1
|
Sakaguchi N, Onoda A, Omata K, Umezawa M. Changes in the Protein Secondary Structure on the Surface of Silica Nanoparticles with Different Sizes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:15143-15148. [PMID: 40461412 DOI: 10.1021/acs.langmuir.5c01606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2025]
Abstract
Nanoparticles (NPs) are highly promising for medical applications; however, their toxicity is a limiting factor. Understanding the interactions between NPs and proteins is crucial for mitigating toxicity concerns and advancing the safe use of NPs in the biomedical field. Important factors governing NPs-protein interactions include the size (curvature), surface charge, and surface state of NPs as well as coexisting ions in solvents. In this study, we focused on the effect of the NP size (curvature) on the protein secondary structure using silica NPs (SiNPs) with diameters of 10 nm, 100 nm, 1 μm, and 10 μm. The secondary structure of bovine serum albumin (BSA) that interacted with SiNPs was analyzed via thioflavin T (ThT) fluorescence, Fourier transform infrared spectroscopy (FT-IR), and circular dichroism (CD). Furthermore, the stirring time was varied to 1, 24, and 48 h, and the effect of the incubation time was investigated. ThT measurements showed that the β-sheet ratio of BSA was the highest when incubated with SiNPs of 10 nm diameter for 1 h. This result can be attributed to the characteristics of small SiNPs such as high curvature and large surface area per mass, facilitating more extensive interactions with BSA. Interestingly, the dependence of the ThT fluorescence intensity on the NP diameter did not show a linear pattern. This is potentially caused by a complex interplay of factors including changes in the curvature and the total surface area of SiNPs. Notably, ultrasmall SiNPs exhibited the potential to induce an abnormal protein conformation. The relationship between the SiNP size and protein secondary structure change presented in this study sheds light on critical factors for the safe and effective application of NPs in future biomedical applications.
Collapse
Affiliation(s)
- Naoya Sakaguchi
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Atsuto Onoda
- Department of Toxicology and Health Science, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 University Street, Sanyo-Onoda City, Yamaguchi 756-0884, Japan
| | - Kyoko Omata
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Masakazu Umezawa
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
- Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| |
Collapse
|
2
|
Gu Q, Lu G, Han J, McClements DJ, Ma C, Liu X, Liu F. Design, fabrication, and performance evaluation of curcumin-loaded nanoparticles based on zein, hyaluronic acid, and tannic acid. Int J Biol Macromol 2025; 309:142884. [PMID: 40194571 DOI: 10.1016/j.ijbiomac.2025.142884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/21/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Nanoparticles have attracted considerable attention as colloidal delivery systems. The performance of nanoparticles can be enhanced by assembling multiple structural components with different functional attributes. In this study, a model hydrophobic nutraceutical (curcumin) was encapsulated in nanoparticles assembled from zein, hyaluronic acid, and tannic acid to enhance its functionality. Specifically, curcumin was loaded into zein-hyaluronic acid-tannic acid (Cur-ZHT) nanoparticles prepared using anti-solvent precipitation. The optimized nanoparticle formulation had a relatively high encapsulation efficiency (92.11 ± 0.13 %), small mean particle diameter (307.40 ± 2.40 nm), and low polydispersity index (0.26 ± 0.01). Hydrophobic interactions and hydrogen bonding played an important role in the assembly of these nanoparticles. Curcumin in Cur-ZHT nanoparticles was protected against environmental stresses, including heating, light exposure, and storage for 30 days. The presence of tannic acid in the nanoparticles enhanced the chemical stability of the curcumin, which was attributed to its strong antioxidant properties. In vitro digestion studies showed that Cur-ZHT nanoparticles effectively protected curcumin from decomposition in gastric juice. Compared to the bioaccessibility of free curcumin (17.44 ± 0.32 %), that of Cur-ZHT nanoparticles was significantly improved to 50.44 ± 0.87 %. The multicomponent nanoparticles developed in this study are suitable for improving the solubility, stability, and bioavailability of hydrophobic bioactive compounds.
Collapse
Affiliation(s)
- Qingzhuo Gu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Gaoyang Lu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jiaqi Han
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | | | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China..
| |
Collapse
|
3
|
Ma S, Yang S, Yang S, Chen L, Yuan M, Jiang Y, Zhao L, Bai C. Physical Modification of Whey Protein by Interacting with Methyl Hesperidin: Impacts on Antioxidant Activity and Underlying Mechanism. BIOLOGY 2025; 14:492. [PMID: 40427681 PMCID: PMC12109383 DOI: 10.3390/biology14050492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025]
Abstract
In this work, the possibility of enhancing the antioxidant capacity of whey protein (WP) through non-covalent interaction with methyl hesperidin (MH, a hesperidin derivative) was assessed. The underlying mechanism was analyzed in terms of multi-spectroscopy methods, thermodynamic analysis, and molecular docking simulation. The data indicated that MH could spontaneously bind to WP and form a non-fluorescent complex when physically mixed together. The presence of MH statically quenched the intrinsic fluorescence of WP, changed the microenvironment of amino acid residue, and altered the secondary and tertiary structure of WP, which in turn enhanced the antioxidant capacity of WP. The underlying mechanism may be assigned to hydrophobic interactions, which promoted MH inserting itself into the hydrophobic cavity in WP. The methoxy group on the B ring of MH may form hydrogen bonds with amino acids, which enhances the freedom of the phenyl hydroxyl group, resulting in higher antioxidant capacity than other hesperidin structural analogs. This research would enrich the theoretical basis about the interaction between protein and hesperidin-based derivatives, and it may supply valuable information for its application in the food and medicine fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Zhao
- National R&D Branch Center for Freshwater Fish Processing, College of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (S.M.); (S.Y.); (S.Y.); (L.C.); (M.Y.); (Y.J.)
| | - Chunqing Bai
- National R&D Branch Center for Freshwater Fish Processing, College of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (S.M.); (S.Y.); (S.Y.); (L.C.); (M.Y.); (Y.J.)
| |
Collapse
|
4
|
Mao JL, Fu JJ, Zhang M, Yuan YW, Chen YW. Effect of high concentration of NaCl and KCl on myosin from large yellow croaker (Larimichthys crocea) under ultrasound. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:4031-4042. [PMID: 39948768 DOI: 10.1002/jsfa.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Partially replacing NaCl with KCl under ultrasound can improve muscle quality and reduce oxidative degeneration of myofibrillar proteins in semi-dried large yellow croaker (Larimichthys crocea). Myosin, the most important protein in myofibrillar protein, plays an important role in muscle quality. Hence, the present study aimed to investigate the effect of replacing NaCl with KCl on the physicochemical properties of myosin derived from large yellow croaker under ultrasound. Furthermore, the application potential of ultrasound to low sodium salt products was evaluated. RESULTS The results showed that ultrasound treatment reduced the aggregation and particle size of myosin. By contrast, at high salt concentrations, myosin oxidation was inhibited and protein aggregation increased. This led to an increase in particle size and a decrease in stability and surface hydrophobicity of myosin. Interestingly, KCl increased myosin solubility and promoted protein unfolding, the excess of which exposed some active sites, leading to oxidative destruction of the proteins. In the present study, the chromophore and surface hydrophobic groups of myosin were exposed as a result of the KCl-mediated unfolding of the α-helices of myosin after the partial replacement of NaCl with KCl. This improved the structural stability of myosin and reduced its oxidative damage. CONCLUSION The findings of the present study show that the presence of NaCl and KCl in the system was more conducive to protecting the key role of myosin in the muscle tissue compared with NaCl alone. Additionally, the study provides insights into the mechanism of K+ and Na+ action on myosin under ultrasound, along with a theoretical basis for the application of ultrasound in low sodium salt products. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun-Long Mao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Jing-Jing Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Min Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yan-Wei Yuan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Yue-Wen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
5
|
Du T, Yang J, Qin Y, Huang X, Li J, Xiong S, Xu X, Zhang L, Zhao M, Li H, Huang T, Xiong T, Xie M. Transport and action of sesame protein-derived ACE inhibitory peptides ITAPHW and IRPNGL. Food Chem 2025; 472:142965. [PMID: 39842202 DOI: 10.1016/j.foodchem.2025.142965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Vascular endothelial dysfunction is an important pathogenic factor in hypertension, in which angiotensin-converting enzyme (ACE) plays an important role. Peptides that bind to ACE may attenuate vascular endothelial dysfunction by altering the structure of ACE. This study demonstrated that ITAPHW and IRPNGL were resistant to simulated gastrointestinal fluid and were transported across the Caco-2 monolayer via the intercellular space, with ITAPHW showing a high apparent permeability coefficient of (1.44 ± 0.01) × 10-5 cm/s. Subsequently, multispectral analysis and molecular dynamic simulation revealed the stability, conformation changes, and potential binding sites of ITAPHW- and IRPNGL-ACE complex. Furthermore, ITAPHW and IRPNGL alleviated endothelial dysfunction in the angiotensin I-induced human umbilical vein endothelial cells (HUVECs) by reducing ACE activity and the concentrations of angiotensin II and endothelin-1 (ET-1), while promoting the level of nitric oxide (NO), endothelial nitric oxide synthase (eNOS), cyclic guanosine 3', 5'-monophosphate (cGMP), and ACE2.
Collapse
Affiliation(s)
- Tonghao Du
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Jiahui Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Yuan Qin
- Party Committee Office for Faculty Affairs, Jiangxi Vocational Technical College of Industry & Trade, No. 699 Jiayan Road, Nanchang, Jiangxi, 330038, PR China
| | - Xizhuo Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Jiahui Li
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Shijin Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Xiaoyan Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Linli Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Mingwei Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Huiyu Li
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Tao Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Tao Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; Jiangxi Academy of Nutrition and Health Management Medicine, The First Affiliated Hospital of Nanchang University, No. 1519 Dongyue Avenue, Nanchang, Jiangxi 330209, PR China.
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| |
Collapse
|
6
|
Hu X, Yuan S, Wen A, Chen Q, Yu H, Guo Y, Cheng Y, Yao W. New insights into the interactions between the antibiotic enrofloxacin and fish protein by spectroscopic, thermodynamic, and theoretical simulation approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125658. [PMID: 39733711 DOI: 10.1016/j.saa.2024.125658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024]
Abstract
In this study, myofibrillar proteins (MPs) from crucian carp were utilized as a model to investigate the binding mechanism between fish proteins and antibiotic residues. Fluorescence quenching confirmed the static quenching (Ksv = 1.89 × 104 M-1 s-1, Kq = 1.89 × 1012 M-1 s-1) and effective binding (Kb = 5.66 × 106 M-1) of Enrofloxacin (ENRO) to MPs. Fourier-transform infrared spectroscopy and circular dichroism spectroscopy revealed that ENRO binding altered the secondary structure of MPs. The interaction mechanism, primarily driven by hydrogen bonding, electrostatic, and hydrophobic interactions (ΔH0 < 0, ΔS0 > 0), was elucidated using isothermal titration calorimetry. The ΔH0, -TΔS0 and ΔG0 values of the binding reaction between MPs and ENRO were -5.98 kJ/mol, -32.57 kJ/mol and -38.55kJ/mol. Molecular docking further verified the interaction forces, identifying key amino acid residues (Phe-40, His-93, and Lys-42) involved in ENRO binding. Additionally, protein carbonylation results demonstrated that even at maximum residue limits, ENRO accelerated MPs oxidation, further confirming the binding of the two. This study can provide theoretical support for the research of the dissipation fate of bound state residues in aquatic products.
Collapse
Affiliation(s)
- Xinyuan Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China.
| | - Aying Wen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| |
Collapse
|
7
|
Pei Y, Yuan L, Zhou W, Yang J. Tyrosinase-Catalyzed Soy Protein and Tannic Acid Interaction: Effects on Structural and Rheological Properties of Complexes. Gels 2025; 11:195. [PMID: 40136900 PMCID: PMC11941907 DOI: 10.3390/gels11030195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
This study investigated the structural, rheological, and microstructural properties of soy protein isolate (SPI) induced by tyrosinase-catalyzed crosslinking with tannic acid (TA) at 25 °C under neutral conditions at pH 6.5. The particle size and polydispersity index of modified SPI progressively increased with rising TA concentrations. Tyrosinase-induced polymerization significantly impacted the conformational structure of SPI, evidenced by a notable decrease in intrinsic fluorescence, a pronounced red shift, and a remarkable reduction in surface hydrophobicity. FTIR analysis further revealed that, compared to control SPI, the amide I, II, and III bands of SPI incubated with TA and tyrosinase exhibited varying degrees of red-shift or blue-shift. These observations suggested a substantial alteration in the secondary structure of SPI after incubation with TA and tyrosinase. The apparent viscosity, G', and G″ of the modified SPI increased with higher TA concentrations, indicating that the modification of SPI by TA in the presence of tyrosinase resulted in enhanced covalent crosslinking. Microstructural observations confirmed that higher TA levels promoted the formation of denser and more uniform gel-like networks. The findings demonstrated that tyrosinase-mediated crosslinking improved the functionality of SPI, making it a promising approach for food applications.
Collapse
Affiliation(s)
- Yaqiong Pei
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | | | | | - Jun Yang
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| |
Collapse
|
8
|
Wang M, Guo W, Ke Z, Mao H, Lv J, Qi L, Wang J. Inhibitory mechanisms of galloylated forms of theaflavins on α-glucosidase. Int J Biol Macromol 2025; 294:139324. [PMID: 39755321 DOI: 10.1016/j.ijbiomac.2024.139324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Theaflavins, oxidation product of tea polyphenols, have demonstrated significant inhibitory effects on α-glucosidase, which is beneficial in alleviating hyperglycemia. This study found that the inhibition of four monomers of theaflavins on α-glucosidase was related to the presence of the galloyl moiety (GM), with IC50 values ranging from TFDG (0.26 mg/mL) < TF3'G (0.33 mg/mL) < TF3G (0.39 mg/mL) ≪ TF (3.26 mg/mL). The multi-spectroscopic analyses revealed that theaflavin monomers changed the microenvironment around aromatic amino acid residues and conformation of α-glucosidase, with the hierarchy being TFDG > TF3'G > TF3G > TF. The binding of theaflavins with α-glucosidase was confirmed by differential scanning calorimetry (DSC), isothermal titration calorimetry (ITC), molecular docking and molecular dynamics simulations analysis. It was confirmed that theaflavins can form stable complexes with α-glucosidase, and that hydrogen bonding and van der Waals forces play important roles in the binding of theaflavins to α-glucosidase. The strongest binding affinity was observed between TFDG and the enzyme's active site, which corresponded with its enzyme activity inhibition ability. The study suggests that GM substitution plays a crucial role in enhancing the binding of theaflavins to α-glucosidase, thereby inducing greater conformational changes and leading to a stronger inhibitory effect on α-glucosidase.
Collapse
Affiliation(s)
- Mengting Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Wenwen Guo
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhijian Ke
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| | - Haiguang Mao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Jimin Lv
- Xianghu Laboratory, Hangzhou 311231, China
| | - Lili Qi
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| | - Jinbo Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| |
Collapse
|
9
|
Chen W, Chen J, Ni Z, Wu W, Dong J, Wang Z, Wang Y, Zhou J. Comprehensive study of matcha foam formation: Physicochemical composition analysis and mechanisms impacting foaming properties. Food Chem 2025; 465:142009. [PMID: 39550972 DOI: 10.1016/j.foodchem.2024.142009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
Tea foam is crucial for new food and drink innovations. This study examined nine types and grades of matcha, identifying Longjing 43 as a high-quality raw material for matcha with good foaming properties. Foam scanning, particle electrophoresis and biochemical analysis revealed that pH (≈6.0), catechins (such as EGCG), amino acids (such as valine), pectin, soluble proteins and lipids enhanced foam formation. These components affected matcha's foaming through inter-component complexation, hydrophobic interaction of groups and intermolecular hydrogen bonds. EGCG had the greatest impact on foaming ability (1.89-fold), while amino acids primarily stabilized the foam. At the molecular level, phenolic hydroxyl groups close to each other promoted foaming, whereas alcoholic hydroxyl groups had the opposite effect. Phenol (5.17-fold) and n-propanol (8.03-fold) were the most effective foam promoters among phenols and alcohols. This study enhances our understanding of tea foam's biochemical mechanisms, driving innovation in food and beverage products.
Collapse
Affiliation(s)
- Wei Chen
- Tea Research Institute, Zhejiang University, Hangzhou 310058, PR China
| | - Jiayi Chen
- Tea Research Institute, Zhejiang University, Hangzhou 310058, PR China
| | - Zixin Ni
- Tea Research Institute, Zhejiang University, Hangzhou 310058, PR China
| | - Wangjing Wu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, PR China
| | - Junjie Dong
- Zhejiang Camel Transworld (organic Foods) Co., Ltd., Hangzhou 311100, PR China
| | - Zi Wang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, PR China
| | - Yuefei Wang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, PR China
| | - Jihong Zhou
- Tea Research Institute, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
10
|
Mohamed R, Xie J, Wei F, Luo L, Luo W, Zeng L. Effects of Extraction Temperature of Protein from Date Palm Pollen on the Astringency Taste of Tea. Foods 2025; 14:508. [PMID: 39942100 PMCID: PMC11817395 DOI: 10.3390/foods14030508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
The astringency of tea, predominantly attributed to epigallocatechin gallate (EGCG), plays a crucial role in shaping its overall quality, and plant-based proteins are gaining popularity as a preferred alternative to milk-based proteins for enhancing the flavor profile of tea. This study investigated the impact of extraction temperature on date palm pollen (DPP) protein quality and tea astringency, comparing temperatures of 30 °C and 80 °C. Results indicated that higher extraction temperatures yield more protein and improve the thermal and surface properties of DPP. The molecular interaction between DPP and EGCG was investigated in an aqueous solution, and spectroscopic analyses (FTIR, UV, and CD) revealed that EGCG interactions at a 1:1 molar ratio induced structural changes in α-helix and β-sheet content in secondary structures in DPP, particularly at 80 °C, which strengthened and enhanced the hydrophobic interactions and hydrogen bonds between DPP molecules as EGCG concentration increased. A sensory evaluation using quantitative descriptive analysis (QDA) confirmed a significant reduction in astringency in DPP-tea polyphenol solutions extracted at 80 °C. This research highlights the potential of DPP as a functional ingredient in the food industry, creating a protein-polyphenol complex that reduces tea's astringency while maintaining its unique flavor profile, thus offering a novel approach to enhance tea beverages.
Collapse
Affiliation(s)
- Rania Mohamed
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (R.M.); (J.X.); (F.W.); (L.L.)
- Department of Food Science and Technology, Faculty of Agriculture, University of Khartoum, Shambat 13314, Sudan
- Chongqing Tea Technology and Innovation Center, Chongqing 400715, China
| | - Jizhou Xie
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (R.M.); (J.X.); (F.W.); (L.L.)
- Chongqing Tea Technology and Innovation Center, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Fang Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (R.M.); (J.X.); (F.W.); (L.L.)
- Chongqing Tea Technology and Innovation Center, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Liyong Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (R.M.); (J.X.); (F.W.); (L.L.)
- Chongqing Tea Technology and Innovation Center, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Wei Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (R.M.); (J.X.); (F.W.); (L.L.)
- Chongqing Tea Technology and Innovation Center, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Liang Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (R.M.); (J.X.); (F.W.); (L.L.)
- Chongqing Tea Technology and Innovation Center, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| |
Collapse
|
11
|
Li R, Guo X, Liu P, Li Y, Qiu S, Wang Y. Effect of carrageenan on stability and 3D printing performance of high internal phase pickering emulsion stabilized by soy protein isolate aggregates under neutral condition. Carbohydr Polym 2025; 349:123020. [PMID: 39638508 DOI: 10.1016/j.carbpol.2024.123020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
High internal phase Pickering emulsion (HIPPE) stabilized by heat induced soy protein isolate aggregates (HSPI) alone had limited stability and poor 3D printing performance. While there is few research about HIPPE stabilized by HSPI and polysaccrides at neutral pH condition, where HSPI and ĸ-carrageenan (CG) were combined to fabricate HIPPE in this research. It was found that the incorporation of CG significantly decreased the droplet size and improved the storage stability of the resulting HIPPE. Moreover, the presence of CG improved the freeze-thaw stability of HIPPE after one freeze-thaw cycle. In addition, the addition of CG significantly improved the structural integrity of the 3D printed HIPPE and enhanced the printing precision. This was because the presence of CG decreased the interfacial tension, increased the zeta potential and viscosity of HSPI-CG, thus promoting the adsorption of particles to the oil-water interface more effectively. Moreover, the presence of CG significantly enhanced the viscoelasticity of the resulting HIPPE. These results can be further attributed to the strong hydrogen bonding and hydrophobic interaction between HSPI and CG at neutral pH condition, which can be confirmed from results of Fourier-transform infrared spectroscopy and Isothermal titration calorimeter. So the incorporation of CG endowed HIPPE with more excellent properties at a lower solid particle concentration.
Collapse
Affiliation(s)
- Rui Li
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province,College of Tobacco science, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiuqin Guo
- College of Food and Bioengineering, Zhengzhou University of Light Industry, China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, China
| | - Pengfei Liu
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province,College of Tobacco science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuanyuan Li
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province,College of Tobacco science, Henan Agricultural University, Zhengzhou 450002, China
| | - Si Qiu
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
| | - Yuntao Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, China.
| |
Collapse
|
12
|
Can Karaca A, Tan C, Assadpour E, Jafari SM. Recent advances in the plant protein-polyphenol interactions for the stabilization of emulsions. Adv Colloid Interface Sci 2025; 335:103339. [PMID: 39571482 DOI: 10.1016/j.cis.2024.103339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Proteins from plant sources including legumes, cereals and oilseeds are gaining attention due to their suitability for sustainable production, functionality, and positive consumer perception. On the other hand, polyphenols (PPs) are receiving considerable attention as natural ingredients in the human diet due to their potent antioxidant and anti-inflammatory properties. Recent studies indicate that the emulsifying properties of plant proteins (PLPs) can be improved after modification through covalent and/or non-covalent interactions with PPs due to the changes in the conformation and/or the surface chemistry of the proteins. Complexes formed between PLPs-PPs can serve as innovative ingredients for developing novel food products with modified textural properties. Also, Pickering emulsions, multiple emulsions, multilayer emulsions, nanoemulsions, and high internal phase emulsions can be stabilized by such systems to deliver bioactive compounds. This paper reviews the most recent research on the PLP-PP interactions and their role in the stabilization of various emulsion-based systems. A special emphasis is given to modifying the structure and functionality of PLPs and PPs. The challenges and opportunities of applying PLP-PP interactions in emulsion-based systems are also highlighted.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education. China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
13
|
Qiu C, Meng Y, Zhang Z, Li X, McClements DJ, Li G, Jiang L, Wen J, Jin Z, Ji H. Enhancement of soy protein functionality by conjugation or complexation with polysaccharides or polyphenols: A review. Compr Rev Food Sci Food Saf 2025; 24:e70095. [PMID: 39746860 DOI: 10.1111/1541-4337.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
Soy proteins have good nutritional quality and exhibit a range of useful functional attributes, making them a viable option for replacing animal proteins in the development of more sustainable and eco-friendly plant-based food products. Nevertheless, soy proteins are prone to denaturation and/or aggregation under conditions they encounter in some food and beverage products (including certain pH, ionic, and thermal conditions), which adversely impact their functional performance. This problem can often be overcome by covalently (conjugation) or noncovalently (complexation) linking the soy proteins to polysaccharides or polyphenols, thereby expanding their application scope. Compared to soy proteins alone, these conjugates or complexes exhibit enhanced technofunctional performance, including improved solubility, emulsification, foaming, gelling, antimicrobial properties, and antioxidant capacities. Conjugates are typically more stable than complexes, which may be an advantage for some food applications. However, complexes do not require additional regulatory approval, which makes them more suitable for most food applications. This review aims to comprehensively examine the enhancement of soy protein functionality through conjugation or complexation with polysaccharides or polyphenols. The research focuses on how these modifications enhance solubility, emulsification potential, foaming, gelling, and antioxidant properties, reduce the allergenicity of soy proteins, and enable their potential applications in plant-based food development, 3D food printing, fat substitutes, functional food carriers, and hypoallergenic foods.
Collapse
Affiliation(s)
- Chao Qiu
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yaxu Meng
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Zhiheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu, China
| | | | - Guanghua Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Liming Jiang
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Jinsheng Wen
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Li Y, Guo Y, Jiang H, Zhang Q, Liu J. Antimicrobial activity, foaming properties, and interacting mechanism of rhamnolipids in presence of silk fibroin through spectroscopy, molecular docking, and microbiological experiments. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124899. [PMID: 39094269 DOI: 10.1016/j.saa.2024.124899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/21/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
As a type of biosurfactant, rhamnolipids (RLs) are multifunctional skin-care ingredients, and the molecular interaction of RLs with silk fibroin (SF) is a more complicated process than has long been believed. The interaction and functional properties of them, and their potential as fungicidal agents for agricultural products and as organic preservatives for cosmetics were assessed in this paper. The SF addition makes the RLs aggregation easier through the complexes formation, which decreases the applied concentration of surfactant. The results of spectroscopic analyses and molecular docking suggest that hydrogen bonding and van der Waals forces are significant contributed to the binding mechanism between the two substances. The addition of SF notably enhances the foaming capacity and stability of RLs. The certain antibacterial and antifungal properties of RLs are basically not affected by the SF addition, even the SF-RLS system demonstrates an unobvious synergistic inhibitory impact on Glomerella cingulate (GC). The results offer a theoretical framework for the utilization of RLs as natural fungicides and preservatives in presence of nutritional components, considering the properties of RLs as nontoxic, biodegradable, environmentally friendly, and good compatibility.
Collapse
Affiliation(s)
- Yutong Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Yu Guo
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Hanlu Jiang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China.
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China.
| |
Collapse
|
15
|
Li Y, Zhang Y, He G, Qiao Z, Yang R, Zhou X, Chen L, Feng X. Soy protein isolate ameliorate gel properties by regulating the non-covalent interaction between epigallocatechin-3-gallate and myofibrillar protein. Food Chem 2024; 460:140655. [PMID: 39128365 DOI: 10.1016/j.foodchem.2024.140655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
This study primarily investigated the improvement of high-dose Epigallocatechin-3-Gallate (EGCG)-induced deterioration of MP gel by soy protein isolate (SPI) addition. The results showed that EGCG could interact with MP, SPI, and HSPI (heated), indicating the competitive ability of SPI/HSPI against EGCG with MP. EGCG was encapsulated by SPI/HSPI with high encapsulation efficiency and antioxidation, with antioxidant activities of 78.5% ∼ 79.2%. FTIR and molecular docking results revealed that MP, SPI, and HSPI interacted with EGCG through hydrogen bonding and hydrophobic interactions. SPI/HSPI competed with MP for EGCG, leading to the restoration of MHC and Actin bands, alleviating the aggregation caused by EGCG and oxidation. Additionally, SPI/HSPI-E significantly reduced the high cooking loss (23.71 and 26.65%) and gel strength (13.60 and 17.02%) induced by EGCG. Hence, SPI competed with MP for EGCG binding site to ameliorate MP gel properties, thereby alleviating the detrimental changes in MP caused by high-dose EGCG and oxidation.
Collapse
Affiliation(s)
- Ying Li
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yijun Zhang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Gongchen He
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Ziyan Qiao
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Rong Yang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xi Zhou
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Lin Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
16
|
Manzoor MF, Zeng XA, Waseem M, Siddique R, Javed MR, Verma DK, Ali M. Soy protein-polyphenols conjugates interaction mechanism, characterization, techno-functional and biological properties: An updated review. Food Chem 2024; 460:140571. [PMID: 39079358 DOI: 10.1016/j.foodchem.2024.140571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/06/2024] [Accepted: 07/21/2024] [Indexed: 09/05/2024]
Abstract
Soy protein is a promising nutritional source with improved functionality and bioactivities due to conjugation with polyphenols (PP)-the conjugates between soy protein and PP held by covalent and noncovalent bonds. Different approaches, including thermodynamics, spectroscopy, and molecular docking simulations, can demonstrate the outcomes and mechanism of these conjugates. The soy protein, PP structure, matrix properties (temperature, pH), and interaction mechanism alter the ζ-potential, secondary structure, thermal stability, and surface hydrophobicity of proteins and also improve the techno-functional properties such as gelling ability, solubility, emulsifying, and foaming properties. Soy protein-PP conjugates also reveal enhanced in vitro digestibility, anti-allergic, antioxidant, anticancer, anti-inflammatory, and antimicrobial activities. Thus, these conjugates may be employed as edible film additives, antioxidant emulsifiers, hydrogels, and nanoparticles in the food industry. Future research is needed to specify the structure-function associations of soy protein-PP conjugates that may affect their functionality and application in the food industry.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Muhammad Waseem
- Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Rabia Siddique
- Department of Chemistry, Government College University Faisalabad, Pakistan
| | - Muhammad Rizwan Javed
- Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Murtaza Ali
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
17
|
Li T, Zhang Y, Shao J, Hou R, Zhang Z, Ye C, Wang H, Zhu B, Zhang Y. Enhancement of non-covalent interaction between soy protein isolate and quercetin by sodium alginate. Food Chem 2024; 460:140422. [PMID: 39068794 DOI: 10.1016/j.foodchem.2024.140422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/16/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Effects of sodium alginate (SA) on the non-covalent interaction between soybean protein isolate (SPI) and quercetin (Que) were investigated by multispectral technology, molecular docking and dynamics simulation technology. Structural alterations of the binary complexes were observed after SA addition, characterized by a red shift of maximum fluorescence emission wavelength. The introduction of 0.1% (w/v) SA led to a reduction of 12.3% in the α-helix and β-sheet structures, accompanied by 12.6% increase in the β-turn and random coil conformations. The binding of SA to SPI provided electrostatic interactions and facilitated the subsequent binding of SPI to Que. Molecular docking confirmed that hydrophobic interactions and electrostatic interactions were also the main driving force. Molecular dynamics simulation emphasized that the ternary complexes with SA exhibited greater stability compared to the binary ones. The foaming and emulsifying properties of SPI-Que complexes were enhanced by 33.76% and 68.28%, respectively, due to the addition of SA.
Collapse
Affiliation(s)
- Taoran Li
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yubo Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Juanjuan Shao
- Department of Science and Technology, Hebei Agricultural University, Hebei 061100, China
| | - Ruiyang Hou
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zifan Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chengxiang Ye
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongwu Wang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Beibei Zhu
- College of Chinese Medicine Pharmaceutical Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yating Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
18
|
Chen Y, Wei Q, Chen Y, Jiang L, Wang J, Zhang W. Atmospheric cold plasma pretreatment for effective enhancement of covalent crosslinking between coconut globulin and tannic acid: Improving interfacial activity and emulsifying properties. Int J Biol Macromol 2024; 281:136524. [PMID: 39414189 DOI: 10.1016/j.ijbiomac.2024.136524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Atmospheric cold plasma (ACP) represents a promising approach for enhancing covalent interactions between proteins and polyphenols, circumventing the drawbacks associated with traditional methods. This study aims to investigate the enhancement of covalent interactions between coconut globulin (CG) and tannic acid (TA) facilitated by ACP at varying pH levels. At acidic pH, ACP treatment was found to promote free radical-induced covalent cross-linking between CG and TA, whereas at pH 7.0 and 9.0, ACP treatment enhanced quinone-induced covalent cross-linking. In contrast, the covalent crosslinking induced by quinone significantly disrupted the protein structure, leading to greater exposure of hydrophobic groups. At pH 9.0, the CG-TA complex treated with ACP exhibited the highest interfacial activity, with an interfacial adsorption mass of 5292 ng/cm2. This was accompanied by improvements in droplet size, viscosity, and stability of the CG-TA-stabilized emulsion. These findings offer novel insights into the covalent modification of proteins and polyphenols, thereby broadening the potential applications of food protein.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Qiaozhu Wei
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yile Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lianzhou Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; International Research Center for High Value Processing of Tropical Specialty Protein Resources, Hainan University, Haikou 570228, China
| | - Jiamei Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570228, China; International Research Center for High Value Processing of Tropical Specialty Protein Resources, Hainan University, Haikou 570228, China.
| |
Collapse
|
19
|
Harimana Y, Muhoza B, Munyandamutsa P, Gankhuyag J, Zhang S, Li Y. Unraveling the binding mechanism between soybean protein isolate and selected bioactive compounds. Food Chem 2024; 447:139031. [PMID: 38513491 DOI: 10.1016/j.foodchem.2024.139031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
The present study was aimed to investigate the interactions between soybean protein isolate (SPI) with resveratrol (RESV) and lutein (LUT). The binding forces, molecular interactions and functional properties were explored by multi-spectroscopic analysis, molecular docking and functional property indexes between SPI and RESV/LUT. The RESV/LUT quenched SPI chromophore residues with static mechanism and the endothermic reaction. The SPI- RESV/LUT complexes were formed through hydrogen bond, electrostatic and hydrophobic interactions. Molecular docking confirmed van-der-Waals force as one of the important forces. The interaction of RESV/LUT led to SPI's secondary structure alterations with a decrease in α-helix and random coil and an increase in β-sheet and β-turns. RESV/LUT developed foaming and emulsifying properties of SPI and showed a significant decrease of the surface hydrophobicity with RESV/LUT concentrations increase attributed to SPI's partial unfolding. Our study exposed molecular mechanisms and confirmations to understand the interactions in protein- RESV/LUT complexes for protein industrial base promotion.
Collapse
Affiliation(s)
- Yves Harimana
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; School of Veterinary Medicine, University of Rwanda, Rwanda
| | - Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research and Product Development Center, Shandong Guohong Biotechnology Company Limited, Liaocheng, Shandong 252899, China
| | | | - Javzan Gankhuyag
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research and Product Development Center, Shandong Guohong Biotechnology Company Limited, Liaocheng, Shandong 252899, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research and Product Development Center, Shandong Guohong Biotechnology Company Limited, Liaocheng, Shandong 252899, China.
| |
Collapse
|
20
|
Huang F, Dai Q, Zheng K, Ma Q, Liu Y, Jiang S, Jiang W, Yan X. Exploring the inhibitory potential of KPHs-AL-derived GLLF peptide on pancreatic lipase and cholesterol esterase activities. Food Chem 2024; 439:138108. [PMID: 38061297 DOI: 10.1016/j.foodchem.2023.138108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 01/10/2024]
Abstract
The effective modulation of pancreatic lipase and cholesterol esterase activities proves critical in maintaining circulatory triglycerides and cholesterol levels within physiological boundaries. In this study, peptides derived from KPHs-AL, produced through the enzymatic hydrolysis of skipjack tuna dark muscle using alkaline protease, have a specific inhibitory effect on pancreatic lipase and cholesterol esterase. It is hypothesized that these peptides target and modulate the activities of enzymes by inducing conformational changes within their binding pockets, potentially impacting the catalytic functions of both pancreatic lipase and cholesterol esterase. Results revealed these peptides including AINDPFIDL, FLGM, GLLF and WGPL, were found to nestle into the binding site groove of pancreatic lipase and cholesterol esterase. Among these, GLLF stood out, demonstrating potent inhibition with IC50 values of 0.1891 mg/mL and 0.2534 mg/mL for pancreatic lipase and cholesterol esterase, respectively. The kinetics studies suggested that GLLF competed effectively with substrates for the enzyme active sites. Spectroscopic analyses, including ultraviolet-visible, fluorescence quenching, and circular dichroism, indicated that GLLF binding induced conformational changes within the enzymes, likely through hydrogen bond formation and hydrophobic interactions, thereby increasing structural flexibility. Molecular docking and molecular dynamics simulations supported these findings, showing GLLF's stable interaction with vital active site residues. These findings position GLLF as a potent inhibitor of key digestive enzymes, offering insights into its role in regulating lipid metabolism and highlighting its potential as functional ingredient.
Collapse
Affiliation(s)
- Fangfang Huang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China; Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Qingfei Dai
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
| | - Kewei Zheng
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
| | - Qingbao Ma
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
| | - Yu Liu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
| | - Shuoqi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, Jiangsu, China
| | - Wei Jiang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China; Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China.
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China; Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
21
|
Zhang Z, Li T, Zhang Y, Shao J, Ye C, Wang H, Zhu B, Zhang Y. Effect of polysaccharides on conformational changes and functional properties of protein-polyphenol binary complexes: A comparative study. Int J Biol Macromol 2023; 253:126890. [PMID: 37716302 DOI: 10.1016/j.ijbiomac.2023.126890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
This study aimed to investigate the effect of different polysaccharides on the binding behavior and functional properties of soybean protein isolate (SPI)-quercetin (Que) complex. The binding behavior was assessed using multi-spectral technique with the Stern-Volmer equation, which confirmed the presence of static fluorescence quenching in Que and SPI. The addition of sodium alginate (SA) resulted in a reduction of the binding affinity between SPI and Que, while dextran (DX) exhibited some promoting effect. A slight blue shift was observed in amide I and amide II bands, indicating the presence of hydrophobic and electrostatic interactions. Circular dichroism spectra revealed the ordered structures transformed into a more disordered state when polysaccharides were added, leading to an increase in random coils (SA: 18.5 %, DX: 15.4 %). Docking and dynamic simulations demonstrated that SA displayed greater stability within the hydrophobic compartments of SPI than DX, increased rigidity and stability of the SPI structure in SPI-Que-SA complexes. Electrostatic forces played a significant role between SPI and SA, while van der Waals forces were the main driving forces in SPI-DX complexes. Overall, the introduction of SA led to a looser and stable structure of SPI-Que complexes, resulting in an improvement of their emulsifying, foaming, and antioxidant properties.
Collapse
Affiliation(s)
- Zifan Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Taoran Li
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yubo Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Juanjuan Shao
- Department of Science and Technology, Hebei Agricultural University, Hebei 061100, China
| | - Chengxiang Ye
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongwu Wang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Beibei Zhu
- College of Chinese Medicine Pharmaceutical Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China..
| | - Yating Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
22
|
Li M, Kong J, Chen Y, Li Y, Xuan H, Liu M, Zhang Q, Liu J. Comparative interaction study of soy protein isolate and three flavonoids (Chrysin, Apigenin and Luteolin) and their potential as natural preservatives. Food Chem 2023; 414:135738. [PMID: 36841103 DOI: 10.1016/j.foodchem.2023.135738] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
In this work, the potential of soy protein isolate (SPI)-luteolin (Lut)/apigenin (Ap)/chrysin (Chr) complexes as natural preservatives for food and cosmetics was evaluated by comparing their interactional and functional properties with structure-activity relationship. The results of spectrometry and molecular docking indicated that the B-ring hydroxylation of flavonoids affected their binding constants with SPI, which were determined as Lut (1.45 × 106 L/mol) > Ap (2.04 × 105 L/mol) > Chr (3.81 × 104 L/mol) at 298.15 K. It demonstrated that the hydrogen bonding force played an important role in binding flavonoids to SPI. Moreover, the anti-oxidation ability, antimicrobial effect, and foaming properties were positively correlated with increase in number of hydroxyl groups on the B-ring, but the amount and type of the preservative should be adjusted aimed at the nutrition components. This study provides a theoretical basis for the use of flavonoids and SPI-flavonoid complexes as natural preservatives for food and cosmetics.
Collapse
Affiliation(s)
- Mingyuan Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Jing Kong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Yanrong Chen
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Yutong Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Hongzhuan Xuan
- School of Life Science, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China.
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China.
| |
Collapse
|
23
|
Dai YH, Wei JR, Chen XQ. Interactions between tea polyphenols and nutrients in food. Compr Rev Food Sci Food Saf 2023; 22:3130-3150. [PMID: 37195216 DOI: 10.1111/1541-4337.13178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/08/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
Tea polyphenols (TPs) are important secondary metabolites in tea and are active in the food and drug industry because of their rich biological activities. In diet and food production, TPs are often in contact with other food nutrients, affecting their respective physicochemical properties and functional activity. Therefore, the interaction between TPs and food nutrients is a very important topic. In this review, we describe the interactions between TPs and food nutrients such as proteins, polysaccharides, and lipids, highlight the forms of their interactions, and discuss the changes in structure, function, and activity resulting from their interactions.
Collapse
Affiliation(s)
- Yi-Hui Dai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Jia-Ru Wei
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Xiao-Qiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| |
Collapse
|
24
|
Ma Y, Zhang S, Feng Y, Wang H, Liu Y, Wang C. Modification of the Structural and Functional Characteristics of Mung Bean Globin Polyphenol Complexes: Exploration under Heat Treatment Conditions. Foods 2023; 12:foods12112091. [PMID: 37297336 DOI: 10.3390/foods12112091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023] Open
Abstract
During the storage and processing of mung beans, proteins and polyphenols are highly susceptible to interactions with each other. Using globulin extracted from mung beans as the raw material, the study combined it with ferulic acid (FA; phenolic acid) and vitexin (flavonoid). Physical and chemical indicators were combined with spectroscopy and kinetic methods, relying on SPSS and peak fit data to statistically analyze the conformational and antioxidant activity changes of mung bean globulin and two polyphenol complexes before and after heat treatment and clarify the differences and the interaction mechanism between globulin and the two polyphenols. The results showed that, with the increase in polyphenol concentration, the antioxidant activity of the two compounds increased significantly. In addition, the antioxidant activity of the mung bean globulin-FA complex was stronger. However, after heat treatment, the antioxidant activity of the two compounds decreased significantly. The interaction mechanism of the mung bean globulin-FA/vitexin complex was static quenching, and heat treatment accelerated the occurrence of the quenching phenomenon. Mung bean globulin and two polyphenols were combined through a hydrophobic interaction. However, after heat treatment, the binding mode with vitexin changed to an electrostatic interaction. The infrared characteristic absorption peaks of the two compounds shifted to different degrees, and new peaks appeared in the areas of 827 cm-1, 1332 cm-1, and 812 cm-1. Following the interaction between mung bean globulin and FA/vitexin, the particle size decreased, the absolute value of zeta potential increased, and the surface hydrophobicity decreased. After heat treatment, the particle size and zeta potential of the two composites decreased significantly, and the surface hydrophobicity and stability increased significantly. The antioxidation and thermal stability of the mung bean globulin-FA were better than those of the mung bean globulin-vitexin complex. This study aimed to provide a theoretical reference for the protein-polyphenol interaction mechanism and a theoretical basis for the research and development of mung bean functional foods.
Collapse
Affiliation(s)
- Yantao Ma
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China
| | - Shu Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China
- National Coarse Cereals Engineering Research Centre, Daqing 163319, China
| | - Yuchao Feng
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China
| | - Haoyu Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China
| | - Yuhang Liu
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China
- National Coarse Cereals Engineering Research Centre, Daqing 163319, China
- Heilongjiang Food and Biotechnology Innovation and Research Center (International Cooperation), Daqing 163319, China
| |
Collapse
|
25
|
Zhang J, Jia Y, Wu W, Zhang Y, Chen P, Li X, Wei X, Li C, Li K. Influence of hemin on structure and emulsifying properties of soybean protein isolate. Food Chem 2023; 421:136183. [PMID: 37116442 DOI: 10.1016/j.foodchem.2023.136183] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 04/30/2023]
Abstract
Hemin has potential application value in plant-based meat analogues. However, mechanisms of interaction between hemin and plant protein are unclear. In this study, soy protein isolate (SPI) was applied to examine these interactions using multi-spectroscopic and molecular docking techniques. Additionally, the influence of hemin on emulsification of SPI was also explored. Fluorescence and UV-Vis spectra showed quenching of SPI by hemin was static, resulting in conformation changes on the surface amino acid residues, around which hydrophobicity was significantly reduced from 425.9 ± 16.2 to 108.9 ± 1.8 (p < 0.05). FTIR and CD spectra results suggested the protein secondary structure altered, and the content of α-helix and random coils increased by 1.13% and 1.43%, respectively. Furthermore, emulsifying properties of SPI were strengthened with increased hemin. This work improves our understanding of interactions between SPI and hemin and offer a theoretical basis for application of heme in plant-based meat analogues.
Collapse
Affiliation(s)
- Jiaming Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Yangyang Jia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjin Wu
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yingying Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaofang Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuetuan Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
26
|
Chao Song Z, Zhang H, Fei Niu P, Shi LS, Yan Yang X, Hong Meng Y, Yu Wang X, Gong T, Rong Guo Y. Fabrication of a novel antioxidant emulsifier through tuning the molecular interaction between soy protein isolates and young apple polyphenols. Food Chem 2023; 420:136110. [PMID: 37105086 DOI: 10.1016/j.foodchem.2023.136110] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Soy protein isolates (SPI) exhibit weaker emulsifying properties than those of animal proteins, thereby limiting their wide applicability. In this study, a novel plant-based antioxidant emulsifier was developed using SPI and young apple polyphenols (YAP), and its underlying interaction mechanisms were discovered using multispectral technology and molecular docking. YAP physically bound to SPI through hydrogen bonds and hydrophobic interactions, which significantly enhanced the free radicals scavenging, reducing, and metal ion chelating abilities of SPI by introducing free hydroxyl groups. Moreover, SPI modified by YAP exerted better emulsifying performance owing to a looser protein structure, reflected by a higher random coil and a lower α-helix content. In addition, YAP may bridge adjacent SPI molecules, promoting the adsorption and anchoring of SPI at the oil-water interface. SPI-YAP complexes are promising antioxidant emulsifiers that can be used to nano-deliver functional oils and nutrients, thereby broadening SPI and YAP applications in the food industry.
Collapse
Affiliation(s)
- Zhi Chao Song
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Huan Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Peng Fei Niu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Lin Shan Shi
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Xue Yan Yang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Yong Hong Meng
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Xiao Yu Wang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Tian Gong
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China.
| | - Yu Rong Guo
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China.
| |
Collapse
|
27
|
Wen J, Jin H, Wang L, Zhang Y, Jiang L, Sui X. Fabrication and characterization of high internal phase Pickering emulsions based on pH-mediated soy protein-epigallocatechin-3-gallate hydrophobic and hydrophilic nano-stabilizer. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
28
|
Liu Y, Bu Y, Zhu W, Li J, Li X. Effects of divalent mercury on myosin structure of large yellow croaker and its binding mechanism: Multi-spectroscopies and molecular docking. Food Chem 2023; 418:135972. [PMID: 36965387 DOI: 10.1016/j.foodchem.2023.135972] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 03/27/2023]
Abstract
Heavy metals have long biological half-lives and are therefore a major threat to aquatic organisms, especially fish. Divalent mercury (Hg(II)) is an important form from a toxicological viewpoint. In this paper, we studied the interaction mechanism between large yellow croaker myosin and Hg(II) by multi-spectroscopies and molecular docking. Hg(II) had a positive effect on improving the elasticity of myosin gel, and the constant increase of charge would destroy the gel. Hg(II) caused myosin to aggregate, and the protein's apparent structure rapidly increased in length. The content of α-helix obviously decreased, β-turns and β-sheet increased. The myosin and Hg(II) quenching type was static quenching. Thermodynamic analysis suggested hydrogen bonding and van der Waals forces were the main forces for the combination. The molecular docking further confirmed the mechanism of action. This study provides a theoretical guidance for the preventions and control of marine heavy metals.
Collapse
Affiliation(s)
- Yingnan Liu
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Ying Bu
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Wenhui Zhu
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
29
|
Tang Z, Tao Y, Huang Q, Huang Y, Huang J, Wu Y, Jing X, Yang T, Li X, Liang J, Sun Y. Fabrication, Characterization, and Emulsifying Properties of Complex Based on Pea Protein Isolate / Pectin for the Encapsulation of Pterostilbene. Food Chem X 2023; 18:100663. [PMID: 37064496 PMCID: PMC10090216 DOI: 10.1016/j.fochx.2023.100663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
In this study, pectin (PEC) and pea protein isolate(PPI) was successfully used to create complexes as a novel delivery system for pterostilbene (PT). When the mass ratio of PEC to PPI was 0.5, the particle size and ζ-potential of PPI-PEC-PT were 119.41 ± 5.68 nm and -23.26 ± 0.61 mV, respectively, and the encapsulation efficiency (EE) of PT was 90.92 ± 2.08%. The photochemical stability of PT was enhanced after encapsulation. The results of the molecular docking and multispectral analysis demonstrated that the PPI and PT binding was spontaneous and mostly fueled by hydrophobic interactions. The hydrophobicity of PPI was significantly decreased and the emulsification activity and emulsion stability were significantly improved after production with PEC and PT. The best emulsification impact was demonstrated by the PPI-PEC-PT complex. PPI-PEC is an effective PT delivery material, and the PPI-PEC-PT complex is a new functional emulsification material with significant potential in liquid and semi-liquid food and health products.
Collapse
Affiliation(s)
- Zonghui Tang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Laboratory for Agro-products Processing, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Yuting Tao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Laboratory for Agro-products Processing, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Qiuye Huang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Laboratory for Agro-products Processing, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Yousheng Huang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Laboratory for Agro-products Processing, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Jun Huang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Laboratory for Agro-products Processing, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Yisu Wu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Laboratory for Agro-products Processing, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei, China
| | - Xinyu Jing
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Laboratory for Agro-products Processing, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Tao Yang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Laboratory for Agro-products Processing, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Xueling Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Laboratory for Agro-products Processing, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Jin Liang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Laboratory for Agro-products Processing, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Yue Sun
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Laboratory for Agro-products Processing, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
- Corresponding author.
| |
Collapse
|
30
|
Microalgae play a structuring role in food: Effect of spirulina platensis on the rheological, gelling characteristics, and mechanical properties of soy protein isolate hydrogel. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108244] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
How do the hydroxyl group number and position of polyphenols affect the foaming properties of ovalbumin? Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
32
|
Yan X, Zeng Z, McClements DJ, Gong X, Yu P, Xia J, Gong D. A review of the structure, function, and application of plant-based protein-phenolic conjugates and complexes. Compr Rev Food Sci Food Saf 2023; 22:1312-1336. [PMID: 36789802 DOI: 10.1111/1541-4337.13112] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
Interactions between plant-based proteins (PP) and phenolic compounds (PC) occur naturally in many food products. Recently, special attention has been paid to the fabrication of PP-PC conjugates or complexes in model systems with a focus on their effects on their structure, functionality, and health benefits. Conjugates are held together by covalent bonds, whereas complexes are held together by noncovalent ones. This review highlights the nature of protein-phenolic interactions involving PP. The interactions of these PC with the PP in model systems are discussed, as well as their impact on the structural, functional, and health-promoting properties of PP. The PP in conjugates and complexes tend to be more unfolded than in their native state, which often improves their functional attributes. PP-PC conjugates and complexes often exhibit improved in vitro digestibility, antioxidant activity, and potential allergy-reducing activities. Consequently, they may be used as antioxidant emulsifiers, edible film additives, nanoparticles, and hydrogels in the food industry. However, studies focusing on the application of PP-PC conjugates and complexes in real foods are still scarce. Further research is therefore required to determine the structure-function relationships of PP-PC conjugates and complexes that may influence their application as functional ingredients in the food industry.
Collapse
Affiliation(s)
- Xianghui Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Resources & Environment, Nanchang University, Nanchang, China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | | | - Xiaofeng Gong
- School of Resources & Environment, Nanchang University, Nanchang, China
| | - Ping Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Jiaheng Xia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- New Zealand Institute of Natural Medicine Research, Auckland, New Zealand
| |
Collapse
|
33
|
Wu K, Wu Z, Kang Y, Su C, Yi F. Hydrogen bond-driven assembly of coral-like soy protein isolate-tannic acid microcomplex for encapsulation of limonene. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:185-194. [PMID: 35842518 DOI: 10.1002/jsfa.12130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/21/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The encapsulation of flavor and aroma compounds has great potential in foods, while effective preparation in the food industry is still a great challenge. Inspired by leather tanning, tannic acid (TA) was used for deep crosslinking through hydrogen bond-driven assembly on soy protein isolate for encapsulating limonene with a high loading ratio. RESULTS The added TA changed the protein structure and formed a limonene-loaded microcomplex. The morphology of these microcomplexes changed from smooth to rough, followed by the formation of smooth nanoparticle aggregates, by changing the amount of TA. The encapsulation efficiency and loading ratio were increased from 0.78% and 4.30% to 59.32% and 45.78% after increasing TA from 1.875 to 60 mg mL-1 . The result of confocal laser scanning microscopy indicated that limonene is evenly distributed in microcomplexes. Additionally, the results of thermal stability demonstrated protection of limonene by soy protein-tannic acid microcomplex. CONCLUSION It is suggested that the added TA improved the encapsulation efficiency and loading ratio. Limonene is loaded in the complex in two ways. The present research provides a new and easy path for the preparation of the non-thermal soy protein aroma carrier. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kaiwen Wu
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Zhenglin Wu
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Yuxuan Kang
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Chang Su
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Fengping Yi
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
34
|
Liu P, Wu A, Song Y, Zhao J. Virtual Screening of Soybean Protein Isolate-Binding Phytochemicals and Interaction Characterization. Foods 2023; 12:272. [PMID: 36673362 PMCID: PMC9857816 DOI: 10.3390/foods12020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/28/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
Soybean protein isolate (SPI) and small molecule interactions have drawn more and more attention regarding their benefits for both parts, while research on large-scale investigations and comparisons of different compounds is absent. In this study, a high throughput virtual screening was applied on a phytochemical database with 1130 compounds to pinpoint the potential SPI binder. Pentagalloylglucose, narcissoside, poliumoside, isoginkgetin, and avicurin were selected as the top-five ranking molecules for further validation. Fluorescence quenching assays illustrated that isoginkgetin has a significantly higher apparent binding constant (Ka) of (0.060 ± 0.020) × 106 L·mol-1, followed by avicularin ((0.058 ± 0.010) × 106 L·mol-1), pentagalloylglucose ((0.049 ± 0.010) × 106 L·mol-1), narcissoside ((0.0013 ± 0.0004) × 106 L·mol-1), and poliumoside ((0.0012 ± 0.0006) × 106 L·mol-1). Interface characterization by MD simulation showed that protein residues E172, H173, G202, and V204 are highly involved in hydrogen bonding with the two carbonyl oxygens of isoginketin, which could be the crucial events in SPI binding. Van der Waals force was identified as the major driven force for isoginketin binding. Our study explored SPI-phytochemical interaction through multiple strategies, revealing the molecular binding details of isoginkgetin as a novel SPI binder, which has important implications for the utilization of the SPI-phytochemical complex in food applications.
Collapse
Affiliation(s)
- Panhang Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China
- Beijing Key Laboratory for Food Non-Thermal Processing, Beijing 100083, China
| | - Annan Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China
- Beijing Key Laboratory for Food Non-Thermal Processing, Beijing 100083, China
| | - Yi Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China
- Beijing Key Laboratory for Food Non-Thermal Processing, Beijing 100083, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China
- Beijing Key Laboratory for Food Non-Thermal Processing, Beijing 100083, China
| |
Collapse
|
35
|
Zhao S, Wang W, Zhao R, Yan T, Xu W, Xu E, Liu D. The hydrophobic interaction for ellagic acid binding to soybean protein isolate: Multi-spectroscopy and molecular docking analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Liu C, Lv N, Xu YQ, Tong H, Sun Y, Huang M, Ren G, Shen Q, Wu R, Wang B, Cao Z, Xie H. pH-dependent interaction mechanisms between β-lactoglobulin and EGCG: Insights from multi-spectroscopy and molecular dynamics simulation methods. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
37
|
Shen H, Wang J, Ao J, Ye L, Shi Y, Liu Y, Li M, Luo A. The inhibitory mechanism of pentacyclic triterpenoid acids on pancreatic lipase and cholesterol esterase. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Yüzer M, Gençcelep H. Sesame seed protein: Amino acid, functional, and physicochemical profiles. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2023-1-555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sesame (Sesamum indicum L.) is an erect herbaceous annual plant with flat seeds. It is one of the oldest cultivated oilseed plants in the world, especially popular in Africa and Asia.
The present research objective was to describe a sesame protein isolate, i.e., its amino acid profile, functional and physicochemical properties, zeta potential, and hydrodynamic diameter. The surface charge and hydrodynamic diameter in aqueous solutions were obtained for standard sesame seeds, defatted sesame seeds, and the sesame protein isolate.
Defatted sesame seeds yielded the following optimal parameters: salt concentration – 0.6 M, pH – 7, iso-electric point (pI) – 4. The sesame protein isolate was rich in methionine content, which is rare in other plant proteins, but its lysine content was lower than in other isolates. The sesame protein isolate displayed almost identical zeta potential profiles with its pH. The decreasing pH increased the zeta values gradually from the lowest negative value to the highest positive value. The zeta potentials of standard and defatted sesame seeds at pH 7 were –23.53 and –17.30, respectively. The hydrodynamic diameter of the sesame protein isolate (0.33 μm) was smaller than that of sesame seeds (2.64 μm) and defatted sesame seeds (3.02 μm). The sesame protein isolate had a water holding capacity of 1.26 g/g and an oil holding capacity of 3.40 g/g. Its emulsifying properties looked as follows: emulsion capacity – 51.32%, emulsion stability – 49.50%, emulsion activity index – 12.86 m2/g, and emulsion stability index – 44.96 min, respectively. These values are suitable for the sesame protein isolate and are consistent with the literature.
The sesame protein isolate was a good source of protein (88.98%). Using sesame proteins as functional components can be an important basis for better knowledge of the relationship between electrical charge interactions in food matrices and the structure, stability, shelf life, texture, structural and functional properties of food. Research prospects include the effects of sesame protein isolates on various food systems.
Collapse
|
39
|
Effect of soy lecithin concentration on physiochemical properties and rehydration behavior of egg white protein powder: Role of dry and wet mixing. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
40
|
Chen J, Zhang X, Chen X, Pius Bassey A, Zhou G, Xu X. Phenolic modification of myofibrillar protein enhanced by ultrasound: The structure of phenol matters. Food Chem 2022; 386:132662. [PMID: 35366629 DOI: 10.1016/j.foodchem.2022.132662] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 11/26/2022]
Abstract
Phenolic modification of myofibrillar protein (MPN) is an essential technology in meat processing. This paper investigated the grafting reaction of three structurally relevant polyphenols (PPs), epigallocatechin-3-gallate (EGCG), epigallocatechin (EGC), epicatechin (EC), and MPN, in a conventional alkaline reaction and ultrasound (UT)-assisted oxidation system. EC triggered the production of more hydroxyl radicals at an equal molar concentration, resulting in a noticeable improvement of the final grafting effect. Moreover, pronounced changes in pore area on the microscopic scale was observed in MPN-EGCG, which was ascribed to the unique chemical structure of EGCG. Additionally, the antioxidant activities of the UT-assisted EGCG group were 133.89% and 103.10% higher than those of the single MPN group (PP0) and pure EGCG group, respectively. These results emphasized the importance of the chemical structure of PPs in the process of different grafting reactions.
Collapse
Affiliation(s)
- Jiahui Chen
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Zhang
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University, Aachen 52074, Germany
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Anthony Pius Bassey
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
41
|
Dai S, Liao P, Wang Y, Tian T, Tong X, Lyu B, Cheng L, Miao L, Qi W, Jiang L, Wang H. Soy protein isolate-catechin non-covalent and covalent complexes: Focus on structure, aggregation, stability and in vitro digestion characteristics. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Zhang Y, Hou R, Zhu B, Yin G, Zhang J, Zhao W, Zhang J, Li T, Zhang Z, Wang H, Li Z. Changes on the conformational and functional properties of soybean protein isolate induced by quercetin. Front Nutr 2022; 9:966750. [PMID: 35938098 PMCID: PMC9354261 DOI: 10.3389/fnut.2022.966750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
The conformational changes and functional properties of SPI induced by quercetin was investigated via fourier transform infrared (FTIR) spectroscopy, fluorescence spectroscopy, circular dichroism (CD) spectroscopy and molecular docking. A decrease in the fluorescence intensity and a blue shift in the maximum wavelength were observed due to the binding process with fluorescent residues. The analysis of Stern-Volmer equation showed that the fluorescence quenching induced by quercetin took the form of static quenching, and the binding stoichiometry between SPI and quercetin was 1:1. The values of ΔH and ΔS were both positive illustrating that hydrophobic interaction was the primary binding force between quercetin and SPI. Results of FTIR and CD indicated that the binding with quercetin changed the secondary structure of SPI, resulting in a partially unfolded and more flexible structure. SDS-PAGE confirmed there was no covalent interaction between the two constituents. Molecular docking demonstrated that there were stable configurations and high matching degrees in both 11S and 7S proteins with quercetin via hydrogen bonds and hydrophobic interactions. Meanwhile, modification by quercetin enhanced the foaming and emulsifying capacities of SPI. These findings might provide theory reference for elucidation the mechanism of polyphenols-proteins interaction and development of related food additive products in future.
Collapse
Affiliation(s)
- Yating Zhang
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruiyang Hou
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Beibei Zhu
- College of Chinese Medicine Pharmaceutical Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangwei Yin
- College of Chinese Medicine Pharmaceutical Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jian Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Wenqi Zhao
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junxi Zhang
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Taoran Li
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zifan Zhang
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongwu Wang
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zheng Li
- College of Chinese Medicine Pharmaceutical Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
43
|
Yang W, Wang Q, Chen Y, Lei L, Lei X, Zhao J, Zhang Y, Ming J. Changes in the structural and physicochemical properties of wheat gliadin and maize amylopectin conjugates induced by dry-heating. J Food Sci 2022; 87:3459-3471. [PMID: 35838074 DOI: 10.1111/1750-3841.16252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022]
Abstract
The Maillard reaction (MR) has been known to modify proteins and optimize their physicochemical properties by conjugating with reducing sugars. The structure and physicochemical properties of wheat gliadin and maize amylopectin conjugates induced by MR were investigated under different gliadin-amylopectin ratios (2:1, 1:1, 1:2, 1:4, and 1:8). The formation of conjugates was indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, degree of conjugation, and browning development analyses. The Fourier transform infrared and fluorescence spectroscopy analyses suggested changes in the structures of conjugates and the microenvironment of amino acids. A remarkable decrease in the β-turn structure content and an increase in the free sulfhydryl group content were observed at a ratio of 1:8, leading to decreased allergenicity. The reaction process was commendably controlled at a ratio of 1:1 with a 59.7% degree of conjugation in this group, contributing to the amelioration of solubility and foaming properties. Meanwhile, improvements in the oil holding capacity, surface hydrophobicity, and emulsifying properties were observed at a ratio of 1:4. PRACTICAL APPLICATION: The study revealed that the conjugates produced by MR might have various degrees of improved functional properties and reduced allergenicity at different ratios of substrates. Our study might be helpful for conjugates to assist in improving the texture of products and its potential in expanding the industrial application of products with gliadin.
Collapse
Affiliation(s)
- Wenqing Yang
- College of Food Science, Southwest University, Chongqing, China
| | - Qiming Wang
- College of Food Science, Southwest University, Chongqing, China
| | - Yuanyuan Chen
- College of Food Science, Southwest University, Chongqing, China
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing, China
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing, China.,Research Center of Food Storage & Logistics, Southwest University, Chongqing, China
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, China.,Research Center of Food Storage & Logistics, Southwest University, Chongqing, China
| |
Collapse
|
44
|
An insight into the changes in conformation and emulsifying properties of soy β-conglycinin and glycinin as affected by EGCG: Multi-spectral analysis. Food Chem 2022; 394:133484. [PMID: 35717913 DOI: 10.1016/j.foodchem.2022.133484] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/15/2022] [Accepted: 06/12/2022] [Indexed: 11/04/2022]
Abstract
The binding mechanisms between soy β-conglycinin/glycinin and (-)-epigallocatechin-3-gallate (EGCG) were evaluated using multi-spectral techniques and molecular modeling. Additionally, the emulsifying properties of β-conglycinin/glycinin were investigated in their interactions with EGCG. Fluorescence analysis revealed that the quenching of β-conglycinin/glycinin by EGCG was static quenching. Specifically, EGCG to β-conglycinin/glycinin resulted in the conformation changes of the Trp and Tyr residues, around which the polarity toward more hydrophilic. The dominated binding between β-conglycinin and EGCG was hydrogen bonding, whereas was mainly hydrophobic force between glycinin and EGCG. Such affinity induced a more organized protein confirmation with decreased random coil and increased α-helix and β-structures. The docking data indicated the better affinity between glycinin and EGCG, compared to β-conglycinin. The emulsifying ability and capacity of β-conglycinin were enhanced with involvement EGCG, however no effect was found for glycinin. Our findings deliver insights in understanding of the interaction mechanisms between β-conglycinin/glycinin and EGCG.
Collapse
|
45
|
Wang X, Wang S, Xu D, Peng J, Gao W, Cao Y. The Effect of Glycosylated Soy Protein Isolate on the Stability of Lutein and Their Interaction Characteristics. Front Nutr 2022; 9:887064. [PMID: 35685872 PMCID: PMC9172447 DOI: 10.3389/fnut.2022.887064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Lutein is a natural fat-soluble carotenoid with various physiological functions. However, its poor water solubility and stability restrict its application in functional foods. The present study sought to analyze the stability and interaction mechanism of the complex glycosylated soy protein isolate (SPI) prepared using SPI and inulin-type fructans and lutein. The results showed that glycosylation reduced the fluorescence intensity and surface hydrophobicity of SPI but improved the emulsification process and solubility. Fluorescence intensity and ultraviolet–visible (UV–Vis) absorption spectroscopy results showed that the fluorescence quenching of the glycosylated soybean protein isolate by lutein was static. Through thermodynamic parameter analysis, it was found that lutein and glycosylated SPI were bound spontaneously through hydrophobic interaction, and the binding stoichiometry was 1:1. The X-ray diffraction analysis results showed that lutein existed in the glycosylated soybean protein isolate in an amorphous form. The Fourier transform infrared spectroscopy analysis results revealed that lutein had no effect on the secondary structure of glycosylated soy protein isolate. Meanwhile, the combination of lutein and glycosylated SPI improved the water solubility of lutein and the stability of light and heat.
Collapse
Affiliation(s)
- Xia Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University (BTBU), Beijing, China
| | - Shaojia Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University (BTBU), Beijing, China
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University (BTBU), Beijing, China
| | - Jingwei Peng
- Chenguang Biotech Group Co., Ltd., Handan, China
| | - Wei Gao
- Chenguang Biotech Group Co., Ltd., Handan, China
| | - Yanping Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
46
|
Yan X, Zhao J, Zeng Z, Ma M, Xia J, Tian W, Zhang G, Gong X, Gong D, Yu P. Effects of preheat treatment and polyphenol grafting on the structural, emulsifying and rheological properties of protein isolate from Cinnamomum camphora seed kernel. Food Chem 2022; 377:132044. [PMID: 35008022 DOI: 10.1016/j.foodchem.2022.132044] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/04/2021] [Accepted: 01/01/2022] [Indexed: 11/04/2022]
Abstract
In this study, protein isolate (PI) and purified polyphenol extract (PPE) were prepared from Cinnamomum camphora seed kernel (CCSK). The effects of preheat treatment (50-90 °C) combined with polyphenol grafting (5 % PPE, w/w) on the structural, emulsifying and rheological properties of PI were investigated. Results demonstrated the preheat treatments at 80 and 90 °C significantly increased the extent of protein aggregation of PI. Fluorescence spectra and thermal behavior analysis revealed that preheat-treated PI exhibited more compact structure and higher thermal stability. Moreover, the emulsifying stability and apparent viscosity of PI were enhanced after preheat treatments at 50, 60 and 70 °C. After modification by PPE, the secondary structural changes of preheat-treated PI were confirmed by FTIR. PPE modification improved the thermal stability and antioxidant activities of preheat-treated PI. These results provide a novel way to combine the advantages of preheat treatment and polyphenol grafting in developing a novel protein ingredient.
Collapse
Affiliation(s)
- Xianghui Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Junxin Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Maomao Ma
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Jiaheng Xia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Wenran Tian
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Guohua Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Xiaofeng Gong
- School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; New Zealand Institute of Natural Medicine Research, 8 Ha Crescent, Auckland 2104, New Zealand
| | - Ping Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
47
|
Non-covalent interaction of soy protein isolate and catechin: Mechanism and effects on protein conformation. Food Chem 2022; 384:132507. [PMID: 35217462 DOI: 10.1016/j.foodchem.2022.132507] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/23/2021] [Accepted: 02/16/2022] [Indexed: 01/27/2023]
Abstract
Understanding the molecular mechanism behind protein-polyphenol interactions is critical for the application of protein-polyphenol compounds in foods. The purpose of this research was to investigate the non-covalent interaction mechanism between soy protein isolate (SPI) and catechin and its effect on protein conformation. We observed that particle size, ζ-potential, and polyphenol bound equivalents of SPI increased significantly after non-covalent modification with catechin. These changes caused SPI to aggregate and form a network-like structure. Fourier transform infrared spectroscopy (FTIR) indicated that increased catechin concentrations caused SPI to become looser and more disordered as its α-helix and β-sheet transformed into β-turn and random coil. Furthermore, internal structure of SPI was opened and its hydrophobic groups were exposed to a polar environment, which was demonstrated by decreased surface hydrophobicity. Thermodynamic analysis and molecular docking results showed that the main forces present between SPI and catechin were hydrophobic interactions and hydrogen bonds.
Collapse
|
48
|
Ma Z, Cheng J, Jiao S, Jing P. Interaction of mulberry anthocyanins with soybean protein isolate: Effect on the stability of anthocyanins and protein
in vitro
digestion characteristics. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Ma
- Shanghai Food Safety and Engineering Technology Research Center Key Laboratory of Urban Agriculture Ministry of Agriculture School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 China
| | - Jing Cheng
- Shanghai Food Safety and Engineering Technology Research Center Key Laboratory of Urban Agriculture Ministry of Agriculture School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 China
| | - Shunshan Jiao
- Shanghai Food Safety and Engineering Technology Research Center Key Laboratory of Urban Agriculture Ministry of Agriculture School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center Key Laboratory of Urban Agriculture Ministry of Agriculture School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 China
| |
Collapse
|
49
|
Wang H, You S, Wang W, Zeng Y, Su R, Qi W, Wang K, He Z. Laccase-catalyzed soy protein and gallic acid complexation: Effects on conformational structures and antioxidant activity. Food Chem 2021; 375:131865. [PMID: 34953246 DOI: 10.1016/j.foodchem.2021.131865] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/18/2021] [Accepted: 12/12/2021] [Indexed: 11/04/2022]
Abstract
The ability of laccase to oxidize polyphenols arouses our interest that laccase can be applied for protein-polyphenol cross-linking. In this study, laccase promoted the cross-linking of gallic acid (GA) and soy protein isolate (SPI) under neutral pH. SPI-GA complexes changed the secondary structures with a decrease in β-fold and an increase in α-helix and β-turn. The free-radical scavenging activity and reducing power determination results suggested that GA elevated the SPI antioxidant activity significantly. Specifically, DPPH free radical scavenging rate and ABTS free radical scavenging ability increased almost 5- and 1.5-fold compared with unmodified SPI, respectively. Moreover, the reducing power had more than 3-fold compared to the SPI control. This study provided a novel enzyme-induced approach to modulate the physicochemical properties of SPI binding polyphenol.
Collapse
Affiliation(s)
- Hui Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Shengping You
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China.
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yan Zeng
- National Technology Innovation Center of Synthetic Biology, PR China
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China.
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Kang Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhimin He
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
50
|
Ao L, Liu P, Wu A, Zhao J, Hu X. Characterization of Soybean Protein Isolate-Food Polyphenol Interaction via Virtual Screening and Experimental Studies. Foods 2021; 10:2813. [PMID: 34829094 PMCID: PMC8625844 DOI: 10.3390/foods10112813] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Protein-polyphenol interactions have been widely studied regarding their influence on the properties of both protein and the ligands. As an important protein material in the food industry, soybean protein isolate (SPI) experiences interesting changes through polyphenols binding. (2) Methods: In this study, a molecular docking and virtual screening method was established to evaluate the SPI-polyphenol interaction. A compound library composed of 33 commonly found food source polyphenols was used in virtual screening. The binding capacity of top-ranking polyphenols (rutin, procyanidin, cyanidin chloride, quercetin) was validated and compared by fluorescence assays. (3) Results: Four out of five top-ranking polyphenols in virtual screening were flavonoids, while phenolic acids exhibit low binding capacity. Hydrogen bonding and hydrophobic interactions were found to be dominant interactions involved in soybean protein-polyphenol binding. Cyanidin chloride exhibited the highest apparent binding constant (Ka), which was followed by quercetin, procyanidin, and rutin. Unlike others, procyanidin addition perturbed a red shift of SPI fluorescence, indicating a slight conformational change of SPI. (4) Conclusions: These results suggest that the pattern of SPI-polyphenol interaction is highly dependent on the detailed structure of polyphenols, which have important implications in uncovering the binding mechanism of SPI-polyphenol interaction.
Collapse
Affiliation(s)
- Le Ao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.A.); (P.L.); (A.W.); (X.H.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
- China Academy of Machinery Science and Technology Group Co., Ltd., Beijing 100083, China
| | - Panhang Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.A.); (P.L.); (A.W.); (X.H.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Annan Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.A.); (P.L.); (A.W.); (X.H.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.A.); (P.L.); (A.W.); (X.H.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.A.); (P.L.); (A.W.); (X.H.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| |
Collapse
|