1
|
Jiang M, Fang H, Tian H. Latest advancements and trends in biomedical polymers for disease prevention, diagnosis, treatment, and clinical application. J Control Release 2025; 380:138-174. [PMID: 39880039 DOI: 10.1016/j.jconrel.2025.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Biomedical polymers are at the forefront of medical advancements, offering innovative solutions in disease prevention, diagnosis, treatment, and clinical use due to their exceptional physicochemical properties. This review delves into the characteristics, classification, and preparation methods of these polymers, highlighting their diverse applications in drug delivery, medical imaging, tissue engineering, and regenerative medicine. We present a thorough analysis of the recent advancements in biomedical polymer research and their clinical applications, acknowledging the challenges that remain, such as immune response management, controlled degradation rates, and mechanical property optimization. Addressing these issues, we explore future directions, including personalization and the integration of nanotechnology, which hold significant potential for further advancing the field. This comprehensive review aims to provide a deep understanding of biomedical polymers and serve as a valuable resource for the development of innovative polymer materials in both fundamental research and clinical practice.
Collapse
Affiliation(s)
- Mingxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China.
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| |
Collapse
|
2
|
Chen X, Yang J, Xia L, Yang R, Ding C, Huang X, Chen Y, Luo J. Core reinforcement strategy enhances the foliar stability and efficacy of electrostatic self-assembled microcapsules. PEST MANAGEMENT SCIENCE 2025. [PMID: 40119541 DOI: 10.1002/ps.8792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/22/2025] [Accepted: 03/11/2025] [Indexed: 03/24/2025]
Abstract
BACKGROUND At present, it is vital to develop a stable and efficient pesticide delivery system to optimize pesticide foliar utilization, which could improve control efficacy, enhance resistance to adverse climates, and prolong foliar retention. In this study, reaction monomers methylene diphenyl diisocyanate (MDI) and polycaprolactone diol (PCL) were used to synthesize a polymer network structure for loading the organic phase of pesticides in a micron-reactor, then the shell was formed by sodium lignosulfonate (SL) and didecyl dimethyl ammonium chloride (DDAC) through electrostatic self-assembly, resulting in self-assembled microcapsules and efficient pesticide loading, and the stability and efficacy were discussed. RESULTS Self-assembled microcapsules Pyr@MCs-C and Pyr@MCs-V with cores of different mechanical strength and morphological characteristics are realized by regulating the reaction ratio of MDI and PCL. Compared with conventional self-assembled microcapsule Pyr@MCs-S, Pyr@MCs-C and Pyr@MCs-V exhibit stable and unruptured morphology in dehydrated environment. Moreover, self-assembled microcapsules provide similar fungicidal activity as emulsifiable concentrate. Notably, the washout resistance property of Pyr@MCs-C and Pyr@MCs-V increased by 3.20 and 3.51 times, respectively, and ultraviolet (UV) resistances of the two microcapsules increased by 5.72 and 5.02 times, respectively, which promote the control efficiency and prolong the duration. CONCLUSION In summary, this system has simple preparation process and stable foliar performances, making it a promising precise pesticide delivery platform. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xing Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Junpeng Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Lingmin Xia
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Rui Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Chaoyang Ding
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xueping Huang
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yu Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Jian Luo
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
3
|
Chen Y, Li H, Peng Y, Li T, Li X, Wang C, Xiao R, Dong J, Du X. Nanoization of Technical Pesticides: Facile and Smart Pesticide Nanocapsules Directly Encapsulated through "On Site" Metal-Polyphenol Coordination Assembly for Improved Efficacy and Biosafety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2865-2879. [PMID: 39869849 DOI: 10.1021/acs.jafc.4c10948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Facile pesticide nanocapsules were successfully prepared by directly encapsulating the antisolvent precipitation of pesticides through instantaneous "on site" coordination assembly of tannic acid and Fe3+, avoiding tedious preparation, time consumption, and large amounts of organic solvents. The pesticide nanocapsules showed excellent resistance to ultraviolet photolysis and rainwater washing owing to the nanocapsule walls. The smart pesticide nanocapsules exhibited the controlled release of pesticides under multidimensional stimuli, such as acidic/alkaline pH, glutathione, H2O2, phytic acid, laccase, tannase, and sunlight, which were related to the physiological and natural environments of crops, pests, and pathogens. The tebuconazole nanocapsules not only enhanced the fungicidal activity against Fusarium graminearum and effective control efficacy in wheat powdery mildew through foliar spray and seed coating, but also improved the biosafety of target plant growth and nontarget organisms. The facile, smart, efficient, safe, and green pesticide nanocapsules using the universal strategy have broad application prospects in ecoagriculture.
Collapse
Affiliation(s)
- Yuxia Chen
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hang Li
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuhui Peng
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Tongtong Li
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaona Li
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chen Wang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ruixi Xiao
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiangtao Dong
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xuezhong Du
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Hu G, Zhou Z, Tang G, Liu Y, Zhang X, Huang Y, Yan G, Xiao J, Yan W, Li J, Cao Y. Prodrug Self-Assemblies Based on Plant Volatile Aldehydes with Improved Stability and Antimicrobial Activity Against Plant Pathogens. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407480. [PMID: 39723694 DOI: 10.1002/smll.202407480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Plant volatile aldehydes (PVAs) such as cinnamaldehyde (Cin), citral (Cit), citronellal (Citr), and perillaldehyde (Per) have broad-spectrum antimicrobial activity and show great potential in agricultural sustainable production. However, most PVAs not only have very high volatility but also are easily degradable in environment, which seriously restricts their wide application. To address the inherent problems with PVAs, four prodrugs based on PVAs are fabricated by conjugating individually Cin, Cit, Citr, and Per to sodium bisulfite (Sod) through a simple addition reaction and subsequently self-assembled into nanoparticles (prodrug self-assemblies) in aqueous solutions. The results showed that pH of 7 and temperature of 35 °C are the optimal conditions for the formation of the prodrug self-assemblies with the highest self-assembly rates. The prepared prodrug self-assemblies are spherical nanoparticles with average particle sizes of 100-200 nm, almost no volatilization, and high surface activity and stability, and can respond to acidic and redox microenvironments to release PVAs. The prodrug self-assemblies showed synergistic antimicrobial activities against Sclerotinia sclerotiorum and Penicillium digitatum, and good biological safety to plants. Therefore, these findings have important implications for the efficient utilization of PVAs in agriculture, ensuring the safety of the ecological environment and realizing the sustainable development of agriculture.
Collapse
Affiliation(s)
- Gaohua Hu
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Zhiyuan Zhou
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Gang Tang
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Yulu Liu
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Xiaohong Zhang
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Yuqi Huang
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Guangyao Yan
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Jianhua Xiao
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Weiyao Yan
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Jianqiang Li
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
5
|
Zhao Y, Wang X, Han X, Ren A, Huang X, Fang S, Chen H, Zhang L. Inhibitory Activity Against Rhizoctonia Solani and Chemical Composition of Extract from Moutan Cortex. Chem Biodivers 2024; 21:e202400337. [PMID: 38470409 DOI: 10.1002/cbdv.202400337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/13/2024]
Abstract
Rice sheath blight (RSB), caused by Rhizoctonia solani, is a significant disease of rice. The negative effects of chemical fungicides have created an urgent need for low-toxicity botanical fungicides. Our previous research revealed that the ethanol crude extract of Moutan Cortex (MC) exhibited superior antifungal activity against R. solani at 1000 μg/mL, resulting in a 100 % inhibition rate. The antifungal properties were mainly found in the petroleum ether extract. However, the active ingredients of the extract are still unclear. In this study, gas chromatography-mass spectrometry (GC-MS) was utilised for the analysis of its chemical components. The mycelium growth rate method was utilized to detect the antifungal activity. The findings indicated that paeonol constituted the primary active component, with a content of more than 96 %. Meanwhile, paeonol was the most significant antifungal active ingredient, the antifungal activity of paeonol (EC50=44.83 μg/mL) was much higher than that of β-sitosterol and ethyl propionate against R. solani. Observation under an optical microscope revealed that paeonol resulted in abnormal mycelial morphology. This study provided theoretical support for identifying monomer antifungal compounds and developing biological fungicides for R. solani.
Collapse
Affiliation(s)
- Yongtian Zhao
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Xinge Wang
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Xin Han
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Aixia Ren
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Xiaona Huang
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Shuangyan Fang
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Hongting Chen
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Lian Zhang
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| |
Collapse
|
6
|
Cui Z, Li Y, Tsyusko OV, Wang J, Unrine JM, Wei G, Chen C. Metal-Organic Framework-Enabled Sustainable Agrotechnologies: An Overview of Fundamentals and Agricultural Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38600745 DOI: 10.1021/acs.jafc.4c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
With aggravated abiotic and biotic stresses from increasing climate change, metal-organic frameworks (MOFs) have emerged as versatile toolboxes for developing environmentally friendly agrotechnologies aligned with agricultural practices and safety. Herein, we have explored MOF-based agrotechnologies, focusing on their intrinsic properties, such as structural and catalytic characteristics. Briefly, MOFs possess a sponge-like porous structure that can be easily stimulated by the external environment, facilitating the controlled release of agrochemicals, thus enabling precise delivery of agrochemicals. Additionally, MOFs offer the ability to remove or degrade certain pollutants by capturing them within their pores, facilitating the development of MOF-based remediation technologies for agricultural environments. Furthermore, the metal-organic hybrid nature of MOFs grants them abundant catalytic activities, encompassing photocatalysis, enzyme-mimicking catalysis, and electrocatalysis, allowing for the integration of MOFs into degradation and sensing agrotechnologies. Finally, the future challenges that MOFs face in agrotechnologies were proposed to promote the development of sustainable agriculture practices.
Collapse
Affiliation(s)
- Zhaowen Cui
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
- Kentucky Water Resources Research Institute, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Gehong Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Chun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
7
|
Victoria J, Tripathi S, Prakash V, Tiwari K, Mahra S, Sharma A, Rana S, Kandhol N, Sahi S, Tripathi DK, Sharma S. Encapsulated nanopesticides application in plant protection: Quo vadis? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108225. [PMID: 38147708 DOI: 10.1016/j.plaphy.2023.108225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023]
Abstract
The increased global food insecurity due to the growing population can be addressed with precision and sustainable agricultural practices. To tackle the issues regarding food insecurity, farmers used different agrochemicals that improved plant growth and protection. Among these agrochemicals, synthetic pesticides used for plant protection in the agricultural field have various disadvantages. Conventional applications of synthetic pesticides have drawbacks such as rapid degradation, poor solubility, and non-target effects, as well as increased pesticide runoff that pollutes the environment. Nanotechnology has evolved as a potential solution to increase agricultural productivity through the development of different nanoforms of agrochemicals such as nanopesticides, nano-fabricated fertilizers, nanocapsules, nanospheres, nanogels, nanofibers, nanomicelles, and nano-based growth promoters. Encapsulation of these pesticides inside the nanomaterials has provided good biocompatibility over conventional application by inhibiting the early degradation of active ingredients (AI), increasing the uptake and adhesion of pesticides, improving the stability, solubility, and permeability of the pesticides, and decreasing the environmental impacts due to the pesticide runoff. In this review, different nanoforms of encapsulated pesticides and their smart delivery systems; nanocarriers in RNA interference (RNAi) based pesticides; environmental fate, practical implications, management of nanopesticides; and future perspectives are discussed.
Collapse
Affiliation(s)
- J Victoria
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Sneha Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Ved Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Kavita Tiwari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shivani Mahra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Adwithiya Sharma
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Noida, India
| | - Shweta Rana
- Department of Physical and Natural Sciences, FLAME University, Pune, India
| | - Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Shivendra Sahi
- Department of Biology, Saint Joseph's University, University City Campus, 600 S. 43rd St., Philadelphia, PA, 19104, USA
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India.
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India.
| |
Collapse
|
8
|
Gao T, Zhang B, Wu Z, Zhang Q, Shi X, Zhou C, Liu X, Liu P, Liu X. Fabrication of ROS-responsive nanoparticles by modifying the interior pore-wall of mesoporous silica for smart delivery of azoxystrobin. J Mater Chem B 2023; 11:11496-11504. [PMID: 37990572 DOI: 10.1039/d3tb01954c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The suboptimal efficiency in pesticide utilization may elevate residues, posing safety risks to human food and non-target organisms. To address this challenge, delivery systems, such as pathogen infection stimuli-responsive carriers, can be employed to augment the efficiency of fungicide utilization. The bursting of reactive oxygen species (ROS) is a common defense response of host plants to pathogenic infections. In this study, ROS-responsive mesoporous silica nanoparticles (MSN) modified with phenyl sulfide (PHS) as azoxystrobin (AZOX) carrier (MSN-PHS-AZOX) were fabricated. Results demonstrated that MSN-PHS-AZOX exhibited fungicide release kinetics dependent on ROS. In vitro inhibition experiments confirmed the fungicidal effect of MSN-PHS-AZOX on Botrytis cinerea, relying on external ROS. In vivo leaf experiments showcased the superior persistence of MSN-PHS-AZOX in compared to AZOX SC. Furthermore, MSN-PHS-AZOX exhibits favorable biosafety and lower toxicity to aquatic zebrafish compared to AZOX SC, with no adverse impact on cucumber leaf growth. These findings suggest the potential application of this ROS-responsive nano fungicide in managing plant disease in agricultural fields.
Collapse
Affiliation(s)
- Tuqiang Gao
- College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Borui Zhang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Zhaochen Wu
- College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Qizhen Zhang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Xin Shi
- College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Congying Zhou
- College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Xiaofang Liu
- College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Pengfei Liu
- College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Xili Liu
- College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Li LJ, Zhao R, Wang YM, Pan SH, Yu M, Sun Z, Ma YJ, Guo XY, Xu Y, Wang HM, Wu XM. ROS-responsive modified chitosan oligosaccharide nanocapsules for improving pesticide efficiency and intelligent release. PEST MANAGEMENT SCIENCE 2023; 79:3808-3818. [PMID: 37209281 DOI: 10.1002/ps.7565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Some traditional pesticide formulations are inefficient, leading to excessive use and abuse of pesticides, which in turn effects environment. Intelligent release pesticide formulations are ideal for improving pesticide utilization and persistence while reducing environmental pollution. RESULTS We designed a benzil-modified chitosan oligosaccharide (CO-BZ) to encapsulate avermectin (Ave). Ave@CO-BZ nanocapsules are prepared based on a simple interfacial method via cross-linking of CO-BZ with diphenylmethane diisocyanate (MDI). The Ave@CO-BZ nanocapsules have an average particle size of 100 nm and exhibited a responsive release performance for ROS. The cumulative release rate of nanocapsules at 24 h with ROS increased by about 11.4% compared to that without ROS. The Ave@CO-BZ nanocapsules displayed good photostability. Ave@CO-BZ nanocapsules can penetrate root-knot nematodes more easily and exhibited better nematicidal activity against root-knot nematodes. The pot experiment showed that the control effect of Ave CS at low concentration was 53.31% at the initial stage of application (15 d), while Ave@CO-BZ nanocapsules was 63.54%. Under the same conditions, the control effect of Ave@CO-BZ nanocapsules on root-knot nematodes was 60.00% after 45 days of application, while Ave EC was only 13.33%. The acute toxicity experiments of earthworms showed that the toxicity of nanocapsules was significantly lower than that of EC. CONCLUSION The ROS-responsive nanocapsules can improve the utilization of pesticides and non-target biosafety. This modified chitosan oligosaccharide has great potential as a bio stimuli-responsive material, and this simple and convenient method for preparing Ave@CO-BZ nanocapsules provides a direction for the effective utilization of pesticides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lin-Jie Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Rui Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yin-Min Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Shou-He Pan
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Meng Yu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Zhe Sun
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Ying-Jian Ma
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xin-Yu Guo
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yong Xu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Hong-Mei Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xue-Min Wu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Zhu Y, Yao K, Ma M, Cui Y, Xu J, Chen W, Yang R, Wu C, Gong G. Occurrence Regionalization of Kiwifruit Brown Spot in Sichuan. J Fungi (Basel) 2023; 9:899. [PMID: 37755007 PMCID: PMC10532618 DOI: 10.3390/jof9090899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Kiwifruit brown spot caused by Corynespora cassiicola is the most significant fungal disease in Sichuan, resulting in premature defoliation, which had a significant impact on yield and fruit quality. The objective of the study was to determine the occurrence regularity and suitability of kiwifruit brown spot in Sichuan. The occurrence of the disease in the main producing region was continuously monitored, the maximum entropy (MaxEnt) model was used to predict its potential distribution, and the key environmental variables were identified using the jackknife method. The results indicated that kiwifruit brown spot was widely distributed across the entire producing region in Sichuan, predominantly affecting the variety "Hongyang". The incidence (p < 0.01) and disease index (p < 0.05) showed a significant positive correlation with the cultivar, and decreased with the altitude increasing. The average area under the ROC curve (AUC) of 10 replicates was 0.933 ± 0.012, with an accuracy of 84.44% in a field test, confirming the reliability of the predicted results. The highly suitable distribution areas of kiwifruit brown spot were mainly located in the Chengdu and Ya'an regions. The entire Panzhihua region was an unsuitable distribution area, and the entire Pujiang County and Mingshan District were highly suitable distribution areas. The key environmental variables affecting the potential distribution of kiwifruit brown spot included isothermality (24.3-33.7%), minimum temperature in August (16.3-23.6 °C), maximum temperature in July (25.5-31.2 °C), minimum temperature in June (15.6-20.9 °C), precipitation in August (158-430 mm), and average temperature in October (15.6-18.8 °C). This study provides a theoretical basis for the reasonable layout of the cultivar and the precise prevention and control of the disease.
Collapse
Affiliation(s)
- Yuhang Zhu
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (K.Y.); (M.M.); (J.X.); (W.C.); (R.Y.); (C.W.)
| | - Kaikai Yao
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (K.Y.); (M.M.); (J.X.); (W.C.); (R.Y.); (C.W.)
| | - Miaomiao Ma
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (K.Y.); (M.M.); (J.X.); (W.C.); (R.Y.); (C.W.)
| | - Yongliang Cui
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610041, China;
| | - Jing Xu
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (K.Y.); (M.M.); (J.X.); (W.C.); (R.Y.); (C.W.)
| | - Wen Chen
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (K.Y.); (M.M.); (J.X.); (W.C.); (R.Y.); (C.W.)
| | - Rui Yang
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (K.Y.); (M.M.); (J.X.); (W.C.); (R.Y.); (C.W.)
| | - Cuiping Wu
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (K.Y.); (M.M.); (J.X.); (W.C.); (R.Y.); (C.W.)
| | - Guoshu Gong
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (K.Y.); (M.M.); (J.X.); (W.C.); (R.Y.); (C.W.)
| |
Collapse
|
11
|
Ma E, Fu Z, Chen K, Sun L, Zhang Y, Liu Z, Li L, Guo X. Smart Protein-Based Fluorescent Nanoparticles Prepared by a Continuous Nanoprecipitation Method for Pesticides' Precise Delivery and Tracing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37221148 DOI: 10.1021/acs.jafc.3c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
It is highly desirable to develop smart and green pesticide nanoformulations for improving pesticide targeting and reducing their inherent toxicity. Herein, we demonstrate a continuous nanoprecipitation method to construct a novel type of enzyme-responsive fluorescent nanopesticides (denoted as ABM@BSA-FITC/GA NPs) based on abamectin, fluorescein isothiocyanate isomer (FITC)-modified protein, and food-grade gum arabic. The as-prepared ABM@BSA-FITC/GA NPs exhibit good water dispersibility, excellent storage stability, and enhanced wettability compared to commercial formulations. The controlled release of pesticides can be achieved through protein degradation caused by trypsin. Most importantly, the deposition, distribution, and transport of the ABM@BSA-FITC/GA NPs are precisely tracked on target plants (cabbage and cucumber) by fluorescence. Furthermore, the ABM@BSA-FITC/GA NPs show the high control efficacy against Plutella xylostella L., which is comparable with commercial emulsifiable concentrate formulation. In consideration of its eco-friendly composition and absence of organic solvent, this pesticide nanoformulation has promising potential in sustainable plant protection.
Collapse
Affiliation(s)
- Enguang Ma
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Zhinan Fu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Liang Sun
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Yuhua Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| |
Collapse
|
12
|
Lv S, Hong T, Wan M, Peng L, Zhao Y, Sun L, Zou X. Polydopamine-encapsulated cap-like mesoporous silica based delivery system for responsive pesticide release and high retention. Colloids Surf B Biointerfaces 2023; 224:113213. [PMID: 36870269 DOI: 10.1016/j.colsurfb.2023.113213] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023]
Abstract
Nanopesticides formulation has been applied in modern agriculture, but the effective deposition of pesticides on plant surfaces is still a critical challenge. Here, we developed a cap-like mesoporous silica (C-mSiO2) carrier for pesticide delivery. The C-mSiO2 carriers with surface amino groups present uniform cap-like shape and have an mean diameter of 300 nm and width of 100 nm. This structure would reduce the rolling and bouncing of carriers on plant leaves, leading to improving the foliage deposition and retention. After loading dinotefuran (DIN), polydopamine (PDA) was used to encapsulate the pesticide (DIN@C-mSiO2@PDA). The C-mSiO2 carriers exhibit high drug loading efficiency (24.7%) and benign biocompatibility on bacteria and seed. Except for pH/NIR response release, the DIN@C-mSiO2@PDA exhibited excellent photostability under UV irradiation. Moreover, the insecticidal activity of DIN@C-mSiO2@PDA was comparable to that of pure DIN and DIN commercial suspension (CS-DIN). This carrier system has the potential for improving the foliage retention and utilization of pesticides.
Collapse
Affiliation(s)
- Shuoshuo Lv
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, China
| | - Tao Hong
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, China
| | - Menghui Wan
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, China
| | - Lichao Peng
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, China.
| | - Yanbao Zhao
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, China.
| | - Lei Sun
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, China
| | - Xueyan Zou
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, China
| |
Collapse
|
13
|
Ma E, Fu Z, Sun L, Chen K, Liu Z, Wei Z, Li L, Guo X. Organosilica-based deformable nanopesticides with enhanced insecticidal activity prepared by flash nanoprecipitation. REACT CHEM ENG 2023. [DOI: 10.1039/d3re00040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
A flash nanoprecipitation technique was developed for the construction of a novel type of deformable hollow organosilica nanoparticle for pesticide delivery.
Collapse
Affiliation(s)
- Enguang Ma
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Zhinan Fu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| | - Liang Sun
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| |
Collapse
|
14
|
Zhou J, Liu G, Guo Z, Wang M, Qi C, Chen G, Huang X, Yan S, Xu D. Stimuli-responsive pesticide carriers based on porous nanomaterials: A review. CHEMICAL ENGINEERING JOURNAL 2023; 455:140167. [DOI: 10.1016/j.cej.2022.140167] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
|
15
|
Shan P, Lu Y, Lu W, Yin X, Liu H, Li D, Lian X, Wang W, Li Z, Li Z. Biodegradable and Light-Responsive Polymeric Nanoparticles for Environmentally Safe Herbicide Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43759-43770. [PMID: 36111970 DOI: 10.1021/acsami.2c12106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The low utilization efficiency of pesticides exerts an adverse impact on the environment and human health. Polymer-related controlled-release nanosized pesticide systems provide a promising and efficient way to overcome the problem. In this work, a biodegradable and light-responsive amphiphilic polymer was synthesized via 1,1,3,3-tetramethylguanidine-promoted polyesterification under mild conditions (low temperature, no vacuum, and no inert gas protection). We used this polymer to fabricate a light-triggered controlled-release nanosized pesticide system. The herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), was selected as a model drug to show its potential as a controlled-release pesticide system. It was found that the 2,4-D-loaded polymeric nanoparticles were stable without the treatment of UV, while the release rate of 2,4-D from the nanoparticles gradually increased after treatment with UV light. Pot trial showed that the 2,4-D-loaded polymer nanoparticles showed a good herbicidal effect. Finally, toxicity studies suggested that the polymer can reduce toxicity to nontarget organisms.
Collapse
Affiliation(s)
- Pengfei Shan
- School of Optometry and Ophthalmology and Eye Hospital, State Key Laboratory of Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yingwen Lu
- School of Optometry and Ophthalmology and Eye Hospital, State Key Laboratory of Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, China
| | - Weilin Lu
- School of Optometry and Ophthalmology and Eye Hospital, State Key Laboratory of Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiangping Yin
- School of Optometry and Ophthalmology and Eye Hospital, State Key Laboratory of Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, China
| | - Haiwei Liu
- School of Optometry and Ophthalmology and Eye Hospital, State Key Laboratory of Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, China
| | - Daai Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Xiaoyue Lian
- School of Optometry and Ophthalmology and Eye Hospital, State Key Laboratory of Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, China
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Dr. Li Dak-Sum Research Centre and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhongyu Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Zhihui Li
- School of Optometry and Ophthalmology and Eye Hospital, State Key Laboratory of Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
16
|
Ma E, Chen K, Sun L, Fu Z, Guo J, Liu J, Zhao J, Liu Z, Lei Z, Li L, Hu X, Guo X. Rapid Construction of Green Nanopesticide Delivery Systems Using Sophorolipids as Surfactants by Flash Nanoprecipitation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4912-4920. [PMID: 35417168 DOI: 10.1021/acs.jafc.2c00743] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Green delivery carriers of nanopesticides, like sophorolipid biosurfactants, are of great significance to reduce environmental pollution and promote sustainable agricultural development. However, the molecular diversity of an unisolated sophorolipid mixture with almost unpredictable self-assembly properties has limited the in-depth study of its structure-activity relationship and hindered the development of green pesticide delivery systems. In this work, the acidic and lactonic sophorolipids were successfully separated from the sophorolipid mixture through silica gel column chromatography. A series of cost-effective green nanopesticides loaded with lambda-cyhalothrin (LC) were rapidly fabricated based on a combination of the acidic and lactonic sophorolipids as surfactants by flash nanoprecipitation. The effects of the acidic-to-lactonic ratio on particle size, drug loading capacity, and biological activity against Hyphantria cunea of LC-loaded nanoparticles were systematically investigated. The resultant nanopesticides exhibited a better insecticidal efficacy than a commercial emulsifiable concentrate formulation. This work opens up a novel strategy to construct scalable, cost-effective, and environmentally friendly nanopesticide systems.
Collapse
Affiliation(s)
- Enguang Ma
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Kai Chen
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Liang Sun
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Zhinan Fu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jiangtao Guo
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jichang Liu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jigang Zhao
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Zhigang Lei
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Li Li
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiao Hu
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
17
|
Su W, Qin Y, Meng G, Wu J, Yang S, Cui L, Li W, Liu Z, Guo X. Intelligent response release of imidacloprid from a tailored star‐shaped polymer targeting the temperature‐dependent reproduction of cotton aphids. J Appl Polym Sci 2021. [DOI: 10.1002/app.51895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Weihua Su
- School of Chemistry and Chemical Engineering Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials‐Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi China
| | - Yan Qin
- School of Chemistry and Chemical Engineering Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials‐Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi China
| | - Guihua Meng
- School of Chemistry and Chemical Engineering Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials‐Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi China
| | - Jianning Wu
- School of Chemistry and Chemical Engineering Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials‐Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi China
| | - Shengchao Yang
- School of Chemistry and Chemical Engineering Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials‐Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi China
| | - Lin Cui
- School of Medicine Shihezi University Shihezi China
| | - Wenjuan Li
- School of Chemistry and Chemical Engineering Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials‐Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials‐Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi China
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials‐Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi China
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
18
|
Su S, Chen L, Hao L, Chen H, Zhou X, Zhou H. Preparation of p-amino salicylic acid-modified polysuccinimide as water-based nanocarriers for enhancing pesticide stability and insecticidal activity. Colloids Surf B Biointerfaces 2021; 207:111990. [PMID: 34311198 DOI: 10.1016/j.colsurfb.2021.111990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/26/2022]
Abstract
Avermectin (AVM) is a biopesticide with low toxicity and high activity, but has limited use due to its poor water solubility and easy decomposition. A delivery system that can stabilize this biopesticide can play a significant role for improving its biological activity. Herein, water-dispersible functionalized polysuccinimide nanoparticles (PAD) were prepared by a ring-opening reaction and subsequently used to encapsulate AVM via self-assembly to form AVM@PAD nanoparticles with a loading ratio of 10.04 %. The half-life under UV radiation (300 W) of AVM@PAD was three times higher than that of free AVM, demonstrating the excellent protective ability of PAD. In addition, AVM@PAD nanoparticles could sustain the release of AVM for 70 h with a cumulative release rate of 70 %. AVM@PAD nanoparticles also showed a pH-responsive release, and their maximum cumulative release rate was at neutral pH. Moreover, the median lethal concentration (LC50) value of AVM@PAD with respect to Plutella xylostella was 34.50 mg/L, while that of free AVM was 56.05 mg/L. These results showed that the AVM@PAD nanoparticles can potentially and effectively promote drug stability and biological activity in agriculture.
Collapse
Affiliation(s)
- Shaochun Su
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, People's Republic of China
| | - Long Chen
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, People's Republic of China
| | - Li Hao
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, People's Republic of China
| | - Huayao Chen
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, People's Republic of China
| | - Xinhua Zhou
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, 525000, People's Republic of China.
| | - Hongjun Zhou
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, People's Republic of China.
| |
Collapse
|