1
|
Wang R, Chang C, Cheng W, Xu L, Hao J, Huang F. Centurial sedimentary record of Cd sources and deposition in Chaohu Lake: Insights from Cd stable isotopes. ENVIRONMENTAL RESEARCH 2025; 270:120975. [PMID: 39884532 DOI: 10.1016/j.envres.2025.120975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Understanding the sources and deposition processes of cadmium (Cd) in freshwater lakes is essential for effective pollution management. This study investigated the Cd concentrations and isotopes in a sediment core from Chaohu Lake, spanning the past 200 years. The results revealed that the Cd concentrations in the sediments decreased with depth, ranging from 1.04 μg/g to 0.26 μg/g, whereas the δ114/110Cd values fluctuated significantly (-0.18 ± 0.04‰-0.75 ± 0.04‰). The elevated EF and Igeo values of Cd indicate that the degree of Cd pollution in sediments has reached medium to strong level. In the 0-8 cm section, the notably high Cd concentrations and heavy Cd isotope compositions are primarily linked to the inputs of slags (smelting and/or coal burning) and smelting wastewater since the 1960s. A notable decrease in the δ114/110Cd value at the depth of 6 cm suggests that phosphate fertilizers used in the Chaohu Lake watershed in the 1970s may also have contributed to Cd pollution. In the 10-40 cm section, the effects of adsorption/coprecipitation/organic processes on Cd isotope fractionation are no obvious, indicating that the Cd deposition in Chaohu Lake in the early periods (before 1960s) is relatively complex and needs further research. Finally, this study highlights the significance and future prospects of Cd isotope application in freshwater lake systems, including the reconstruction of Cd sources and deposition pathways, as well as indications for the risk management of re-released Cd from sediments.
Collapse
Affiliation(s)
- Ruirui Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Chuanyu Chang
- State Key Laboratory of Lithospheric and Environmental Coevolution, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Wenhan Cheng
- State Key Laboratory of Lithospheric and Environmental Coevolution, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; College of Resources and Environment, Anhui Agriculture University, Hefei, Anhui, 230036, China.
| | - Liqiang Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Heifei, Anhui, 230009, China.
| | - Jihua Hao
- State Key Laboratory of Lithospheric and Environmental Coevolution, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fang Huang
- State Key Laboratory of Lithospheric and Environmental Coevolution, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
2
|
Huang L, Aarons SM, Koffman BG, Cheng W, Hanschka L, Munk LA, Jenckes J, Norris E, Arendt CA. Role of Source, Mineralogy, and Organic Complexation on Lability and Fe Isotopic Composition of Terrestrial Fe sources to the Gulf of Alaska. ACS EARTH & SPACE CHEMISTRY 2024; 8:1505-1518. [PMID: 39166260 PMCID: PMC11331515 DOI: 10.1021/acsearthspacechem.3c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 08/22/2024]
Abstract
Iron (Fe) is a key trace nutrient supporting marine primary production, and its deposition in the surface ocean can impact multiple biogeochemical cycles. Understanding Fe cycling in the subarctic is key for tracking the fate of particulate-bound sources of oceans in a changing climate. Recently, Fe isotope ratios have been proposed as a potential tool to trace sources of Fe to the marine environment. Here, we investigate the Fe isotopic composition of terrestrial sources of Fe including glacial sediment, loess, volcanic ash, and wildfire aerosols, all from Alaska. Results show that the δ56Fe values of glaciofluvial silt, glacial dissolved load, volcanic ash, and wildfire aerosols fall in a restricted range of δ56Fe values from -0.02 to +0.12‰, in contrast to the broader range of Fe isotopic compositions observed in loess, -0.50 to +0.13‰. The Fe isotopic composition of the dissolved load of glacial meltwater was consistently lighter compared to its particulate counterpart. The 'aging' (exposure to environmental conditions) of volcanic ash did not significantly fractionate the Fe isotopic composition. The Fe isotopic composition of wildfire aerosols collected during an active fire season in Alaska in the summer of 2019 was not significantly fractionated from those of the average upper continental crust composition. We find that the δ56Fe values of loess (<5 μm fraction) were more negative (-0.32 to +0.05‰) with respect to all samples measured here, had the highest proportion of easily reducible Fe (5.9-59.6%), and were correlated with the degree of chemical weathering and organic matter content. Transmission electron spectroscopy measurements indicate an accumulation of amorphous Fe phases in the loess. Our results indicate that Fe isotopes can be related to Fe lability when in the presence of organic matter and that higher organic matter content is associated with a distinctly more negative Fe isotope signature likely due to Fe-organic complexation.
Collapse
Affiliation(s)
- Linqing Huang
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Sarah M. Aarons
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Bess G. Koffman
- Department
of Geology, Colby College, Waterville, Maine 04901, United States
| | - Wenhan Cheng
- College
of Resources and Environment, Anhui Agricultural
University, Hefei, Anhui 230036, China
| | - Lena Hanschka
- Department
of Geology, Colby College, Waterville, Maine 04901, United States
| | - Lee Ann Munk
- Department
of Geological Sciences, University of Alaska
Anchorage, Anchorage, Alaska 99508, United States
| | - Jordan Jenckes
- Department
of Chemistry, University of Alaska Anchorage, Anchorage, Alaska 99508, United States
| | - Emmet Norris
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Carli A. Arendt
- Department
of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
3
|
Zhong S, Yu S, Liu Y, Gao R, Pan D, Chen G, Li X, Liu T, Liu C, Li F. Impact of Flooding-Drainage Alternation on Fe Uptake and Transport in Rice: Novel Insights from Iron Isotopes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1500-1508. [PMID: 38165827 DOI: 10.1021/acs.jafc.3c07640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Iron (Fe) isotopes were utilized to provide insights into the temporal changes underlying Fe uptake and translocation during rice growth (tillering, jointing, flowering, and maturity stages) in soil-rice systems under typical flooding-drainage alternation. Fe isotopic composition (δ56Fe values) of the soil solution generally decreased at vegetative stages in flooding regimes but increased during grain-filling. Fe plaques were the prevalent source of Fe uptake, as indicated by the concurrent increase in the δ56Fe values of Fe plaques and rice plants during rice growth. The increasing fractionation magnitude from stem/nodes I to flag leaves can be attributed to the preferred phloem transport of light isotopes toward grains, particularly during grain-filling. This study demonstrates that rice plants take up heavy Fe isotopes from Fe plaque and soil solution via strategy II during flooding and the subsequent drainage period, respectively, thereby providing valuable insights into improving the nutritional quality during rice production.
Collapse
Affiliation(s)
- Songxiong Zhong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Shan Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yuhui Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ruichuan Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Dandan Pan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Guojun Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
4
|
Liu J, Yuan W, Ouyang Q, Bao Z, Xiao J, Xiong X, Cao H, Zhong Q, Wan Y, Wei X, Zhang Y, Xiao T, Wang J. A novel application of thallium isotopes in tracing metal(loid)s migration and related sources in contaminated paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163404. [PMID: 37059145 DOI: 10.1016/j.scitotenv.2023.163404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023]
Abstract
Thallium (Tl) is a highly toxic heavy metal, which is harmful to plants and animals even in trace amounts. Migration behaviors of Tl in paddy soils system remain largely unknown. Herein, Tl isotopic compositions have been employed for the first time to explore Tl transfer and pathway in paddy soil system. The results showed considerably large Tl isotopic variations (ε205Tl = -0.99 ± 0.45 ~ 24.57 ± 0.27), which may result from interconversion between Tl(I) and Tl(III) under alternative redox conditions in the paddy system. Overall higher ε205Tl values of paddy soils in the deeper layers were probably attributed to abundant presence of Fe/Mn (hydr)oxides and occasionally extreme redox conditions during alternative dry-wet process which oxidized Tl(I) to Tl(III). A ternary mixing model using Tl isotopic compositions further disclosed that industrial waste contributed predominantly to Tl contamination in the studied soil, with an average contribution rate of 73.23%. All these findings indicate that Tl isotopes can be used as an efficient tracer for fingerprinting Tl pathway in complicated scenarios even under varied redox conditions, providing significant prospect in diverse environmental applications.
Collapse
Affiliation(s)
- Juan Liu
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Wenhuan Yuan
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Qi'en Ouyang
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhi'an Bao
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China
| | - Jun Xiao
- SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences (IEECAS), Xi'an 710061, China
| | - Xinni Xiong
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Huimin Cao
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Qiaohui Zhong
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yuebing Wan
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xudong Wei
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis Campus, Viale dell'Università, 16, 35020 Legnaro, PD, Italy
| | - Yongqi Zhang
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jin Wang
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Han R, Zhang Q, Xu Z. Tracing Fe cycle isotopically in soils based on different land uses: Insight from a typical karst catchment, Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158929. [PMID: 36152861 DOI: 10.1016/j.scitotenv.2022.158929] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/01/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Iron (Fe) isotopes can effectively unveil the Fe cycle mechanisms under redox and biological conditions during the weathering and pedogenic processes. Fe contents and Fe isotope compositions (defined as δ56Fe) in the soil profiles under secondary forest land, abandoned cropland and shrubland were investigated in a typical karst area in Southwest China. The results showed that the Fe content ranged from 23.92 to 38.56 g/kg, 21.92 to 33.02 g/kg and 12.98 to 27.93 g/kg, and the δ56Fe levels varied from -0.48 ‰ to 0.21 ‰, -0.24 ‰ to 0.11 ‰ and - 0.11 ‰ to 0.16 ‰ from the secondary forest land, abandoned cropland and shrubland, respectively. The correlation analysis results showed that Fe transportation and isotopic fractionation were regulated by the redox processes through soil pH and soil organic matter (SOM) in the abandoned cropland and shrubland. Heavier Fe isotope may be accumulated in the deeper soil of secondary forest land due to Fe-oxide precipitation. The Fe isotope fractionations were greatly altered by soil organic carbon (SOC) in surface soils due to negative surface charges. Soil pH also plays a key role in enriching lighter Fe in a medium-acidic environment (shrubland) by ligand-controlled dissolution and reductive dissolution. Long-term cultivation in abandoned cropland and grazing in shrubland reshaped the Fe cycle in soil profiles by changing soil pH and SOC contents. However, the similar values of δ56Fe in different land use soils indicated that the agricultural activities have no significant impact on the Fe transformation in karst soil ecosystems. The land utilization is reasonable in the Yinjiang County. This study provided effective data and insightful analysis to understand the Fe cycle processes in the karst soils under varied land uses.
Collapse
Affiliation(s)
- Ruiyin Han
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| | - Qian Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhifang Xu
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| |
Collapse
|
6
|
Wang RR, Yu HM, Cheng WH, Liu YC, Zhang GL, Li DC, Huang F. Copper migration and isotope fractionation in a typical paddy soil profile of the Yangtze Delta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153201. [PMID: 35090908 DOI: 10.1016/j.scitotenv.2022.153201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
To decipher Cu migration in paddy soils, which is important for understanding Cu supply in rice cultivation, Cu concentrations and isotope compositions were measured in a paddy soil profile in Suzhou, Eastern China, in the central Yangtze Delta. The results show that the variations in δ65Cu values and Cu concentrations are not coupled along the profile. From top to bottom, the δ65Cu values show small variations (0.07 ± 0.03‰ to 0.25 ± 0.01‰) in the upper layers (Ap-Br1), with a decrease in the subsurface Br2 layer (from 0.16 ± 0.04‰ to -0.19 ± 0.02‰), are almost homogeneous in the transitional Br3-BCrg layers (-0.01 ± 0.01‰ to -0.10 ± 0.02‰), and further decrease to -0.33 ± 0.01‰ in the permanently submerged G1 and G2 layers. Copper concentrations in the Ap layer show some fluctuations (25.8 to 29.0 μg/g), increase in the Br2 and Br3 layers (23.9 μg/g to 31.9 μg/g), and then decrease to 15.1 μg/g in the lower layers. The lack of coupling between δ65Cu values and Cu concentrations may be ascribed to various physicochemical conditions in different layers. In the upper layers, Cu(I) enriched in light isotopes migrates downward with soil solutions under flooded conditions, leaving the soils of the Ap and Br1 layers enriched in heavy Cu isotopes. In the Br2 layer, the readsorption of light Cu isotopes on clay minerals results in decreased δ65Cu values and increased Cu concentrations. In the Br3-BCrg layers, Cu(I) can be oxidized to Cu(II). The homogeneous Cu isotopes in these layers may mainly result from equilibrium adsorption of Cu on clay minerals. The decreased δ65Cu values and Cu concentrations in the G layer are mainly attributed to groundwater transport in this layer. This study represents the Cu isotope variations in a paddy soil profile and the possible mechanism of Cu isotope fractionation.
Collapse
Affiliation(s)
- Rui-Rui Wang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hui-Min Yu
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Wen-Han Cheng
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yu-Chen Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Gan-Lin Zhang
- Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - De-Cheng Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Fang Huang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
7
|
Zhong S, Li X, Li F, Liu T, Pan D, Liu Y, Liu C, Chen G, Gao R. Source and Strategy of Iron Uptake by Rice Grown in Flooded and Drained Soils: Insights from Fe Isotope Fractionation and Gene Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2564-2573. [PMID: 35175773 DOI: 10.1021/acs.jafc.1c08034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rice can simultaneously absorb Fe2+ via a strategy I-like system and Fe(III)-phytosiderophore via strategy II from soil. Still, it remains unclear which strategy and source of Fe dominate under distinct water conditions. An isotope signature combined with gene expression was employed to evaluate Fe uptake and transport in a soil-rice system under flooded and drained conditions. Rice of flooded treatment revealed a similar δ56Fe value to that of soils (Δ56Ferice-soil = 0.05‰), while that of drained treatment was lighter than that of the soils (Δ56Ferice-soil = -0.41‰). Calculations indicated that 70.4% of Fe in rice was from Fe plaque under flooded conditions, while Fe was predominantly from soil solution under drained conditions. Up-regulated expression of OsNAAT1, OsTOM2, and OsYSL15 was observed in the root of flooded treatment, while higher expression of OsIRT1 was observed in the drained treatment. These isotopic and genetic results suggested that the Fe(III)-DMA uptake from Fe plaque and Fe2+ uptake from soil solution dominated under flooded and drained conditions, respectively.
Collapse
Affiliation(s)
- Songxiong Zhong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Dandan Pan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yuhui Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Chengshuai Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Guojun Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ruichuan Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|