1
|
Wang Y, Liu L, Hou S. Surface engineering as a potential strategy to enhance desiccation tolerance of beneficial bacteria. Front Microbiol 2025; 16:1576511. [PMID: 40291806 PMCID: PMC12021878 DOI: 10.3389/fmicb.2025.1576511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Desiccation can diminish the viability of beneficial bacteria by over 90%, threatening their effectiveness in agricultural productivity and probiotic applications. Bacterial surface engineering, already proven to combat acidic environments and oxidative damage, offers promising avenues for mitigating desiccation stress. This Perspective explores and adapts these approaches-spanning bioinspired coatings, encapsulation methods, and nanotechnology-to significantly improve bacterial survival under dehydration. By slowing water loss, preserving membrane integrity, and minimizing oxidative damage, surface engineering paves the way for scalable and effective strategies to bolster bacterial resilience in demanding environments.
Collapse
Affiliation(s)
| | - Lei Liu
- Institute of Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Shuai Hou
- Institute of Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Feng Q, Luo Y, Liang M, Cao Y, Wang L, Liu C, Zhang X, Ren L, Wang Y, Wang D, Zhu Y, Zhang Y, Xiao B, Li N. Rhizobacteria protective hydrogel to promote plant growth and adaption to acidic soil. Nat Commun 2025; 16:1684. [PMID: 39956869 PMCID: PMC11830790 DOI: 10.1038/s41467-025-56988-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 02/07/2025] [Indexed: 02/18/2025] Open
Abstract
Endophytic plant growth promoting rhizobacteria (PGPRs) could replace chemical fertilizers in sustainable agriculture. Unfortunately, they are susceptible to harsh environmental conditions. Here, we proposed a polymeric hydrogel (PMH) consisting of carboxymethyl chitosan, sodium alginate, and calcium chloride for loading and protecting endophytic PGPR. This hydrogel can load endophytic PGPRs to not only boost its growth-promoting efficiency, but also help them adapt more effectively to environments. Using endophytic PGPR Ensifer C5 as model bacteria and Brasscia napus as host, we demonstrate that the PMH facilitate the colonization of endophytic PGPRs in the apical and lateral root primordia regions. Further analysis indicates that the PMH modulate suberin deposition of the endodermal cell layers and regulate the accumulation of auxin at the root tip. Meanwhile, PMH enhances the antioxidant capacity and disease resistance properties of plants by increasing the content of arachidonic acid metabolism intermediates in the plant. Importantly, the combination of PMH and endophytic PGPRs increases the yields of B. napus by approximately 30% in the field. Furthermore, PMH attenuates the loss of endophytic PGPR activity in the acidic environments. Overall, this microbial encapsulation strategy is a promising way to protect fragile endophytic microorganisms, providing attractive avenues in sustainable agriculture.
Collapse
Affiliation(s)
- Qirui Feng
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Hanhong College, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yu Luo
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Yazhouwan National Laboratory, Sanya, Hainan, 572025, China
| | - Mu Liang
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Hanhong College, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yingui Cao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - LingShuang Wang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Can Liu
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Xiaoyong Zhang
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Lanyang Ren
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Yongfeng Wang
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan, 475004, China
| | - Daojie Wang
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan, 475004, China
| | - Yantao Zhu
- Hybrid Rapeseed Research Center of Shanxi Province, Yangling, Shanxi, 712100, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shanxi Province, Yangling, Shanxi, 712100, China
| | - Bo Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| | - Nannan Li
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
- Hanhong College, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
- Hybrid Rapeseed Research Center of Shanxi Province, Yangling, Shanxi, 712100, China.
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, Zhejiang, 310012, China.
| |
Collapse
|
3
|
Ma K, Uddin N, Jin H, Ullah MW, Shah SWA, Sakrabani R, Zhu D. Lignin-based cryogels for advancing sustainable crop production via enhanced nutrient accessibility and growth efficiency. Int J Biol Macromol 2025; 287:138613. [PMID: 39662576 DOI: 10.1016/j.ijbiomac.2024.138613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/30/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Sustainable lignin-based materials are becoming increasingly valuable in agriculture, where climate change and nutrient deficiencies threaten crop productivity. We developed lignin-derived cryogels using waste biomass to improve soil nutrients, seed germination, water retention, and photosynthetic pigment levels. These cryogels were synthesized with gum Arabic (GA), keratin (K), and N-vinylpyrrolidone at lignin concentrations of 0.02 wt% (LbC1), and 0.1 wt% (LbC2), along with a control (NLC), through low-temperature polymerization at -20 °C. The cryogels exhibited high thermal stability and water retention, exceeding 170 %, due to their network structure. Functional groups like carboxyl and hydroxyl enhanced nutrient assimilation, accelerating germination and plant growth, with keratin providing bioavailable amino acids through microbial degradation. After 5 days, the cryogel treatments significantly improved early germination rates (100 %, 100 %, and 99 % for wheat, maize, and rapeseed, respectively), while boosting chlorophyll (a, b, and total), sugar, and soluble protein levels. Treated plants showed increased leaf numbers, plant height, and root length, with a 98.4 % improvement in water uptake compared to controls, mitigating the effect of soil salinity. LbC1 and LbC2 also notably increased chlorophyll pigments, soluble sugars, and total protein across all crops compared to the NLC. Additionally, the cryogel exhibited a 33 % biodegradation rate after 130 days in soil, confirming their environmental compatibility. In conclusion, the developed lignin-based cryogels represent a sustainable, effective solution to enhance nutrient availability and resilience in agriculture, repurposing industrial lignin waste to address climate-driven challenges in crop production.
Collapse
Affiliation(s)
- Keyu Ma
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Nisar Uddin
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hongmei Jin
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Muhammad Wajid Ullah
- Department of Pulp & Paper Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Syed Waqas Ali Shah
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510182, China
| | - Ruben Sakrabani
- Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
4
|
Mousa S, Nyaruaba R, Yang H, Wei H. Engineering seed microenvironment with embedded bacteriophages and plant growth promoting rhizobacteria. BMC Microbiol 2024; 24:503. [PMID: 39604853 PMCID: PMC11600732 DOI: 10.1186/s12866-024-03657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Engineering the seed microenvironment with embedded bacteriophages and Plant Growth Promoting Rhizobacteria (PGPR) shows promise for enhancing germination, mitigating biotic and abiotic stressors, and improving resilience under challenging environmental conditions. This study aimed to enhance potato seed germination and control bacterial wilt caused by Ralstonia solanacearum and salinity by using novel technology to encapsulate, preserve, and deliver phage therapy and rhizobacteria. RESULTS Silk fibroin and trehalose biomaterial combined with the phage P-PSG11 and Pseudomonas lalkuanensis were applied to potato seeds. A pot experiment was conducted to investigate pathogen suppression, salt tolerance, and plant growth enhancement. The combination of silk and trehalose effectively preserved both phage and bacteria for ≥ 8 weeks, maintaining both phage titers and bacterial colony counts. Seeds coated with the P-PSG11 and P. lalkuanensis mixture exhibited the highest germination rate at 93.5%, followed by P. lalkuanensis at 86.3%. In vivo evaluations showed significant increases in root length (72.7%, 61.0%, and 22.5%), plant height (71.5%, 65.1%, and 8.2%), and dry matter (129.1%, 125.7%, and 13.1%) for the P-PSG11 and P. lalkuanensis mixture, P. lalkuanensis, and P-PSG11, respectively. The incidence of wilt was significantly reduced by 88.2% and 81.2%, and salinity was mitigated by 83.3% and 79.2% for the P-PSG11 and P. lalkuanensis mixture and P. lalkuanensis treatment, respectively, compared to the control (p < 0.001). The viability of preserved P-PSG11 and P. lalkuanensis was confirmed after one year using phage titers and bacterial colonies. CONCLUSION This innovative approach enhanced plant growth, promoted seed germination, controlled wilt disease, and mitigated soil salinity.
Collapse
Grants
- ZDRW-ZS-2016-4 National Biosafety Laboratory, Wuhan Institute of Virology, Chinese Academy of Sciences, China
- ZDRW-ZS-2016-4 National Biosafety Laboratory, Wuhan Institute of Virology, Chinese Academy of Sciences, China
- ZDRW-ZS-2016-4 National Biosafety Laboratory, Wuhan Institute of Virology, Chinese Academy of Sciences, China
- ZDRW-ZS-2016-4 National Biosafety Laboratory, Wuhan Institute of Virology, Chinese Academy of Sciences, China
Collapse
Affiliation(s)
- Samar Mousa
- Center for Pathogens Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- International College, University of Chinese Academy of Sciences, Beijing, China
- Faculty of Agriculture, Agricultural Botany Department, Suez Canal University, Ismailia, Egypt
| | - Raphael Nyaruaba
- Center for Pathogens Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Yang
- Center for Pathogens Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Hongping Wei
- Center for Pathogens Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
- International College, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Lu Z, Wang H, Wang Z, Liu J, Li Y, Xia L, Song S. Critical steps in the restoration of coal mine soils: Microbial-accelerated soil reconstruction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122200. [PMID: 39182379 DOI: 10.1016/j.jenvman.2024.122200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/04/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024]
Abstract
Soil reconstruction is a critical step in the restoration of environments affected by mining activities. This paper provides a comprehensive review of the significant role that microbial processes play in expediting soil structure formation, particularly within the context of mining environment restoration. Coal gangue and flotation tailings, despite their low carbon content and large production volumes, present potential substrates for soil reclamation. These coal-based solid waste materials can be utilized as substrates to produce high-quality soil and serve as an essential carbon source to enhance poor soil conditions. However, extracting active organic carbon components from coal-based solid waste presents a significant challenge due to its complex mineral composition. This article offers a thorough review of the soilization process of coal-based solid waste under the influence of microorganisms. It begins by briefly introducing the primary role of in situ microbial remediation technology in the soilization process. It then elaborates on various improvements to soil structure under the influence of microorganisms, including the enhancement of soil aggregate structure and soil nutrients. The article concludes with future recommendations aimed at improving the efficiency of soil reconstruction and restoration, reducing environmental risks, and promoting its application in complex environments. This will provide both theoretical and practical support for more effective environmental restoration strategies.
Collapse
Affiliation(s)
- Zijing Lu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China
| | - Hengshuang Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China
| | - Zhixiang Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China
| | - Jiazhi Liu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China
| | - Yinta Li
- Department of Food Engineering, Weihai Ocean Vocational College, Haiwan South Road 1000, Weihai, 264300, Shandong, China
| | - Ling Xia
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China.
| | - Shaoxian Song
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China
| |
Collapse
|
6
|
Waheed A, Haxim Y, Islam W, Ahmad M, Muhammad M, Alqahtani FM, Hashem M, Salih H, Zhang D. Climate change reshaping plant-fungal interaction. ENVIRONMENTAL RESEARCH 2023; 238:117282. [PMID: 37783329 DOI: 10.1016/j.envres.2023.117282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/13/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Plant diseases pose a severe threat to modern agriculture, necessitating effective and lasting control solutions. Environmental factors significantly shape plant ecology. Human-induced greenhouse gas emissions have led to global temperature rise, impacting various aspects, including carbon dioxide (CO2) concentration, temperature, ozone (O3), and ultraviolet-B, all of which influence plant diseases. Altered pathogen ranges can accelerate disease transmission. This review explores environmental effects on plant diseases, with climate change affecting fungal biogeography, disease incidence, and severity, as well as agricultural production. Moreover, we have discussed how climate change influences pathogen development, host-fungal interactions, the emergence of new races of fungi, and the dissemination of emerging fungal diseases across the globe. The discussion about environment-mediated impact on pattern-triggered immunity (PTI), effector-triggered immunity (ETI), and RNA interference (RNAi) is also part of this review. In conclusion, the review underscores the critical importance of understanding how climate change is reshaping plant-fungal interactions. It highlights the need for continuous research efforts to elucidate the mechanisms driving these changes and their ecological consequences. As the global climate continues to evolve, it is imperative to develop innovative strategies for mitigating the adverse effects of fungal pathogens on plant health and food security.
Collapse
Affiliation(s)
- Abdul Waheed
- National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Yakoopjan Haxim
- National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | | | - Murad Muhammad
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Fatmah M Alqahtani
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Haron Salih
- National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Daoyuan Zhang
- National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China.
| |
Collapse
|
7
|
Wu D, Wang W, Yao Y, Li H, Wang Q, Niu B. Microbial interactions within beneficial consortia promote soil health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165801. [PMID: 37499809 DOI: 10.1016/j.scitotenv.2023.165801] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/26/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
By ecologically interacting with various biotic and abiotic agents acting in soil ecosystems, highly diverse soil microorganisms establish complex and stable assemblages and survive in a community context in natural settings. Besides facilitating soil microbiome to maintain great levels of population homeostasis, such microbial interactions drive soil microbes to function as the major engine of terrestrial biogeochemical cycling. It is verified that the regulative effect of microbe-microbe interplay plays an instrumental role in microbial-mediated promotion of soil health, including bioremediation of soil pollutants and biocontrol of soil-borne phytopathogens, which is considered an environmentally friendly strategy for ensuring the healthy condition of soils. Specifically, in microbial consortia, it has been proven that microorganism-microorganism interactions are involved in enhancing the soil health-promoting effectiveness (i.e., efficacies of pollution reduction and disease inhibition) of the beneficial microbes, here defined as soil health-promoting agents. These microbial interactions can positively regulate the soil health-enhancing effect by supporting those soil health-promoting agents utilized in combination, as multi-strain soil health-promoting agents, to overcome three main obstacles: inadequate soil colonization, insufficient soil contaminant eradication and inefficient soil-borne pathogen suppression, all of which can restrict their probiotic functionality. Yet the mechanisms underlying such beneficial interaction-related adjustments and how to efficiently assemble soil health-enhancing consortia with the guidance of microbe-microbe communications remain incompletely understood. In this review, we focus on bacterial and fungal soil health-promoting agents to summarize current research progress on the utilization of multi-strain soil health-promoting agents in the control of soil pollution and soil-borne plant diseases. We discuss potential microbial interaction-relevant mechanisms deployed by the probiotic microorganisms to upgrade their functions in managing soil health. We emphasize the interplay-related factors that should be taken into account when building soil health-promoting consortia, and propose a workflow for assembling them by employing a reductionist synthetic community approach.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; The Center for Basic Forestry Research, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Weixiong Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; The Center for Basic Forestry Research, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yanpo Yao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Hongtao Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Qi Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Ben Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; The Center for Basic Forestry Research, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
8
|
Riboni N, Bianchi F, Mattarozzi M, Caldara M, Gullì M, Graziano S, Maestri E, Marmiroli N, Careri M. Ultra-high Performance Liquid Chromatography-Ion Mobility-High-Resolution Mass Spectrometry to Evaluate the Metabolomic Response of Durum Wheat to Sustainable Treatments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15407-15416. [PMID: 37796632 PMCID: PMC10591464 DOI: 10.1021/acs.jafc.3c04532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
Sustainable agriculture aims at achieving a healthy food production while reducing the use of fertilizers and greenhouse gas emissions using biostimulants and soil amendments. Untargeted metabolomics by ultra-high performance liquid chromatography-ion mobility-high-resolution mass spectrometry, operating in a high-definition MSE mode, was applied to investigate the metabolome of durum wheat in response to sustainable treatments, i.e., the addition of biochar, commercial plant growth promoting microbes, and their combination. Partial least squares-discriminant analysis provided a good discrimination among treatments with sensitivity, specificity, and a non-error rate close to 1. A total of 88 and 45 discriminant compounds having biological, nutritional, and technological implications were tentatively identified in samples grown in 2020 and 2021. The addition of biochar-biostimulants produced the highest up-regulation of lipids and flavonoids, with the glycolipid desaturation being the most impacted pathway, whereas carbohydrates were mostly down-regulated. The findings achieved suggest the safe use of the combined biochar-biostimulant treatment for sustainable wheat cultivation.
Collapse
Affiliation(s)
- Nicolò Riboni
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
| | - Federica Bianchi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
- Center
for Energy and Environment (CIDEA), Centro Santa Elisabetta, University of Parma, Parco Area delle Scienze 95, 43124 Parma, Italy
| | - Monica Mattarozzi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
- Interdepartmental
Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| | - Marina Caldara
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
| | - Mariolina Gullì
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
- Interdepartmental
Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| | - Sara Graziano
- Interdepartmental
Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| | - Elena Maestri
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
- Interdepartmental
Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| | - Nelson Marmiroli
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
- Centro
Santa Elisabetta, National Interuniversity
Center for Environmental Sciences (CINSA), Parco Area delle Scienze 95, 43124 Parma, Italy
| | - Maria Careri
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
- Interdepartmental
Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| |
Collapse
|
9
|
Zhu Q, Fei YJ, Wu YB, Luo DL, Chen M, Sun K, Zhang W, Dai CC. Endophytic Fungus Reshapes Spikelet Microbiome to Reduce Mycotoxin Produced by Fusarium proliferatum through Altering Rice Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37466504 DOI: 10.1021/acs.jafc.3c02616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Rice spikelet rot disease (RSRD) caused by Fusarium proliferatum seriously reduces rice yield and produces mycotoxins that threaten human health. The root symbiotic endophytic fungus Phomopsis liquidambaris reduces RSRD incidence and fumonisins accumulation in grain by 21.5 and 9.3%, respectively, while the mechanism of disease resistance remains largely elusive. Here, we found that B3 significantly reduced the abundance of pathogen from 79.91 to 2.84% and considerably enriched resistant microbes Pseudomonas and Proteobacteria in the spikelet microbial community. Further study revealed that B3 altered the metabolites of spikelets, especially hordenine and l-aspartic acid, which played a key role in reshaping the microbiome and supporting the growth of the functional core microbe Pseudomonas, and inhibited the pathogen growth and mycotoxin production. This study provided a feasibility of regulating the function of aboveground microbial communities by manipulating plant subsurface tissues to control disease and mycotoxin pollutants in agricultural production.
Collapse
Affiliation(s)
- Qiang Zhu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Yan-Jun Fei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Yi-Bo Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - De-Lin Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Man Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
10
|
Sadeq BM, Tan Kee Zuan A, Kasim S, Mui Yun W, Othman NMI, Alkooranee JT, Chompa SS, Akter A, Rahman ME. Humic Acid-Amended Formulation Improves Shelf-Life of Plant Growth-Promoting Rhizobacteria (PGPR) Under Laboratory Conditions. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2023. [DOI: 10.47836/pjst.31.3.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) is a soil bacterium that positively impacts soil and crops. These microbes invade plant roots, promote plant growth, and improve crop yield production. Bacillus subtilis is a type of PGPR with a short shelf-life due to its structural and cellular components, with a non-producing resistance structure (spores). Therefore, optimum formulations must be developed to prolong the bacterial shelf-life by adding humic acid (HA) as an amendment that could benefit the microbes by providing shelter and carbon sources for bacteria. Thus, a study was undertaken to develop a biofertilizer formulation from locally isolated PGPR, using HA as an amendment. Four doses of HA (0, 0.01, 0.05, and 0.1%) were added to tryptic soy broth (TSB) media and inoculated with B. subtilis (UPMB10), Bacillus tequilensis (UPMRB9) and the combination of both strains. The shelf-life was recorded, and viable cells count and optical density were used to determine the bacterial population and growth trend at monthly intervals and endospores detection using the malachite green staining method. After 12 months of incubation, TSB amended with 0.1% HA recorded the highest bacterial population significantly with inoculation of UPMRB9, followed by mixed strains and UPMB10 at 1.8x107 CFUmL-1, 2.8x107 CFUmL-1and 8.9x106 CFUmL-1, respectively. Results showed that a higher concentration of HA has successfully prolonged the bacterial shelf-life with minimal cell loss. Thus, this study has shown that the optimum concentration of humic acid can extend the bacterial shelf-life and improve the quality of a biofertilizer.
Collapse
|
11
|
An B, Wang Y, Huang Y, Wang X, Liu Y, Xun D, Church GM, Dai Z, Yi X, Tang TC, Zhong C. Engineered Living Materials For Sustainability. Chem Rev 2023; 123:2349-2419. [PMID: 36512650 DOI: 10.1021/acs.chemrev.2c00512] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances in synthetic biology and materials science have given rise to a new form of materials, namely engineered living materials (ELMs), which are composed of living matter or cell communities embedded in self-regenerating matrices of their own or artificial scaffolds. Like natural materials such as bone, wood, and skin, ELMs, which possess the functional capabilities of living organisms, can grow, self-organize, and self-repair when needed. They also spontaneously perform programmed biological functions upon sensing external cues. Currently, ELMs show promise for green energy production, bioremediation, disease treatment, and fabricating advanced smart materials. This review first introduces the dynamic features of natural living systems and their potential for developing novel materials. We then summarize the recent research progress on living materials and emerging design strategies from both synthetic biology and materials science perspectives. Finally, we discuss the positive impacts of living materials on promoting sustainability and key future research directions.
Collapse
Affiliation(s)
- Bolin An
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yanyi Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanyuan Huang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuzhu Liu
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dongmin Xun
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - George M Church
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Zhuojun Dai
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiao Yi
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tzu-Chieh Tang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Chao Zhong
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
12
|
Chiaranunt P, White JF. Plant Beneficial Bacteria and Their Potential Applications in Vertical Farming Systems. PLANTS (BASEL, SWITZERLAND) 2023; 12:400. [PMID: 36679113 PMCID: PMC9861093 DOI: 10.3390/plants12020400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
In this literature review, we discuss the various functions of beneficial plant bacteria in improving plant nutrition, the defense against biotic and abiotic stress, and hormonal regulation. We also review the recent research on rhizophagy, a nutrient scavenging mechanism in which bacteria enter and exit root cells on a cyclical basis. These concepts are covered in the contexts of soil agriculture and controlled environment agriculture, and they are also used in vertical farming systems. Vertical farming-its advantages and disadvantages over soil agriculture, and the various climatic factors in controlled environment agriculture-is also discussed in relation to plant-bacterial relationships. The different factors under grower control, such as choice of substrate, oxygenation rates, temperature, light, and CO2 supplementation, may influence plant-bacterial interactions in unintended ways. Understanding the specific effects of these environmental factors may inform the best cultural practices and further elucidate the mechanisms by which beneficial bacteria promote plant growth.
Collapse
|
13
|
Liu M, Millard PE, Urch H, Zeyons O, Findley D, Konradi R, Marelli B. Microencapsulation of High-Content Actives Using Biodegradable Silk Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201487. [PMID: 35802906 DOI: 10.1002/smll.202201487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/25/2022] [Indexed: 06/15/2023]
Abstract
There is a compelling need across several industries to substitute non-degradable, intentionally added microplastics with biodegradable alternatives. Nonetheless, stringent performance criteria in actives' controlled release and manufacturing at scale of emerging materials hinder the replacement of polymers used for microplastics fabrication with circular ones. Here, the authors demonstrate that active microencapsulation in a structural protein such as silk fibroin can be achieved by modulating protein protonation and chain relaxation at the point of material assembly. Silk fibroin micelles' size is tuned from several to hundreds of nanometers, enabling the manufacturing-by retrofitting spray drying and spray freeze drying techniques-of microcapsules with tunable morphology and structure, that is, hollow-spongy, hollow-smooth, hollow crumpled matrices, and hollow crumpled multi-domain. Microcapsules degradation kinetics and sustained release of soluble and insoluble payloads typically used in cosmetic and agriculture applications are controlled by modulating fibroin's beta-sheet content from 20% to near 40%. Ultraviolet-visible studies indicate that burst release of a commonly used herbicide (i.e., saflufenacil) significantly decreases from 25% to 0.8% via silk fibroin microencapsulation. As a proof-of-concept for agrochemicals applications, a 6-day greenhouse trial demonstrates that saflufenacil delivered on corn plants via silk microcapsules reduces crop injury when compared to the non-encapsulated version.
Collapse
Affiliation(s)
- Muchun Liu
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Henning Urch
- BASF SE, BASF Agricultural Center, Speyerer Str. 2, 67117, Limburgerhof, Germany
| | - Ophelie Zeyons
- BASF SE, Carl-Bosch-Straße 38, 67063, Ludwigshafen am Rhein, Germany
| | - Douglas Findley
- BASF Corporation, Research Triangle Park, Durham, NC, 27709, USA
| | - Rupert Konradi
- BASF Corporation, Harvard University, Pierce Hall 113, 29 Oxford St, Cambridge, MA, 02138, USA
| | - Benedetto Marelli
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
14
|
Wieser H, Koehler P, Scherf KA. Chemistry of wheat gluten proteins: Quantitative composition. Cereal Chem 2022. [DOI: 10.1002/cche.10553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Herbert Wieser
- Hamburg School of Food Science, Institute of Food Chemistry University of Hamburg Hamburg Germany
| | | | - Katharina A. Scherf
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| |
Collapse
|
15
|
Xi L, Zhang M, Zhang L, Lew TTS, Lam YM. Novel Materials for Urban Farming. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105009. [PMID: 34668260 DOI: 10.1002/adma.202105009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/31/2021] [Indexed: 05/27/2023]
Abstract
Scarcity of natural resources, shifting demographics, climate change, and increasing waste are four major challenges in the quest to feed the exploding world population. These challenges serve as the impetus to harness novel technologies to improve agriculture, productivity, and sustainability. Urban farming has several advantages over conventional farming: higher productivity, improved sustainability, and the ability to provide fresh food all year round. Novel materials are key to accelerating the evolution of urban farming - with their ability to facilitate controlled release of nutrients and pesticides, improved seed health, substrates with better water retention capability, more efficient recycling of agricultural waste, and precise plant health monitoring. Materials science enables environmental sustainability and higher harvest yields in urban farms. Here, Singapore is used as an example of a land-scarce city where urban farming may be the solution for future food production. Potential research directions and challenges in urban farming are highlighted, and how material optimization and innovation drive the development of urban farming to meet national and global food demands is briefly discussed. This review serves as a guide for researchers and a reference for stakeholders of urban farms, policy makers, and other interested parties.
Collapse
Affiliation(s)
- Lifei Xi
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Facility for Analysis, Characterisation, Testing and Simulation (FACTS), Nanyang Technological University, Singapore, 639798, Singapore
| | - Mengyuan Zhang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Liling Zhang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Tedrick T S Lew
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yeng Ming Lam
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Facility for Analysis, Characterisation, Testing and Simulation (FACTS), Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
16
|
Abstract
Renewable silk-protein technologies promote plant growth and reduce food waste.
Collapse
Affiliation(s)
- Benedetto Marelli
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
17
|
Duke SO, Pan Z, Bajsa-Hirschel J, Boyette CD. The potential future roles of natural compounds and microbial bioherbicides in weed management in crops. ADVANCES IN WEED SCIENCE 2022; 40. [PMID: 0 DOI: 10.51694/advweedsci/2022;40:seventy-five003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
18
|
Mhada M, Zvinavashe AT, Hazzoumi Z, Zeroual Y, Marelli B, Kouisni L. Bioformulation of Silk-Based Coating to Preserve and Deliver Rhizobium tropici to Phaseolus vulgaris Under Saline Environments. FRONTIERS IN PLANT SCIENCE 2021; 12:700273. [PMID: 34408761 PMCID: PMC8366584 DOI: 10.3389/fpls.2021.700273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Seed priming has been for a long time an efficient application method of biofertilizers and biocontrol agents. Due to the quick degradation of the priming agents, this technique has been limited to specific immediate uses. With the increase of awareness of the importance of sustainable use of biofertilizers, seed coating has presented a competitive advantage regarding its ability to adhere easily to the seed, preserve the inoculant, and decompose in the soil. This study compared primed Phaseolus vulgaris seeds with Rhizobium tropici and trehalose with coated seeds using a silk solution mixed with R. tropici and trehalose. We represented the effect of priming and seed coating on seed germination and the development of seedlings by evaluating physiological and morphological parameters under different salinity levels (0, 20, 50, and 75 mM). Results showed that germination and morphological parameters have been significantly enhanced by applying R. tropici and trehalose. Seedlings of coated seeds show higher root density than the freshly primed seeds and the control. The physiological response has been evaluated through the stomatal conductance, the chlorophyll content, and the total phenolic compounds. The stability of these physiological traits indicated the role of trehalose in the protection of the photosystems of the plant under low and medium salinity levels. R. tropici and trehalose helped the plant mitigate the negative impact of salt stress on all traits. These findings represent an essential contribution to our understanding of stress responses in coated and primed seeds. This knowledge is essential to the design of coating materials optimized for stressed environments. However, further progress in this area of research must anticipate the development of coatings adapted to different stresses using micro and macro elements, bacteria, and fungi with a significant focus on biopolymers for sustainable agriculture and soil microbiome preservation.
Collapse
Affiliation(s)
- Manal Mhada
- African Integrated Plant and Soil Research Group, AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| | - Augustine T. Zvinavashe
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Zakaria Hazzoumi
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science Innovation and Research (MAScIR), Rabat, Morocco
| | | | - Benedetto Marelli
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Lamfeddal Kouisni
- African Sustainable Agriculture Research Institute (ASARI–UM6P), Laayoune, Morocco
| |
Collapse
|