1
|
Gu Y, Wang S, Si B, Chang C, Ma H, Lu Y, Lv L. Ergothioneine, a New Acrolein Scavenger at Elevated Temperature. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2978-2990. [PMID: 39841866 DOI: 10.1021/acs.jafc.4c09920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Acrolein (ACR) present in vivo and in vitro can damage proteins and DNA, linking it to various chronic diseases. In this paper, ergothioneine (EGT), abundant in edible mushrooms, has been studied for its ability to trap ACR and its reaction pathway with ACR at high temperatures using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS/MS). We synthesized the adducts (EGT-ACR-1 and EGT-ACR-2), elucidating their structure and reaction site through HRMS and nuclear magnetic resonance. Subsequently, we proved the synergistic trapping effect on ACR of EGT when combined with γ-aminobutyric (GABA) and disodium 5'-guanylate (GMP) in binary or ternary employing the Chou-Talalay methods. Quantitative analysis of the ACR adducts revealed that GABA and GMP enhanced EGT's ability to form additional ACR adducts. Moreover, Boletus eduli and Volvariella volvacea, as the carriers of EGT, GABA, and GMP, show a marked effect on trapping ACR generated during the baking of cookies/cakes. Our finding suggested that EGT, whether as a standalone compound or derived from mushrooms, could act as a potential ACR capturer (including single and multiple uses) in baked food.
Collapse
Affiliation(s)
- Yating Gu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, People's Republic of China
| | - Shujingwen Wang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, People's Republic of China
| | - Bo Si
- National Liquor Product Quality Supervision and Inspection Center, Suqian Product Quality Supervision & Inspection Institute, Suqian, Jiangsu 223800, People's Republic of China
| | - Chun Chang
- National Liquor Product Quality Supervision and Inspection Center, Suqian Product Quality Supervision & Inspection Institute, Suqian, Jiangsu 223800, People's Republic of China
| | - Hao Ma
- National Liquor Product Quality Supervision and Inspection Center, Suqian Product Quality Supervision & Inspection Institute, Suqian, Jiangsu 223800, People's Republic of China
| | - Yonglin Lu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, People's Republic of China
| | - Lishuang Lv
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, People's Republic of China
| |
Collapse
|
2
|
Zhong Y, Liang Y, Jia M, Si B, Lv L. Synephrine, as a scavenger and promoter, cooperates with hesperidin to reduce acrolein levels. Food Chem 2024; 431:136896. [PMID: 37591144 DOI: 10.1016/j.foodchem.2023.136896] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Acrolein (ACR) is a harmful and active aldehyde produced in processed food that endangers foods safety. We undertook this work to explore the ACR-trapping ability of hesperidin (HES) and synephrine (SYN) from the diet. After comparing their ACR-trapping abilities, the reaction pathways of HES and SNY were analyzed using LC-MS/MS, and two adducts (HES-ACR-1 and SNY-2ACR) were synthesized, and their structures were identified by NMR. Then, we not only evaluated the synergistic trapping effects of HES and SNY on ACR in the model through the Chou-Talalay method but verified it in the processing of roasted duck wings and cookies. Furthermore, based on the quantitative analysis of the ACR-adducts of HES and SNY, we demonstrated that SYN, as a promoter, could greatly improve the ACR-capturing ability of HES by forming more adducts (3-fold). Our findings could serve as a guide for using SNY and HES as new scavengers in food processing.
Collapse
Affiliation(s)
- Yuqing Zhong
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2(#) Xuelin Road, Nanjing 210023, PR China
| | - Yu Liang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2(#) Xuelin Road, Nanjing 210023, PR China
| | - Mengwei Jia
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2(#) Xuelin Road, Nanjing 210023, PR China
| | - Bo Si
- National Liquor Product Quality Supervision and Inspection Center, Suqian Product Quality Supervision & Inspection Institute, 889(#) Fazhan Road, Suqian 223800, PR China
| | - Lishuang Lv
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2(#) Xuelin Road, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Gu H, Si B, Yang C, Jia M, Lu Y, Lv L, Guo Y. Elimination of Acrolein by Disodium 5'-Guanylate or Disodium 5'-Inosinate at High Temperature and Its Application in Roasted Pork Patty. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20314-20324. [PMID: 38078910 DOI: 10.1021/acs.jafc.3c05064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Acrolein (ACR) is a highly active, simple unsaturated aldehyde found in various high-temperature processed foods. Its long-term accumulation in the human body increases the risk of chronic diseases. Animal and plant foodstuffs are rich in disodium 5'-guanylate (GMP) and disodium 5'-inosinate (IMP), which are authorized flavor enhancers. Herein, we used liquid chromatography with tandem mass spectrometry to explore the reaction-active kinetics and pathway of the interaction between GMP/IMP and ACR and validated it in roasted pork patties. Our results suggested that GMP and IMP could efficiently eliminate ACR by forming ACR adducts (GMP-ACR, IMP-ACR). In addition, IMP exhibited a higher reaction rate, whereas GMP had a good trapping capacity at a later stage. As carriers of GMP and IMP, dried mushrooms and shrimp exhibited an effective ACR-trapping ability in the ACR model and roasted pork patty individually and in combination. Adding 10% of dried mushroom or shrimp alone or 5% of dried mushroom and shrimp in combination eliminated up to 53.9%, 55.8%, and 55.2% ACR in a roasted pork patty, respectively. This study proposed a novel strategy to eliminate the generation of ACR in roasted pork patties by adding foodstuffs rich in GMP and IMP.
Collapse
Affiliation(s)
- Huihui Gu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Bo Si
- National Liquor Product Quality Supervision and Inspection Center, Suqian Product Quality Supervision & Inspection Institute, 889 Fazhan Road, Suqian, Jiangsu 223800, People's Republic of China
| | - Chen Yang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Mengwei Jia
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yongling Lu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Lishuang Lv
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yuxing Guo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
4
|
Jiang K, Huang C, Liu F, Zheng J, Ou J, Zhao D, Ou S. Origin and Fate of Acrolein in Foods. Foods 2022; 11:foods11131976. [PMID: 35804791 PMCID: PMC9266280 DOI: 10.3390/foods11131976] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
Acrolein is a highly toxic agent that may promote the occurrence and development of various diseases. Acrolein is pervasive in all kinds of foods, and dietary intake is one of the main routes of human exposure to acrolein. Considering that acrolein is substantially eliminated after its formation during food processing and re-exposed in the human body after ingestion and metabolism, the origin and fate of acrolein must be traced in food. Focusing on molecular mechanisms, this review introduces the formation of acrolein in food and summarises both in vitro and in vivo fates of acrolein based on its interactions with small molecules and biomacromolecules. Future investigation of acrolein from different perspectives is also discussed.
Collapse
Affiliation(s)
- Kaiyu Jiang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (K.J.); (C.H.); (F.L.); (J.Z.)
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (K.J.); (C.H.); (F.L.); (J.Z.)
| | - Fu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (K.J.); (C.H.); (F.L.); (J.Z.)
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (K.J.); (C.H.); (F.L.); (J.Z.)
| | - Juanying Ou
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China;
| | - Danyue Zhao
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong 999077, China;
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (K.J.); (C.H.); (F.L.); (J.Z.)
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China
- Correspondence:
| |
Collapse
|
5
|
Liu N, Teng J, Yohannes A, Song H, Yao S. A systematic comparison of the extraction and adsorption of theophylline by new amino acid ester-based ionic liquids. NEW J CHEM 2022. [DOI: 10.1039/d1nj05583f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selective extraction and adsorption of theophylline with a new amino acid ester-based ionic liquid was demonstrated, and a systematic comparison was made for future applications.
Collapse
Affiliation(s)
- Na Liu
- School of Chemical Engineering, Sichuan University, Chengdu 650061, China
| | - Juan Teng
- School of Chemical Engineering, Sichuan University, Chengdu 650061, China
| | - Alula Yohannes
- College of Natural Science, Wolkite University, Wolkite, P. O. Box 07, Ethiopia
| | - Hang Song
- School of Chemical Engineering, Sichuan University, Chengdu 650061, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu 650061, China
| |
Collapse
|
6
|
Jiang X, Lu Y, Lv L. Trapping Acrolein by Theophylline/Caffeine and Their Metabolites from Green Tea and Coffee in Mice and Humans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14471-14479. [PMID: 33253558 DOI: 10.1021/acs.jafc.0c05483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Acrolein (ACR) is found exogenously as a widespread environmental pollutant and endogenously, where it is thought to be involved as a pathogenic factor in the progression of many pathological conditions. Eliminating ACR by dietary-active substances has been found to be one potential strategy to prevent ACR-associated chronic diseases. This study first compared the scavenging ACR efficacy of four purine alkaloids, theophylline (TP), paraxanthine (PXT), theobromine (TB), and caffeine (CAF), and then, TP, CAF, and their metabolites were investigated for their ability to trap ACR in vivo. Our results indicated that TP, which possesses an -NH moiety at the N-7 position, exhibits the best ACR-trapping capacity in vitro, while CAF has a slight ability to trap ACR due to the substitutions by -CH3 at the N-1, N-3, and N-7 positions. After oral administration of TP or CAF, the ACR adducts of TP and the metabolites of TP or CAF (e.g., mono- and di-ACR-TP, mono-ACR-1,3-DMU, and mono-ACR-1-MU) were detected in urinary samples obtained from both TP- and CAF-treated mouse groups by using ultra-performance liquid chromatography-tandem mass spectrometry. The quantification studies demonstrated that TP and its metabolites significantly trapped ACR in a dose-dependent manner in vivo. Furthermore, we also detected those ACR adducts of TP and TP/CAF's metabolites in human urine after four cups of green tea (2 g tea leaf/cup) or two cups of coffee (4 g coffee/cup) were consumed per day. Those results indicated that dietary TP or CAF has the potential capacity to scavenge ACR in vivo.
Collapse
Affiliation(s)
- Xiaoyun Jiang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P.R. China
| | - Yongling Lu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P.R. China
| | - Lishuang Lv
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P.R. China
| |
Collapse
|
7
|
Morin decreases acrolein-induced cell injury in normal human hepatocyte cell line LO2. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|