1
|
Abo-Al-Ela HG, Mahdi S, Angthong P, Rungrassamee W. Probiotic modulation of key immune macromolecules in shrimp. Microb Pathog 2025; 203:107463. [PMID: 40081678 DOI: 10.1016/j.micpath.2025.107463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/30/2024] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
The rapid expansion of shrimp aquaculture has been accompanied by significant disease challenges, driving the need for innovative prevention strategies. Probiotics, which are live microorganisms that confer health benefits to the host, have shown promise in controlling diseases in aquatic environments. Shrimp rely on their innate immune system, including physical barriers, and cellular and humoral defenses, for protection against pathogens. Physical barriers include the exoskeleton and the digestive tract, while cellular defenses involve hemocytes that engage in encapsulation, phagocytosis, and nodulation. Humoral defenses include the prophenoloxidase (proPO) system, lectins, agglutinins, and antimicrobial peptides (AMPs). Recent studies suggest that shrimp innate immunity can exhibit immunological memory, primarily through the actions of phagocytic cells. This review explores the use of probiotics in shrimp aquaculture, with a focus on their interaction with the shrimp immune system and their potential role in probiotic selection, either through environmental adaptation or as feed additives. Probiotics that enhance shrimp immunity by boosting phagocytosis, modulating the proPO system, and interacting with key signaling pathways such as Toll, IMD, and JAK/STAT offer a promising means of improving disease resistance. Probiotics play a critical role in modulating the infection process, influencing pathogen virulence factors, and shaping host-pathogen interactions. Further research into emerging immune pathways in shrimp could deepen our understanding of crustacean immunity and its applications in aquaculture.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, 43221, Egypt.
| | - Shaimaa Mahdi
- Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez 43221, Egypt
| | - Pacharaporn Angthong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Wanilada Rungrassamee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| |
Collapse
|
2
|
Huang Y, Du SH, Cui LF, Jiang FH, Zhao Z. Molecular cloning and functional characterization of eight galectin genes from Takifugu obscurus. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109917. [PMID: 39307256 DOI: 10.1016/j.fsi.2024.109917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/19/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
Galectins are a family of animal lectins involved in the immune response against pathogens. However, the roles of fish galectins during pathogen infection require comprehensive studies. In the present research, eight different galectin genes from Takifugu obscurus (named ToGalec1-8) were identified and characterized. ToGalec1-8 encoded proteins of 240, 182, 373, 145, 452, 135, 359 and 346 amino acids, respectively. All predicted ToGalec1-8 proteins possessed one or more conserved carbohydrate recognition domains (CRDs). Phylogenetic analysis revealed that ToGalec1-8 were evolutionarily closely related to their counterparts in other selected vertebrates, hinting their genetic relationship. Tissue distribution analysis showed that most ToGalec genes were distributed ubiquitously in all detected tissues, with relatively high expression in immune tissues. After stimulation by Vibrio harveyi and Staphylococcus aureus, the mRNA transcripts of ToGalec1-8 in liver and kidney were significantly upregulated. In addition, RNA interference experiments indicated that knockdown of ToGalec1 and ToGalec7 inhibited the clearance of bacteria in vivo. Taken together, these obtained results suggested that ToGalec1-8 play an important role in innate immunity and defense against bacterial infection in T. obscurus.
Collapse
Affiliation(s)
- Ying Huang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Sheng-Hao Du
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Li-Fan Cui
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Fu-Hui Jiang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China.
| |
Collapse
|
3
|
Fajardo C, De Donato M, Macedo M, Charoonnart P, Saksmerprome V, Yang L, Purton S, Mancera JM, Costas B. RNA Interference Applied to Crustacean Aquaculture. Biomolecules 2024; 14:1358. [PMID: 39595535 PMCID: PMC11592254 DOI: 10.3390/biom14111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
RNA interference (RNAi) is a powerful tool that can be used to specifically knock-down gene expression using double-stranded RNA (dsRNA) effector molecules. This approach can be used in aquaculture as an investigation instrument and to improve the immune responses against viral pathogens, among other applications. Although this method was first described in shrimp in the mid-2000s, at present, no practical approach has been developed for the use of dsRNA in shrimp farms, as the limiting factor for farm-scale usage in the aquaculture sector is the lack of cost-effective and simple dsRNA synthesis and administration procedures. Despite these limitations, different RNAi-based approaches have been successfully tested at the laboratory level, with a particular focus on shrimp. The use of RNAi technology is particularly attractive for the shrimp industry because crustaceans do not have an adaptive immune system, making traditional vaccination methods unfeasible. This review summarizes recent studies and the state-of-the-art on the mechanism of action, design, use, and administration methods of dsRNA, as applied to shrimp. In addition, potential constraints that may hinder the deployment of RNAi-based methods in the crustacean aquaculture sector are considered.
Collapse
Affiliation(s)
- Carlos Fajardo
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cadiz (UCA), 11510 Puerto Real, Spain;
- Interdisciplinary Centre of Marine and Environmental Research, The University of Porto (CIIMAR), 4450-208 Matosinhos, Portugal; (M.M.); (B.C.)
| | - Marcos De Donato
- Center for Aquaculture Technologies (CAT), San Diego, CA 92121, USA;
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Querétaro 76130, Mexico
| | - Marta Macedo
- Interdisciplinary Centre of Marine and Environmental Research, The University of Porto (CIIMAR), 4450-208 Matosinhos, Portugal; (M.M.); (B.C.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), 4050-313 Porto, Portugal
| | - Patai Charoonnart
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.C.); (V.S.)
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 12120, Thailand
| | - Vanvimon Saksmerprome
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.C.); (V.S.)
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 12120, Thailand
| | - Luyao Yang
- Department of Structural and Molecular Biology, University College London (UCL), London WC1E 6BT, UK; (L.Y.); (S.P.)
| | - Saul Purton
- Department of Structural and Molecular Biology, University College London (UCL), London WC1E 6BT, UK; (L.Y.); (S.P.)
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cadiz (UCA), 11510 Puerto Real, Spain;
| | - Benjamin Costas
- Interdisciplinary Centre of Marine and Environmental Research, The University of Porto (CIIMAR), 4450-208 Matosinhos, Portugal; (M.M.); (B.C.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Feng D, Yan C, Yuan L, Jia Y, Sun Y, Zhang J. Genome-wide identification of crustacyanin and function analysis of one isoform high-expression in carapace from Neocaridina denticulata sinensis. Int J Biol Macromol 2024; 278:135070. [PMID: 39187096 DOI: 10.1016/j.ijbiomac.2024.135070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Lipocalin proteins transport hydrophobic molecules, including apolipoprotein D, retinol-binding protein, and crustacyanin (CRCN). CRCN can combine with astaxanthin to cause a bathochromic shift in the emission spectrum of astaxanthin from red to blue. Therefore, CRCN influences the colors and patterns of crustaceans, which are important for various biological functions such as camouflage, reproduction, and communication. For aquatic organisms, body color is economically important and can be indicative of habitat water quality. In this study, thirteen CRCN genes (NdCRCNs) were first discovered in Neocaridina denticulata sinensis, contradicting prior findings of a few isoform genes in a species. The expression pattern of NdCRCNs in tissues showed that the expression of one CRCN isoform gene, named NdCRCN-30, was the highest in the carapace. In situ hybridization (ISH) analysis revealed that NdCRCN-30 was predominantly distributed in the outer epidermis of shrimp. Interference of NdCRCN-30 could cause a change in the color of the carapace. RNA-seq was performed after knockdown with the NdCRCN-30, and differential gene enrichment analysis revealed that this gene is primarily associated with antioxidant function, pigmentation, and molting. Overall, our results will provide new insights into the biological function of the CRCN and genetic breeding for changing body color in economic crustaceans.
Collapse
Affiliation(s)
- Dandan Feng
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Congcong Yan
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Longbin Yuan
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding 071002, China
| | - Yuewen Jia
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yuying Sun
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding 071002, China.
| | - Jiquan Zhang
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
5
|
Cox N, De Swaef E, Corteel M, Van Den Broeck W, Bossier P, Nauwynck HJ, Dantas-Lima JJ. Experimental Infection Models and Their Usefulness for White Spot Syndrome Virus (WSSV) Research in Shrimp. Viruses 2024; 16:813. [PMID: 38793694 PMCID: PMC11125927 DOI: 10.3390/v16050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
White spot syndrome virus (WSSV) is marked as one of the most economically devastating pathogens in shrimp aquaculture worldwide. Infection of cultured shrimp can lead to mass mortality (up to 100%). Although progress has been made, our understanding of WSSV's infection process and the virus-host-environment interaction is far from complete. This in turn hinders the development of effective mitigation strategies against WSSV. Infection models occupy a crucial first step in the research flow that tries to elucidate the infectious disease process to develop new antiviral treatments. Moreover, since the establishment of continuous shrimp cell lines is a work in progress, the development and use of standardized in vivo infection models that reflect the host-pathogen interaction in shrimp is a necessity. This review critically examines key aspects of in vivo WSSV infection model development that are often overlooked, such as standardization, (post)larval quality, inoculum type and choice of inoculation procedure, housing conditions, and shrimp welfare considerations. Furthermore, the usefulness of experimental infection models for different lines of WSSV research will be discussed with the aim to aid researchers when choosing a suitable model for their research needs.
Collapse
Affiliation(s)
- Natasja Cox
- IMAQUA, 9080 Lochristi, Belgium; (E.D.S.); (M.C.); (J.J.D.-L.)
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | | | - Mathias Corteel
- IMAQUA, 9080 Lochristi, Belgium; (E.D.S.); (M.C.); (J.J.D.-L.)
| | - Wim Van Den Broeck
- Department of Morphology, Medical Imaging, Orthopedics, Physiotherapy and Nutrition, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Hans J. Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | | |
Collapse
|
6
|
Patriota MSS, Bernd RB, de Souza ALX, de Melo LAMP, Scherwinski-Pereira JE. Quantification of DNA Methylation by ELISA in Epigenetic Studies in Plant Tissue Culture: A Theoretical-Practical Guide. Methods Mol Biol 2024; 2827:323-350. [PMID: 38985280 DOI: 10.1007/978-1-0716-3954-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
This chapter describes a step-by-step protocol for rapid serological quantification of global DNA methylation by enzyme-linked immunosorbent assay (ELISA) in plant tissue culture specimens. As a case study model, we used the coconut palm (Cocos nucifera), from which plumules were subjected to somatic embryogenesis followed by embryogenic calli multiplication. DNA methylation is one of the most common epigenetic markers in the regulation of gene expression. DNA methylation is generally associated with non-expressed genes, that is, gene silencing under certain conditions, and the degree of DNA methylation can be used as a marker of various physiological processes, both in plants and in animal cells. Methylation consists of adding a methyl radical to carbon 5 of the DNA cytosine base. Herein, the global DNA methylation was quantified by ELISA with antibodies against methylated cytosines using a commercial kit (Zymo-Research™). The method allowed the detection of methylation in total DNA extracts from coconut palm embryogenic calli (arising from somatic embryogenesis) cultivated in liquid or solid media by using antibodies against methylated cytosines and enzymatic development with a colorimetric substrate. Control samples of commercially provided Escherichia coli bacterial DNA with previously known methylation percentages were included in the ELISA test to construct an experimental methylation standard curve. The logarithmic regression of this E. coli standard curve allowed methylation quantification in coconut palm samples. The present ELISA methodology, applied to coconut palm tissue culture specimens, is promising for use in other plant species and botanical families. This chapter is presented in a suitable format for use as a step-by-step laboratory procedure manual, with theoretical introduction information, which makes it easy to apply the protocol in samples of any biological nature to evaluate DNA global methylation associated with any physiological process.
Collapse
|
7
|
Zhang J, Sun Z, Su W, Wang Z, Meng W, Chang Y. A signal recognition particle receptor gene from the sea cucumber, Apostichopus japonicas. Sci Rep 2023; 13:22973. [PMID: 38151522 PMCID: PMC10752883 DOI: 10.1038/s41598-023-50320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023] Open
Abstract
The signal recognition particle (SRP) system delivers approximately 30% of the proteome to the endoplasmic reticulum (ER) membrane. SRP receptor alpha (SRα) binds to SRP for targeting nascent secreted proteins to the ER membrane in eukaryotic cells. In this study, the SRα homologous gene was identified in the sea cucumber, Apostichopus japonicus (AjSRα). AjSRα codes for 641 amino acids and has 54.94% identity with its mammalian homologs. Like mammalian SRα, it is expected to contain the SRP-alpha N domain, SRP54_N domain, and SRP54 domain. In addition, AjSRα is ubiquitously expressed in adult tissues and exhibits a sexually dimorphic expression pattern, with significantly higher expression in ovaries compared to testes. As a maternal factor, AjSRα can be continuously detected during embryonic development. Importantly, we first attempted to investigate its function by using lentiviral vectors for delivering SRα gene-specific shRNA, and we revealed that lentiviral vectors do not induce an upregulation of immune-related enzymes in sea cucumbers. However, compared to the dsRNA-based RNA interference (RNAi) method, lentivirus-mediated RNAi caused dynamic changes in gene expression at a later time. This study supplied the technical support for studying the functional mechanism of SRα in sea cucumbers.
Collapse
Affiliation(s)
- Jian Zhang
- School of Life Science, Liaoning Normal University, Dalian, 116029, China
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Zhihui Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| | - Weiyi Su
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Zengdong Wang
- Shandong Anyuan Aquaculture Co. Ltd, Yantai, 264000, China
| | - Weihan Meng
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Yaqing Chang
- School of Life Science, Liaoning Normal University, Dalian, 116029, China.
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
8
|
Alam MS, Islam MN, Das M, Islam SF, Rabbane MG, Karim E, Roy A, Alam MS, Ahmed R, Kibria ASM. RNAi-Based Therapy: Combating Shrimp Viral Diseases. Viruses 2023; 15:2050. [PMID: 37896827 PMCID: PMC10612085 DOI: 10.3390/v15102050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Shrimp aquaculture has become a vital industry, meeting the growing global demand for seafood. Shrimp viral diseases have posed significant challenges to the aquaculture industry, causing major economic losses worldwide. Conventional treatment methods have proven to be ineffective in controlling these diseases. However, recent advances in RNA interference (RNAi) technology have opened new possibilities for combating shrimp viral diseases. This cutting-edge technology uses cellular machinery to silence specific viral genes, preventing viral replication and spread. Numerous studies have shown the effectiveness of RNAi-based therapies in various model organisms, paving the way for their use in shrimp health. By precisely targeting viral pathogens, RNAi has the potential to provide a sustainable and environmentally friendly solution to combat viral diseases in shrimp aquaculture. This review paper provides an overview of RNAi-based therapy and its potential as a game-changer for shrimp viral diseases. We discuss the principles of RNAi, its application in combating viral infections, and the current progress made in RNAi-based therapy for shrimp viral diseases. We also address the challenges and prospects of this innovative approach.
Collapse
Affiliation(s)
- Md. Shahanoor Alam
- Department of Genetics and Fish Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Mohammad Nazrul Islam
- Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Mousumi Das
- Department of Aquaculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Sk. Farzana Islam
- Department of Fisheries (DoF), Government of the People’s Republic of Bangladesh, Matshya Bhaban, Ramna, Dhaka 1000, Bangladesh; (S.F.I.); (R.A.)
| | - Md. Golam Rabbane
- Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Ehsanul Karim
- Bangladesh Fisheries Research Institute, Mymensingh 2201, Bangladesh;
| | - Animesh Roy
- Department of Fisheries Biology and Aquatic Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Mohammad Shafiqul Alam
- Department of Genetics and Fish Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Raju Ahmed
- Department of Fisheries (DoF), Government of the People’s Republic of Bangladesh, Matshya Bhaban, Ramna, Dhaka 1000, Bangladesh; (S.F.I.); (R.A.)
| | - Abu Syed Md. Kibria
- Department of Aquaculture, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh;
| |
Collapse
|
9
|
Gao J, Liu H, Zhang Z, Liang Z. Establishment, optimization, and application of genetic technology in Aspergillus spp. Front Microbiol 2023; 14:1141869. [PMID: 37025635 PMCID: PMC10071863 DOI: 10.3389/fmicb.2023.1141869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
Aspergillus is widely distributed in nature and occupies a crucial ecological niche, which has complex and diverse metabolic pathways and can produce a variety of metabolites. With the deepening of genomics exploration, more Aspergillus genomic informations have been elucidated, which not only help us understand the basic mechanism of various life activities, but also further realize the ideal functional transformation. Available genetic engineering tools include homologous recombinant systems, specific nuclease based systems, and RNA techniques, combined with transformation methods, and screening based on selective labeling. Precise editing of target genes can not only prevent and control the production of mycotoxin pollutants, but also realize the construction of economical and efficient fungal cell factories. This paper reviewed the establishment and optimization process of genome technologies, hoping to provide the theoretical basis of experiments, and summarized the recent progress and application in genetic technology, analyzes the challenges and the possibility of future development with regard to Aspergillus.
Collapse
Affiliation(s)
- Jing Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huiqing Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhenzhen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Zhihong Liang,
| |
Collapse
|
10
|
Long F, Wang X, Wan Y, Zhang Z, Zhang W, Zan L, Cheng G. Bta-miR-493 Inhibits Bovine Preadipocytes Differentiation by Targeting BMPR1A via the TGFβ/BMP and p38MAPK Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14641-14653. [PMID: 36373418 DOI: 10.1021/acs.jafc.2c05719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fat deposition significantly impacts the meat yield and the meat quality of beef cattle, which is closely associated with the preadipocyte proliferation and differentiation. Bta-miR-493 is expressed differentially in the backfat of Qinchuan cattle of various ages, and it may be involved in the fat accumulation of beef cattle. However, the role and functional mechanism of bta-miR-493 in fat deposition are still unclear. Tissue-specific expression analysis showed that the level of bta-miR-493 was moderately abundant in the adipose tissues of beef cattle. Moreover, the expression of bta-miR-493 in perirenal fat, subcutaneous fat, and longissimus dorsi muscle of Japanese black cattle was significantly higher than that in Qinchuan cattle. EdU staining, cell counting assay, and Oil Red O staining indicated that bta-miR-493 promoted the proliferation of bovine preadipocytes but inhibited their differentiation. The dual luciferase assay and transcriptomic analysis confirmed that bone morphogenetic protein receptor 1A (BMPR1A) is a target gene of bta-miR-493. Moreover, rescue experiments showed that bta-miR-493 could promote bovine preadipocyte proliferation but inhibit their differentiation by targeting BMPR1A via the TGFβ/BMP and p38MAPK signaling pathways. Overall, our findings revealed a bta-miR-493-BMPR1A-TGFβ/BMP/p38MAPK regulatory axis that will serve as a theoretical foundation for the molecular breeding of beef cattle with high intramuscular fat deposition.
Collapse
Affiliation(s)
- Feng Long
- College of Animal Science and Technology, Northwest A&F University, Yangling712100, Shaanxi, China
| | - Xiaoyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling712100, Shaanxi, China
| | - Yuan Wan
- College of Animal Science and Technology, Northwest A&F University, Yangling712100, Shaanxi, China
| | - Ziyi Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling712100, Shaanxi, China
| | - Wenzhen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling712100, Shaanxi, China
| | - Linsen Zan
- National Beef Cattle Improvement Centre, College of Animal Science and Technology, Northwest A&F University, Yangling712100, Shaanxi, China
| | - Gong Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling712100, Shaanxi, China
| |
Collapse
|
11
|
A Tale of Two Lobsters—Transcriptomic Analysis Reveals a Potential Gap in the RNA Interference Pathway in the Tropical Rock Lobster Panulirus ornatus. Int J Mol Sci 2022; 23:ijms231911752. [PMID: 36233053 PMCID: PMC9569428 DOI: 10.3390/ijms231911752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
RNA interference (RNAi) has been widely utilised in many invertebrate models since its discovery, and in a majority of instances presents as a highly efficient and potent gene silencing mechanism. This is emphasized in crustaceans with almost all taxa having the capacity to trigger effective silencing, with a notable exception in the spiny lobsters where repeated attempts at dsRNA induced RNAi have demonstrated extremely ineffective gene knockdown. A comparison of the core RNAi machinery in transcriptomic data from spiny lobsters (Panulirus ornatus) and the closely related slipper lobsters (Thenus australiensis, where silencing is highly effective) revealed that both lobsters possess all proteins involved in the small interfering and microRNA pathways, and that there was little difference at both the sequence and domain architecture level. Comparing the expression of these genes however demonstrated that T. australiensis had significantly higher expression in the transcripts encoding proteins which directly interact with dsRNA when compared to P. ornatus, validated via qPCR. These results suggest that low expression of the core RNAi genes may be hindering the silencing response in P. ornatus, and suggest that it may be critical to enhance the expression of these genes to induce efficient silencing in spiny lobsters.
Collapse
|
12
|
Qian H, Ma K, Feng J, Guo Z, Gong J, Chen H, Bai H, Qiu G. Transcriptome analysis of the post-larvae of giant freshwater prawn (Macrobrachium rosenbergii) after IAG gene knockdown with microRNA interference. Gen Comp Endocrinol 2022; 325:114054. [PMID: 35580689 DOI: 10.1016/j.ygcen.2022.114054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 11/04/2022]
Abstract
The insulin-like androgenic gland hormone gene (IAG) of crustaceans plays pivotal roles in the regulation of sex differentiation. MicroRNAs (miRNAs) are a class of short, non-coding RNAs that function as post-transcriptional gene regulators. However, little information about the regulatory relationship between miRNA and Macrobrachium rosenbergii IAG (MrIAG) were exposed. In this study, we used the 3' untranslated region (UTR) of MrIAG to predict potential target sites of miRNAs. The results showed that miR-184 has one target site in the 3'UTR of MrIAG. Dual-luciferase report assay in vitro confirmed that miR-184 can significantly down-regulate MrIAG expression. Besides, we constructed mutant plasmids of 3'UTR of MrIAG. The result displayed that after co-transfection of mutant plasmids and miR-184 agomir, the activity of luciferase was not affected compared to the control. These results indicated that miR-184 could directly regulate MrIAG. In addition, we found that overexpression of miR-184 in M. rosenbergii can lead to significant changes in the transcription level of genes. Compared with control group, we identified 1510 differentially expressed genes (DEGs) in the miR-184 injection group. Some DEGs were involved in sex differentiation, gonad development, growth and molting were found. qRT-PCR verification was performed on eight DEGs randomly, and the results showed that the expression level of sex-, growth-, and metabolism-related genes changed significantly after MrIAG gene knockdown. Collectively, findings from this study suggest that miR-184, by mediating IAG expression, may be involved in many physiological processes in M. rosenbergii. The current study lays a basic understanding for short-term silencing of MrIAG with miR-184, and facilitates miRNA function analysis in M. rosenbergii in future.
Collapse
Affiliation(s)
- Hongli Qian
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Keyi Ma
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China.
| | - Jianbin Feng
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Ziqi Guo
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jinhua Gong
- Jiangsu Dinghe Aquatic Technology Development Co., Ltd., Taizhou 225300, PR China
| | - Huangen Chen
- Jiangsu Fishery Technology Extension Center, Nanjing 210036, PR China
| | - Haotian Bai
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Gaofeng Qiu
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
13
|
de Oliveira Filho JG, da Cruz Silva G, Gomes M, de Sousa TL, Ferreira MD, Egea MB. External application of RNA interference (RNAi): An innovative tool for controlling fungi during food storage. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Sun JJ, Sun ZH, Wei JL, Ding J, Song J, Chang YQ. Identification and functional analysis of foxl2 and nodal in sea cucumber, Apostichopus japonicus. Gene Expr Patterns 2022; 44:119245. [PMID: 35381371 DOI: 10.1016/j.gep.2022.119245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/24/2022] [Accepted: 03/19/2022] [Indexed: 11/28/2022]
Abstract
Sea cucumber (Apostichopus japonicus) is an important mariculture species in China. To date, the mechanisms of sex determination and differentiation in sea cucumber remain unclear. Identifying sex-specific molecular markers is an effective method for revealing the genetic basis of sex determination and sex differentiation. In this study, foxl2 and nodal homologous genes were identified in A. japonicus. Foxl2 exhibited dynamic and sexually dimorphic expression patterns in the gonads, with prominent expression in the ovaries and minimal expression in the testis according to real-time quantitative PCR (RT-qPCR) study. As nodal was specifically expressed in the ovary, it could serve as an ovary-specific marker in sea cucumber. Additionally, knockdown of foxl2 or nodal using RNA interference (RNAi) led to the down-regulation of piwi, germ cell-less, and dmrt1, suggesting that foxl2 and nodal may play important roles in gonad maintenance of sea cucumber. Overall, this study adds to our understanding of the roles of foxl2 and nodal in the gonadal development of A. japonicus, which provides further insight into the mechanisms of sea cucumber sex determination and differentiation.
Collapse
Affiliation(s)
- Juan-Juan Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Zhi-Hui Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Jin-Liang Wei
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Jian Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Ya-Qing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
15
|
Abo-Al-Ela HG. The emerging regulatory roles of noncoding RNAs in immune function of fish: MicroRNAs versus long noncoding RNAs. Mol Genet Genomics 2021; 296:765-781. [PMID: 33904988 DOI: 10.1007/s00438-021-01786-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The genome could be considered as raw data expressed in proteins and various types of noncoding RNAs (ncRNAs). However, a large portion of the genome is dedicated to ncRNAs, which in turn represent a considerable amount of the transcriptome. ncRNAs are modulated on levels of type and amount whenever any physiological process occurs or as a response to external modulators. ncRNAs, typically forming complexes with other partners, are key molecules that influence diverse cellular processes. Based on the knowledge of mammalian biology, ncRNAs are known to regulate and control diverse trafficking pathways and cellular activities. Long noncoding RNAs (lncRNAs) notably have diverse and more regulatory roles than microRNAs. Expanding these studies on fish has derived the same conclusion with relevance to other species, including invertebrates, explored the potentials to harness such types of RNA to further understand the biology of such organisms, and opened gates for applying recent technologies, such as RNA interference and delivering micromolecules as microRNAs to living cells and possibly to target organs. These technologies should improve aquaculture productivity and fish health, as well as help understand fish biology.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, 43518, Suez, Egypt.
| |
Collapse
|