1
|
Xu W, Liu Q, Wang B, Zhang N, Qiu R, Yuan Y, Yang M, Wang F, Mei L, Cui G. Arbuscular mycorrhizal fungi communities and promoting the growth of alfalfa in saline ecosystems of northern China. FRONTIERS IN PLANT SCIENCE 2024; 15:1438771. [PMID: 39268000 PMCID: PMC11390447 DOI: 10.3389/fpls.2024.1438771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/30/2024] [Indexed: 09/15/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are universally distributed in soils, including saline soils, and can form mycorrhizal symbiosis with the vast majority of higher plants. This symbiosis can reduce soil salinity and influence plant growth and development by improving nutrient uptake, increasing plant antioxidant enzyme activity, and regulating hormone levels. In this study, rhizosphere soil from eight plants in the Songnen saline-alkaline grassland was used to isolate, characterize, and screen the indigenous advantageous AMF. The promoting effect of AMF on alfalfa (Medicago sativa L.) under salt treatment was also investigated. The findings showed that 40 species of AMF in six genera were identified by high-throughput sequencing. Glomus mosseae (G.m) and Glomus etunicatum (G.e) are the dominant species in saline ecosystems of northern China. Alfalfa inoculated with Glomus mosseae and Glomus etunicatum under different salt concentrations could be infested and form a symbiotic system. The mycorrhizal colonization rate and mycorrhizal dependence of G.m inoculation were significantly higher than those of G.e inoculation. With increasing salt concentration, inoculation increased alfalfa plant height, fresh weight, chlorophyll content, proline (Pro), soluble sugar (SS), soluble protein (SP), peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activity while decreasing the malondialdehyde (MDA) content and superoxide anion production rate. The results highlight that inoculation with G.m and G.e effectively alleviated salinity stress, with G.m inoculation having a significant influence on salt resistance in alfalfa. AMF might play a key role in alfalfa growth and survival under harsh salt conditions.
Collapse
Affiliation(s)
- Wen Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Qianning Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Baiji Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Na Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Rui Qiu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yuying Yuan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Mei Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Fengdan Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Linlin Mei
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Yang D, Li Y, Zhu M, Cui R, Gao J, Shu Y, Lu X, Zhang H, Zhang K. Genome-Wide Identification and Expression Analysis of the Cucumber FKBP Gene Family in Response to Abiotic and Biotic Stresses. Genes (Basel) 2023; 14:2006. [PMID: 38002948 PMCID: PMC10671320 DOI: 10.3390/genes14112006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The FKBP (FK506-binding protein) gene family is an important member of the PPlase protease family and plays a vital role during the processes of plant growth and development. However, no studies of the FKBP gene family have been reported in cucumber. In this study, 19 FKBP genes were identified in cucumber, which were located on chromosomes 1, 3, 4, 6, and 7. Phylogenetic analysis divided the cucumber FKBP genes into three subgroups. The FKBP genes in the same subgroup exhibited similar structures and conserved motifs. The cis-acting elements analysis revealed that the promoters of cucumber FKBP genes contained hormone-, stress-, and development-related cis-acting elements. Synteny analysis of the FKBP genes among cucumber, Arabidopsis, and rice showed that 12 kinds of syntenic relationships were detected between cucumber and Arabidopsis FKBP genes, and 3 kinds of syntenic relationships were observed between cucumber and rice FKBP genes. The tissue-specific expression analysis showed that some FKBP genes were expressed in all tissues, while others were only highly expressed in part of the 10 types of tissues. The expression profile analysis of cucumber FKBP genes under 13 types of stresses showed that the CsaV3_1G007080 gene was differentially expressed under abiotic stresses (high temperature, NaCl, silicon, and photoperiod) and biotic stresses (downy mildew, green mottle mosaic virus, Fusarium wilt, phytophthora capsica, angular leaf spot, and root-knot nematode), which indicated that the CsaV3_1G007080 gene plays an important role in the growth and development of cucumber. The interaction protein analysis showed that most of the proteins in the FKBP gene family interacted with each other. The results of this study will lay the foundation for further research on the molecular biological functions of the cucumber FKBP gene family.
Collapse
Affiliation(s)
- Dekun Yang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Yahui Li
- School of Life Science, Huaibei Normal University, Huaibei 235000, China;
| | - Mengdi Zhu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Rongjing Cui
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Jiong Gao
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Yingjie Shu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Xiaomin Lu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Huijun Zhang
- School of Life Science, Huaibei Normal University, Huaibei 235000, China;
| | - Kaijing Zhang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| |
Collapse
|
3
|
Liu J, Han Z, An L, Ghanizadeh H, Wang A. Evaluation of immobilized microspheres of Clonostachys rosea on Botrytis cinerea and tomato seedlings. Biomaterials 2023; 301:122217. [PMID: 37423183 DOI: 10.1016/j.biomaterials.2023.122217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/19/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Tomato (Solanum lycopersicum L.) is a popular vegetable crop which is widely cultivated around the world. However, the production of tomatoes is threatened by several phytopathogenic agents, including gray mold (Botrytis cinerea Pers.). Biological control using fungal agents such as Clonostachys rosea plays a pivotal role in managing gray mold. However, these biological agents can negatively be influenced by environmental factors. However, immobilization is a promising approach to tackle this issue. In this research, we used a nontoxic chemical material, sodium alginate as a carrier to immobilize C. rosea. For this, sodium alginate microspheres were prepared using sodium alginate prior to embedding C. rosea. The results showed that C. rosea was successfully embedded in sodium alginate microspheres, and immobilization enhanced the stability of the fungi. The embedded C. rosea was able to suppress the growth of gray mold efficiently. In addition, the activity of stress related enzymes, peroxidase superoxidase dismutase and polyphenol oxidation was promoted in tomatoes treated with the embedded C. rosea. By measuring photosynthetic efficiency, it was noted that the embedded C. rosea has positive impacts on tomato plants. Taken together, these results indicate that immobilization of C. rosea improved its stability without detrimentally affecting its efficiency on gray mold suppression and tomato growth. The results of this research can be used as a basis for research and development of new immobilized biocontrol agents.
Collapse
Affiliation(s)
- Jiayin Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Zhengyuan Han
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Lidong An
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Hossein Ghanizadeh
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand.
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; College of Life Sciences, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
4
|
Su C, Wang Z, Cui J, Wang Z, Wang R, Meng J, Luan Y. Sl-lncRNA47980, a positive regulator affects tomato resistance to Phytophthora infestans. Int J Biol Macromol 2023; 248:125824. [PMID: 37453642 DOI: 10.1016/j.ijbiomac.2023.125824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Emerging evidence suggests that long non-coding RNAs (lncRNAs) involve in defense respond against pathogen attack and show great potentials to improve plant resistance. Tomato late blight, a destructive plant disease, is caused by the oomycete pathogen Phytophthora infestans, which seriously affects the yield and quality of tomato. Our previous research has shown that Sl-lncRNA47980 is involved in response to P. infestans infection, but its molecular mechanism is unknown. Gain- and loss-of-function experiments revealed that Sl-lncRNA47980 as a positive regulator, played a crucial role in enhancing tomato resistance to P. infestans. The Sl-lncRNA47980-overexpressing transgenic plants exhibited an improved ability to scavenge reactive oxygen species (ROS), decreased contents of endogenous gibberellin (GA) and salicylic acid (SA), and increased contents of jasmonic acid (JA), while silencing of Sl-lncRNA47980 showed an opposite trend in the levels of these hormones. Furthermore, it was found that Sl-lncRNA47980 could upregulate the expression of SlGA2ox4 gene through activation of the promoter of SlGA2ox4 to affect GA content. The increased expression of the tomato GA signaling repressor SlDELLA could activate JA-related genes and inhibit SA-related genes to varying degrees respectively. In addition, exogenous application of GA3 and GA synthesis inhibitor uniconazole could increase disease susceptibility of Sl-lncRNA47980-overexpressing plants and the resistance of Sl-lncRNA47980-silenced plants, respectively, to P. infestans. From thus, it was speculated that Sl-lncRNA47980 conferred tomato resistance to P. infestans, which was related to the decrease in endogenous GA content. Our study provided information to link Sl-lncRNA47980 with changes in ROS accumulation and phytohormone levels in plant immunity, thus providing a new candidate gene for tomato breeding.
Collapse
Affiliation(s)
- Chenglin Su
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhengjie Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Zhicheng Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Ruiming Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
5
|
Yang R, Wang Z, Zhao L, Liu J, Meng J, Luan Y. Secreted Peptide SpPIP1 Modulates Disease Resistance and Salt Tolerance in Tomato. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12264-12279. [PMID: 37535837 DOI: 10.1021/acs.jafc.3c03412] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Tomato is a globally important horticultural and economic crop, but its productivity is severely affected by various stresses. Plant small secretory peptides have been identified as crucial mediators in plant resistance. Here, we conducted a comparative transcriptome analysis and identified the prePIP1 gene from Solanum pimpinellifolium (SpprePIP1), as an ortholog of Arabidopsis prePIP1 encoding the precursor protein of PAMP-induced SSP 1. The expression level of SpprePIP1 is transcriptionally induced in tomato upon infection with Phytophthora infestans (P. infestans), the pathogen responsible for late blight. Overexpression of SpprePIP1 resulted in enhanced tomato resistance to P. infestans. In addition, exogenous application of SpPIP1, whether through spraying or irrigation, improved tomato resistance by enhancing the transcript accumulations of pathogenesis-related proteins, as well as reactive oxygen species and the jasmonic acid (JA) levels. Integrated analysis of transcriptomics and metabolomics revealed the potential contributions of JA and phenylpropanoid biosynthesis to SpPIP1-induced tomato immunity. Additionally, SpPIP1 may strengthen tomato resistance to salt stress through the ABA signaling pathway. Overall, our findings demonstrate that SpPIP1 positively regulates tomato tolerance to P. infestans and salt stress, making it a potential plant elicitor for crop protection in an environmentally friendly way.
Collapse
Affiliation(s)
- Ruirui Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhicheng Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Jie Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
6
|
Tian M, Zhang C, Zhang Z, Jiang T, Hu X, Qiu H, Li Z. Aspergillus niger Fermentation Broth Promotes Maize Germination and Alleviates Low Phosphorus Stress. Microorganisms 2023; 11:1737. [PMID: 37512909 PMCID: PMC10384586 DOI: 10.3390/microorganisms11071737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Aspergillus niger is a type of soil fungus with the ability to dissolve insoluble phosphate and secrete organic metabolites such as citric acid. However, whether cell-free Aspergillus niger fermentation broth (AFB) promotes maize growth and alleviates low-phosphorus stress has not been reported. In this study, we explored their relationship through a hydroponics system. The results indicated that either too low or too high concentrations of AFB may inhibit seed germination potential and germination rate. Under low phosphorus conditions, all physiological indexes (biomass, soluble sugar content, root length, etc.) increased after AFB was applied. A qRT-PCR analysis revealed that the expression of the EXPB4 and KRP1 genes, which are involved in root development, was upregulated, while the expression of the CAT2 and SOD9 genes, which are keys to the synthesis of antioxidant enzymes, was downregulated. The expression of LOX3, a key gene in lipid peroxidation, was down-regulated, consistent with changes in the corresponding enzyme activity. These results indicate that the application of AFB may alleviate the oxidative stress in maize seedlings, reduce the oxidative damage caused by low P stress, and enhance the resistance to low P stress in maize seedlings. In addition, it reveals the potential of A. niger to promote growth and provides new avenues for research on beneficial plant-fungal interactions.
Collapse
Affiliation(s)
- Maoxian Tian
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Changhui Zhang
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Zhi Zhang
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Tao Jiang
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Xiaolan Hu
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Hongbo Qiu
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Zhu Li
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Sarkar RK, Bhowmik M, Biswas Sarkar M, Sircar G, Bhattacharya K. Comprehensive characterization and molecular insights into the salt tolerance of a Cu, Zn-superoxide dismutase from an Indian Mangrove, Avicennia marina. Sci Rep 2022; 12:1745. [PMID: 35110640 PMCID: PMC8810880 DOI: 10.1038/s41598-022-05726-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/24/2021] [Indexed: 11/15/2022] Open
Abstract
Superoxide dismutases are important group of antioxidant metallozyme and play important role in ROS homeostasis in salinity stress. The present study reports the biochemical properties of a salt-tolerant Cu, Zn-superoxide from Avicennia marina (Am_SOD). Am_SOD was purified from the leaf and identified by mass-spectrometry. Recombinant Am_SOD cDNA was bacterially expressed as a homodimeric protein. Enzyme kinetics revealed a high substrate affinity and specific activity of Am_SOD as compared to many earlier reported SODs. An electronic transition in 360-400 nm spectra of Am_SOD is indicative of Cu2+-binding. Am_SOD activity was potentially inhibited by diethyldithiocarbamate and H2O2, a characteristic of Cu, Zn-SOD. Am_SOD exhibited conformational and functional stability at high NaCl concentration as well in alkaline pH. Introgression of Am_SOD in E. coli conferred tolerance to oxidative stress under highly saline condition. Am_SOD was moderately thermostable and retained functional activity at ~ 60 °C. In-silico analyses revealed 5 solvent-accessible N-terminal residues of Am_SOD that were less hydrophobic than those at similar positions of non-halophilic SODs. Substituting these 5 residues with non-halophilic counterparts resulted in > 50% reduction in salt-tolerance of Am_SOD. This indicates a cumulative role of these residues in maintaining low surface hydrophobicity of Am_SOD and consequently high salt tolerance. The molecular information on antioxidant activity and salt-tolerance of Am_SOD may have potential application in biotechnology research. To our knowledge, this is the first report on salt-tolerant SOD from mangrove.
Collapse
Affiliation(s)
- Rajat Kanti Sarkar
- Department of Botany, Siksha Bhavana, Visva-Bharati (A Central University), Santiniketan, West Bengal, 731235, India
| | - Moumita Bhowmik
- Division of Plant Biology, Bose Institute, Kolkata, West Bengal, 700009, India
| | | | - Gaurab Sircar
- Department of Botany, Siksha Bhavana, Visva-Bharati (A Central University), Santiniketan, West Bengal, 731235, India.
| | - Kashinath Bhattacharya
- Department of Botany, Siksha Bhavana, Visva-Bharati (A Central University), Santiniketan, West Bengal, 731235, India.
| |
Collapse
|