour.
Collapse
Affiliation(s)
- Antonino Pirrone
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Vincenzo Naselli
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Rosario Prestianni
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Ignazio Maria Gugino
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Enrico Viola
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Filippo Amato
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Antonella Porrello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d'Orleans II, Palermo, Bldg. 17, Italy
| | - Aldo Todaro
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Antonella Maggio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d'Orleans II, Palermo, Bldg. 17, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d'Orleans II, Palermo, Bldg. 17, Italy
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Carmelo Radici
- Birra Epica, Area Artigianale, C/da Filippello 98069, SINAGRA (ME), Sicily, Italy
| | - Raffaele Guzzon
- Fondazione Edmund Mach, Via Mach 1, TN, San Michele all'Adige 38010, Italy
| | - Rosario Schicchi
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Giancarlo Moschetti
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Nicola Francesca
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy.
| | - Antonio Alfonzo
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| |
Collapse
|
4
|
Agarbati A, Canonico L, Ciani M, Morresi C, Damiani E, Bacchetti T, Comitini F. Functional potential of a new plant-based fermented beverage: Benefits through non-conventional probiotic yeasts and antioxidant properties. Int J Food Microbiol 2024; 424:110857. [PMID: 39141973 DOI: 10.1016/j.ijfoodmicro.2024.110857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Functional foods represent one of the fastest-growing, newer food category, and plant sources with functional properties are increasingly used as analogues of fermented milk-based derivatives. In this study, blended wort-rooibos beverages fermented with probiotic yeasts are proposed for the first time. Benefits of functional, non-conventional Lachancea thermotolerans (Lt101), Kazachstania unispora (Kum3-B3), Meyerozyma guilliermondii (Mg112), Meyerozyma caribbica (Mc58) and Debaryomyces hansenii (Dh36) yeast strains and the content of bioactive metabolites were evaluated. Viability tests on the probiotic yeasts confirmed previous results obtained in other matrices. The functional footprint of probiotic yeasts Lt101, Mg112 and Dh36 was confirmed by a balanced nutritional profile of the final drinks, also supported by aromatic and sensory analyses. In vitro estimated glycaemic index ranged between 77 % and 87 % without any influence on glycaemic response. Strains Dh36, Mc58, Kum3-B3 and Mg112 showed high antioxidant capacity and high total phenolic content, supporting the health promoting effect of the beverages.
Collapse
Affiliation(s)
- Alice Agarbati
- Dipartimento Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Laura Canonico
- Dipartimento Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Maurizio Ciani
- Dipartimento Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Camilla Morresi
- Dipartimento Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Elisabetta Damiani
- Dipartimento Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Tiziana Bacchetti
- Dipartimento Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Francesca Comitini
- Dipartimento Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
5
|
Zhu L, Wu X, Yang S. Application Progress of Stable Isotope Dilution Analysis in Volatile Flavor Analysis of Food. Crit Rev Anal Chem 2024:1-24. [PMID: 39482867 DOI: 10.1080/10408347.2024.2416673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Aroma is one of the important indexes to evaluate food quality. The formation of food aroma is based on the interaction of complex substances. The accurate quantification of aroma substances in food has significance in the analysis of aroma substances in food. In this review, the basic principle and significance of stable isotope dilution analysis is introduced, general steps for flavor analysis and its historical progress in food flavor analysis is discussed. Additionally, the application progress of stable isotope dilution analysis in food flavor analysis from 2019 to 2023 has been described in detail, which is also categorized by food. Finally, the accuracy and superiority of stable isotope dilution analysis as an accurate quantitative analysis method were discussed.
Collapse
Affiliation(s)
- Lingling Zhu
- Beijing Key laboratory of flavour Chemistry, Beijing Technology and Business University, Beijing, PR China
| | - Xiaoming Wu
- Beijing Key laboratory of flavour Chemistry, Beijing Technology and Business University, Beijing, PR China
| | - Shaoxiang Yang
- Beijing Key laboratory of flavour Chemistry, Beijing Technology and Business University, Beijing, PR China
| |
Collapse
|
6
|
Wang J, Liu X, Liu J, Sui Y, Yu W, Kong B, Chen Q. Improving the bacterial community, flavor, and safety properties of northeastern sauerkraut by inoculating autochthonous Levilactobacillus brevis. Food Chem X 2024; 22:101408. [PMID: 38707785 PMCID: PMC11068551 DOI: 10.1016/j.fochx.2024.101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/07/2024] Open
Abstract
The effect of Levilactobacillus brevis as a starter in northeastern sauerkraut fermentation is still unknown, and further evaluation is worthwhile. Hence, this study aimed to evaluate the effect of autochthonous L. brevis inoculation on the bacterial community succession and formation of flavor and harmful substances in sauerkrauts. Inoculation with L. brevis lowered the pH and increased the total acid content of sauerkrauts (P < 0.05). The nitrite content of the inoculated sauerkraut was significantly lower than that of control (P < 0.05). Moreover, the spoilage bacteria of the inoculated sauerkraut were decreased and nitrogen metabolism was improved. The contents of aldehydes, alcohols, esters, acids, and alkanes increased significantly (P < 0.05), and the sensory attributes such as aroma, sourness, and gloss were also improved. L. brevis was positively and negatively correlated with flavor metabolites and nitrite, respectively, which proved to be a potential starter culture to manufacture sauerkraut.
Collapse
Affiliation(s)
- Jiawang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xin Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaqi Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yumeng Sui
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Weihua Yu
- Tianshunyuan Muslim Food Co., LTD, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
7
|
Wang J, Lu J, Zhang X, Kong B, Li Y, Chen Q, Wen R. Effect of Inoculation with Autochthonous Lactic Acid Bacteria on Flavor, Texture, and Color Formation of Dry Sausages with NaCl Partly Substituted by KCl. Foods 2024; 13:1747. [PMID: 38890975 PMCID: PMC11171772 DOI: 10.3390/foods13111747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
The effects of inoculating lactic acid bacteria (LAB), specifically Lactiplantibacillus plantarum, Latilactobacillus sakei, Latilactobacillus curvatus, and Weissella hellenica on the flavor, texture, and color formation of dry sausages in which NaCl was partially substituted by 40% KCl, were explored in this study. It was found that LAB inoculation increased the presence of ketones, alcohols, acids, esters, and terpenes. It also reduced the pH, moisture, protein, and fat content, improving the b*-value, flavor, and texture of the sausages. Notably, L. sakei inoculation showed the most significant improvement in dry sausages with NaCl substitutes, especially on the reduction of bitterness. Meanwhile, there was a close positive correlation between the LAB count with the alcohols and esters formation of dry sausage with NaCl substitution (p < 0.05). These findings offer insight into improving the product characteristics of dry sausages using NaCl substitutes.
Collapse
Affiliation(s)
- Jiawang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.W.); (J.L.); (X.Z.); (B.K.); (Y.L.)
| | - Jiasheng Lu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.W.); (J.L.); (X.Z.); (B.K.); (Y.L.)
| | - Xin Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.W.); (J.L.); (X.Z.); (B.K.); (Y.L.)
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.W.); (J.L.); (X.Z.); (B.K.); (Y.L.)
| | - Yongjie Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.W.); (J.L.); (X.Z.); (B.K.); (Y.L.)
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.W.); (J.L.); (X.Z.); (B.K.); (Y.L.)
| | - Rongxin Wen
- College of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
8
|
Claudia Salanță L, Corina Fărcaş A, Borșa A, Rodica Pop C. Current strategies for the management of valuable compounds from hops waste for a circular economy. Food Chem X 2023; 19:100876. [PMID: 37780312 PMCID: PMC10534220 DOI: 10.1016/j.fochx.2023.100876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023] Open
Abstract
World beer production generates large volumes of waste discharged with every brew. Recently, new methods of reducing and reusing hops waste: hot trub (HT), and brewer-spent hops (BSH) are being exploited to improve the circular economy processes. This review outlines the current achievements in the management of hops waste. Following an in-depth review of various scientific publications, current strategies are discussed as a sustainable alternative to food waste exploitation and an inexpensive source of valuable compounds. Moreover, key aspects concerning the nutritional value of hops waste and the potential to enhance the functional properties of food and beverages are highlighted. Due to their nutritional composition, hops residues may be used as prospective sources of added-value co-products or additives for food enrichment, especially for products rich in fat, or as a new source of vegetable protein.
Collapse
Affiliation(s)
- Liana Claudia Salanță
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Anca Corina Fărcaş
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Andrei Borșa
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Wang J, Sui Y, Lu J, Dong Z, Liu H, Kong B, Chen Q. Exploring potential correlations between bacterial communities, organic acids, and volatile metabolites of traditional fermented sauerkraut collected from different regions of Heilongjiang Province in Northeast China. Food Chem X 2023; 19:100840. [PMID: 37680758 PMCID: PMC10480550 DOI: 10.1016/j.fochx.2023.100840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
In this study, the bacterial communities and flavor metabolites of 27 traditional naturally fermented sauerkraut samples collected from nine regions of Heilongjiang Province in Northeast China were investigated. The dominant genera were Lactobacillus, Pseudomonas, Alcaligenes, Arcobacter, Pseudarcobacter, Lactococcus, Comamonas, Pediococcus, Prevotella, and Insolitispirillum. A total of 148 volatile compounds were detected in seven categories; esters and acids were the most abundant volatiles. Additionally, the highest content (15.96 mg/g) of lactic acid was detected in YC1. Acetic acid, oleic acid, palmitic acid, elaidic acid, and dehydroacetic acid were the key differential volatile compounds, which may be related to the bacterial communities. Spearman's correlation analysis revealed that Lactococcus and Lactobacillus were significantly positively correlated with flavor metabolites, suggesting that they may play a more significant role in flavor formation. The results of this study can help in the development of better quality of fermented vegetables.
Collapse
Affiliation(s)
- Jiawang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yumeng Sui
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiasheng Lu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhiming Dong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
10
|
Klimczak K, Cioch-Skoneczny M, Duda-Chodak A. Effects of Dry-Hopping on Beer Chemistry and Sensory Properties-A Review. Molecules 2023; 28:6648. [PMID: 37764422 PMCID: PMC10534726 DOI: 10.3390/molecules28186648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Dry-hopping is the addition of hops to the wort on the cold side of the brewing process. Unlike standard hop additions, its main purpose is not to produce a characteristic bitterness but to extract as much of the hop essential oils as possible, which are largely lost in the standard hopping process. When dry-hopped, it is possible to obtain a beer with an aroma that is difficult to achieve when hops are used on the hot side of the brewing process. As a result, this process has become very popular in recent years, particularly in beers that belong to the 'craft beer revolution' trend. In addition, the usefulness of this process is increasing with the development of new hop varieties with unique aromas. This article presents the main components of hops, focusing on those extracted during the process. Changes in the composition of beer bittering compounds and essential oils resulting from this process are discussed. This paper presents the current state of the knowledge on the factors affecting the degree of extraction, such as hop dosage, the time, and temperature of the process. Issues such as process-related physicochemical changes, hop creep, low flavor stability, haze formation, and green flavor are also discussed.
Collapse
Affiliation(s)
- Krystian Klimczak
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland
| | - Monika Cioch-Skoneczny
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland
| | - Aleksandra Duda-Chodak
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland
| |
Collapse
|
11
|
McCabe AK, Keyes JK, Hemetsberger H, Kurr CV, Albright B, Ward MG, McKinley ML, Breezley SJ, Cole CA. Aroma Profile Development in Beer Fermented with Azacca, Idaho-7, and Sultana Hops. Molecules 2023; 28:5802. [PMID: 37570773 PMCID: PMC10421000 DOI: 10.3390/molecules28155802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Hops are among the most costly and environmentally impactful raw materials used in brewing, yet they play a crucial role in the aroma of beer. However, predicting beer aroma based on hop variety or hopping method remains arduous. This is partly because hop oils are unique for each hop variety, and they may be biotransformed by yeast enzymes during fermentation. Even slight molecular structure modifications can dramatically affect the organoleptic properties of beer. Through combined chemical and sensory analysis of dry-hopped beers prepared with different hop varieties (Azacca, Idaho-7, and Sultana), this work aimed to profile the aromas and the overall biotransformation processes taking place during fermentation. A total of 51 volatile organic compounds (VOCs) were semi-quantified and monitored: 19 esters, 13 sesquiterpenes, 7 ketones, 7 alcohols, 4 monoterpenes, and 1 volatile acid. There were significant similarities in the measured analytes and perceived aromas of these beers, but one hop variety (Sultana) delivered an increased quantity of unique aromas and an increased concentration of volatiles in the headspace for the same quantity of hop pellets added. This work provides practical information to brewers who utilize hops in beer production.
Collapse
Affiliation(s)
- Anna K. McCabe
- Department of Chemistry & Biochemistry, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, USA; (A.K.M.); (J.K.K.); (M.G.W.); (M.L.M.)
| | - Jasmine K. Keyes
- Department of Chemistry & Biochemistry, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, USA; (A.K.M.); (J.K.K.); (M.G.W.); (M.L.M.)
| | - Heidi Hemetsberger
- Ska Brewing Company, 225 Girard St., Durango, CO 81303, USA; (H.H.); (C.V.K.); (B.A.); (S.J.B.)
| | - Chris V. Kurr
- Ska Brewing Company, 225 Girard St., Durango, CO 81303, USA; (H.H.); (C.V.K.); (B.A.); (S.J.B.)
| | - Bryan Albright
- Ska Brewing Company, 225 Girard St., Durango, CO 81303, USA; (H.H.); (C.V.K.); (B.A.); (S.J.B.)
| | - Michael G. Ward
- Department of Chemistry & Biochemistry, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, USA; (A.K.M.); (J.K.K.); (M.G.W.); (M.L.M.)
| | - Megan L. McKinley
- Department of Chemistry & Biochemistry, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, USA; (A.K.M.); (J.K.K.); (M.G.W.); (M.L.M.)
| | - Steven J. Breezley
- Ska Brewing Company, 225 Girard St., Durango, CO 81303, USA; (H.H.); (C.V.K.); (B.A.); (S.J.B.)
| | - Callie A. Cole
- Department of Chemistry & Biochemistry, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, USA; (A.K.M.); (J.K.K.); (M.G.W.); (M.L.M.)
| |
Collapse
|
12
|
Sileoni V, Maranghi S, De Francesco G, Perretti G, Marconi O. Flavour Stability of a Cold-Stored Unpasteurized Low-Alcohol Beer Produced by Saccharomycodes ludwigii. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
AbstractLow-alcohol beer (LAB) is a growing part of the brewing industry in terms of market volumes and consumer interest. Universities and research centres are making efforts to improve organoleptic profile and flavour stability of the product. One of the main limitations of such products is the stability. These beers must be severely filtered and pasteurized, causing a significant loss of quality in terms of flavour. Herein, flavour stability of an unpasteurized and unfiltered LAB was checked during 120 days of cold storage (4 ± 1 °C). The results showed that the beer remained stable for 120 days for many observed parameters. The alcohol content increased from 0.5 to 0.7% v/v. The beer without oxygen was more stable than that filled with oxygen in the headspace. The results confirmed the possibility to produce an unpasteurized craft LAB by Saccharomycodes ludwigii by the cold chain.
Graphical Abstract
Collapse
|
13
|
Piornos JA, Koussissi E, Balagiannis DP, Brouwer E, Parker JK. Alcohol-free and low-alcohol beers: Aroma chemistry and sensory characteristics. Compr Rev Food Sci Food Saf 2023; 22:233-259. [PMID: 36398756 DOI: 10.1111/1541-4337.13068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 09/10/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
Alcohol-free beers have gained popularity in the last few decades because they provide a healthier alternative to alcoholic beers and can be more widely consumed. Consumers are becoming more aware of the benefits of reducing their alcohol consumption, and this has increased the sales of nonalcoholic alternatives. However, there are still many challenges for the brewing industry to produce an alcohol-free beer that resembles the pleasant fruity flavor and overall sensory experience of regular beers. The aim of this review is to give a comprehensive overview of alcohol-free beer focusing on aroma chemistry. The formation of the most important aroma compounds, such as Strecker aldehydes, higher alcohols, and esters, is reviewed, aiming to outline the gaps in current knowledge. The role of ethanol as a direct and indirect flavor-active compound is examined separately. In parallel, the influence of the most common methods to reduce alcohol content, such as physical (dealcoholization) or biological, on the organoleptic characteristics and consumer perception of the final product, is discussed.
Collapse
Affiliation(s)
- José A Piornos
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Elisabeth Koussissi
- Research & Development Department, Heineken Supply Chain BV, Zoeterwoude, The Netherlands
| | | | - Eric Brouwer
- Research & Development Department, Heineken Supply Chain BV, Zoeterwoude, The Netherlands
| | - Jane K Parker
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| |
Collapse
|
14
|
Svedlund N, Evering S, Gibson B, Krogerus K. Fruits of their labour: biotransformation reactions of yeasts during brewery fermentation. Appl Microbiol Biotechnol 2022; 106:4929-4944. [PMID: 35851416 PMCID: PMC9329171 DOI: 10.1007/s00253-022-12068-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/26/2022] [Accepted: 07/02/2022] [Indexed: 11/17/2022]
Abstract
Abstract
There is a growing appreciation for the role that yeast play in biotransformation of flavour compounds during beverage fermentations. This is particularly the case for brewing due to the continued popularity of aromatic beers produced via the dry-hopping process. Here, we review the current literature pertaining to biotransformation reactions mediated by fermentative yeasts. These reactions are diverse and include the liberation of thiols from cysteine or glutathione-bound adducts, as well as the release of glycosidically bound terpene alcohols. These changes serve generally to increase the fruit and floral aromas in beverages. This is particularly the case for the thiol compounds released via yeast β-lyase activity due to their low flavour thresholds. The role of yeast β-glucosidases in increasing terpene alcohols is less clear, at least with respect to fermentation of brewer’s wort. Yeast acetyl transferase and acetate esterase also have an impact on the quality and perceptibility of flavour compounds. Isomerization and reduction reactions, e.g. the conversion of geraniol (rose) to β-citronellol (citrus), also have potential to alter significantly flavour profiles. A greater understanding of biotransformation reactions is expected to not only facilitate greater control of beverage flavour profiles, but also to allow for more efficient exploitation of raw materials and thereby greater process sustainability. Key points • Yeast can alter and boost grape- and hop-derived flavour compounds in wine and beer • β-lyase activity can release fruit-flavoured thiols with low flavour thresholds • Floral and citrus-flavoured terpene alcohols can be released or interconverted
Collapse
|
15
|
Sun S, Wang X, Yuan A, Liu J, Li Z, Xie D, Zhang H, Luo W, Xu H, Liu J, Nie C, Zhang H. Chemical constituents and bioactivities of hops (
Humulus lupulus L
.) and their effects on beer‐related microorganisms. Food Energy Secur 2022. [DOI: 10.1002/fes3.367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Shaokang Sun
- Key Microbiology Laboratory of Shandong Province School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Xiaochen Wang
- Key Microbiology Laboratory of Shandong Province School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Ai Yuan
- State Key Laboratory of Biobased Material and Green Papermaking School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Jianlin Liu
- College of Chemical Engineering China University of Petroleum (East China) Qingdao China
| | - Zebin Li
- State Key Laboratory of Biobased Material and Green Papermaking School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Dongxiao Xie
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Huimin Zhang
- College of Life Sciences Shandong Normal University Jinan China
| | - Wenqing Luo
- Global Leaders College Yonsei University Seoul Korea
| | - Hengyuan Xu
- Key Microbiology Laboratory of Shandong Province School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Jinshang Liu
- Key Microbiology Laboratory of Shandong Province School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Cong Nie
- Key Microbiology Laboratory of Shandong Province School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Haojun Zhang
- Key Microbiology Laboratory of Shandong Province School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| |
Collapse
|
16
|
Su X, Hurley K, Xu Z, Xu Y, Rutto L, O'Keefe S, Scoggins H, Yin Y. Performance of alternative drying techniques on hop (Humulus lupulus L.) aroma quality: An HS-SPME-GC-MS-O and chemometrics combined approach. Food Chem 2022; 381:132289. [PMID: 35123222 DOI: 10.1016/j.foodchem.2022.132289] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/26/2022]
Abstract
Economically feasible and effective hop drying strategies are urgently needed to respond to the increasing number of microbrewers in US. In this study, hops were dried by dehydrator-drying (52 °C), oven-drying (52 °C) and freeze-drying (25 °C) until the final moisture content reached 8-10%. Headspace solid-phase microextraction-gas chromatography-mass spectrometry-olfactometry (HS-SPME-GC-MS-O) was employed to analyze the aroma profiles in all dried hops. Methyl octanoate, β-myrcene, trans-α-bergamotene, linalool and geraniol were perceived as high-intensity aromas in all samples. Generally, dehydrator-dried hops contained the highest contents of aroma compounds among all groups, showing an increase of 5-23% and 6-37% when compared to freeze- and oven-dried hops, respectively. Principal component and hierarchical cluster analyses also revealed aroma content differences from three drying methods. Dehydrator drying at 52 °C was therefore considered as an alternative and promising drying approach for smaller-scale hop processing, which can largely benefit regional producers and local craft breweries.
Collapse
Affiliation(s)
- Xueqian Su
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street SW, Blacksburg, VA 24061, USA.
| | - Ken Hurley
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street SW, Blacksburg, VA 24061, USA.
| | - Zhiyuan Xu
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street SW, Blacksburg, VA 24061, USA.
| | - Yixiang Xu
- Agricultural Research Station, Virginia State University, 1 Hayden Dr, Petersburg, VA 23806, USA.
| | - Laban Rutto
- Department of Agriculture, Virginia State University, 1 Hayden Dr, Petersburg, VA 23806, USA.
| | - Sean O'Keefe
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street SW, Blacksburg, VA 24061, USA.
| | - Holly Scoggins
- School of Plant & Environmental Sciences, Virginia Polytechnic Institute and State University, 490 W Campus Dr, Blacksburg, VA 24061, USA.
| | - Yun Yin
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street SW, Blacksburg, VA 24061, USA.
| |
Collapse
|
17
|
Effect of Production Technique on Pilsner-Style Non-Alcoholic Beer (NAB) Chemistry and Flavor. BEVERAGES 2022. [DOI: 10.3390/beverages8010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The sensory, volatile, and physiochemical profiles of nineteen commercial non-alcoholic pilsner-style beers produced by different production techniques were analyzed and compared with a dry-hopped non-alcoholic IPA. NABs made only with either physical dealcoholization or restricted fermentations differed significantly in chemistry and flavor. Generally, NABs produced by restricted fermentations were the most worty, thick, and sweet, whereas NABs that were physically dealcoholized had the lowest taste/aroma intensities and were the sourest, most thin, and least sweet. Interestingly, the method of dealcoholization had a minor impact on the flavor profile. The use of maltose intolerant yeast as well as the implementation of combined treatments, such as blending dealcoholized beer with beer containing alcohol, were the techniques found to produce NABs with more harmonious and multifaceted chemical and flavor profiles. NABs with increased hop aroma volatiles were the most harmonious, particularly highlighted by the NA IPA reference. Even though dry-hopped character might be atypical for pilsner-style beer, dry-hopping appears as a simple application to produce NABs with more harmonious flavor.
Collapse
|
18
|
Aroma Profiles of Dry-Hopped Ciders Produced with Citra, Galaxy, and Mosaic Hops. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cider quality and consumer acceptance are greatly influenced by its aroma. With the continued expansion of the craft cider industry, cider producers are employing techniques such as dry hopping to develop unique flavor profiles. Few studies, however, have explored the VOCs of dry-hopped cider. Herein, we monitor the development of VOCs from pressed apple juice, through fermentation and dry hopping by HS–SPME–GC–MS, to elucidate when and how aroma compounds arise in cider production. In all, 89 VOCs were detected, spanning eight classes of organic compounds. Racking events decreased ester concentrations by 10 ± 1%, but resting on the lees allowed these pleasant, fruity aromas to be reestablished. Dry hopping was conducted with three types of hops (Citra, Galaxy, and Mosaic). The varied development of terpenes and esters between hop varieties supports the use of this technique to diversify the aroma profiles of ciders. Herein, we report that both the variety of hops and the timing of key processing steps including racking and hop addition significantly alter the identity and concentration of aroma-important VOCs in dry-hopped cider.
Collapse
|
19
|
|
20
|
Müller M, Gastl M, Becker T. Key constituents, flavour profiles and specific sensory evaluation of wheat style non‐alcoholic beers depending on their production method. JOURNAL OF THE INSTITUTE OF BREWING 2021. [DOI: 10.1002/jib.663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Magdalena Müller
- Institute of Brewing and Beverage Technology, Research Group Raw Material Based Brewing and Beverage Technology Technical University of Munich Freising 85354 Germany
| | - Martina Gastl
- Institute of Brewing and Beverage Technology, Research Group Raw Material Based Brewing and Beverage Technology Technical University of Munich Freising 85354 Germany
| | - Thomas Becker
- Institute of Brewing and Beverage Technology, Research Group Raw Material Based Brewing and Beverage Technology Technical University of Munich Freising 85354 Germany
| |
Collapse
|
21
|
Brendel S, Hofmann T, Granvogl M. Studies on the odorant concentrations and their time dependencies during dry‐hopping of alcohol‐free beer. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sabrina Brendel
- Lehrstuhl für Lebensmittelchemie und Molekulare Sensorik Wissenschaftszentrum Weihenstephan für Ernährung Landnutzung und Umwelt Technische Universität München Freising Germany
| | - Thomas Hofmann
- Lehrstuhl für Lebensmittelchemie und Molekulare Sensorik Wissenschaftszentrum Weihenstephan für Ernährung Landnutzung und Umwelt Technische Universität München Freising Germany
| | - Michael Granvogl
- Fachgebiet Lebensmittelchemie und Analytische Chemie (170a) Fakultät für Naturwissenschaften Institut für Lebensmittelchemie Universität Hohenheim Stuttgart Germany
| |
Collapse
|
22
|
Brendel S, Hofmann T, Granvogl M. Hop-induced formation of ethyl esters in dry-hopped beer. FOOD PRODUCTION, PROCESSING AND NUTRITION 2020. [DOI: 10.1186/s43014-020-00030-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Fruity smelling esters play an important role for the aroma of hops and beer and they have been characterized as key aroma compounds in different hop varieties. Studies on the transfer of hop-derived compounds into beer during dry-hopping showed calculated transfer rates of different ethyl esters far above 100%, leading to the assumption that these esters must be newly formed. To investigate this formation, dry-hopping was imitated in water to eliminate the influence of the beer matrix on the formation of these odorants. Thereby, the formation of ethyl esters of 2-methylbutanoic acid, 3-methylbutanoic acid, and methylpropanoic acid, induced by the addition of hops, was shown. Different approaches inhibiting enzyme activities and experiments with different hop extracts might lead to the assumption that enzymes are involved in the formation of these esters, beside possible transesterification.
Graphical abstract
Collapse
|