1
|
Zhang C, Zhou T, Li C, Wang D, Tao J, Zhu X, Lu J, Ni J, Yao YF. Deciphering novel enzymatic and non-enzymatic lysine lactylation in Salmonella. Emerg Microbes Infect 2025; 14:2475838. [PMID: 40035788 PMCID: PMC11924271 DOI: 10.1080/22221751.2025.2475838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/01/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Lysine lactylation, a novel post-translational modification, is involved in multiple cellular processes. The role of lactylation remains largely unknown, especially in bacteria. Here, we identified 1090 lactylation sites on 469 proteins by mass spectrometry in Salmonella Typhimurium. Many proteins involved in metabolic processes, protein translation, and other biological functions are lactylated, with lactylation levels varying according to the growth phase or lactate supplementation. Lactylation is regulated by glycolysis, and inhibition of L-lactate utilization can enhance lactylation levels. In addition to the known lactylase in E. coli, the acetyltransferase YfiQ can also catalyse lactylation. More importantly, L-lactyl coenzyme A (L-La-CoA) and S,D-lactoylglutathione (LGSH) can directly donate lactyl groups to target proteins for chemical lactylation. Lactylation is involved in Salmonella invasion of eukaryotic cells, suggesting that lactylation is crucial for bacterial virulence. Collectively, we have comprehensively investigated protein lactylome and the regulatory mechanisms of lactylation in Salmonella, providing valuable insights into studying lactylation function across diverse bacterial species.
Collapse
Affiliation(s)
- Chuanzhen Zhang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People’s Republic of China
| | - Tao Zhou
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Chengxi Li
- Anhui Key Laboratory of Infection and Immunity, Department of Microbiology, Bengbu Medical College, Bengbu, People’s Republic of China
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jing Tao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiaocen Zhu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Wang Z, Xing T, Zhang L, Zhao L, Gao F. Protein lactylation in broiler breast: Insights on occurrence mechanisms and the correlations with meat quality. Food Chem 2025; 477:143613. [PMID: 40031133 DOI: 10.1016/j.foodchem.2025.143613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/05/2025]
Abstract
This study investigated the effects of lactate levels in broiler breast on protein lactylation modification, meat quality, and their correlation. High lactate injections led to increased lactate levels in both serum and breast muscle, and significantly reduced the values of pH0, pH45min and pH24h. Additionally, the lactylation levels in breast muscle were increased both post-slaughter and post-mortem. Protein lactylation in breast muscle occurred through enzymatic and non-enzymatic pathways at these stages, with the underlying mechanisms varying according to lactate levels and the muscle aging process. Correlation analysis revealed that post-slaughter lactylation contributed to breast muscle morphometry, whereas post-mortem lactylation was associated with meat quality and texture profile. These findings could demonstrate the presence and dynamic patterns of protein lactylation in broiler breast muscles, offering new insights into the role of lactate accumulation in meat quality variation.
Collapse
Affiliation(s)
- Zhenxin Wang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
3
|
Chen X, Yuan Y, Zhou F, Li L, Pu J, Zeng Y, Jiang X. Lactylation: From Homeostasis to Pathological Implications and Therapeutic Strategies. MedComm (Beijing) 2025; 6:e70226. [PMID: 40443721 PMCID: PMC12122191 DOI: 10.1002/mco2.70226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 06/02/2025] Open
Abstract
Lactylation, a recently identified post-translational modification, represents a groundbreaking addition to the epigenetic landscape, revealing its pivotal role in gene regulation and metabolic adaptation. Unlike traditional modifications, lactylation directly links metabolic intermediates, such as lactate, to protein function and cellular behavior. Emerging evidence highlights the critical involvement of lactylation in diverse biological processes, including immune response modulation, cellular differentiation, and tumor progression. However, its regulatory mechanisms, biological implications, and disease associations remain poorly understood. This review systematically explores the enzymatic and nonenzymatic mechanisms underlying protein lactylation, shedding light on the interplay between cellular metabolism and epigenetic control. We comprehensively analyze its biological functions in normal physiology, such as immune homeostasis and tissue repair, and its dysregulation in pathological contexts, including cancer, inflammation, and metabolic disorders. Moreover, we discuss advanced detection technologies and potential therapeutic interventions targeting lactylation pathways. By integrating these insights, this review aims to bridge critical knowledge gaps and propose future directions for research. Highlighting lactylation's multifaceted roles in health and disease, this review provides a timely resource for understanding its clinical implications, particularly as a novel target for precision medicine in metabolic and oncological therapies.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan ProvinceThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingChina
| | - Yixiao Yuan
- Department of Medicine, UF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
| | - Fan Zhou
- Department of Hematologythe Second Hospital Affiliated to Kunming Medical UniversityKunmingChina
| | - Lihua Li
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingChina
| | - Jun Pu
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan ProvinceThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingChina
| | - Yong Zeng
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan ProvinceThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Xiulin Jiang
- Department of Medicine, UF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
4
|
Wang S, Zheng H, Zhao J, Xie J. Role of lysine lactylation in neoplastic and inflammatory pulmonary diseases (Review). Int J Mol Med 2025; 55:71. [PMID: 40052587 PMCID: PMC11913435 DOI: 10.3892/ijmm.2025.5512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/20/2025] [Indexed: 03/19/2025] Open
Abstract
Protein lysine lactylation is a ubiquitous and post‑translational modification of lysine residues that involves the addition of a lactyl group on both histone and non‑histone proteins. This process plays a pivotal role in human health and disease and was first discovered in 2019. This epigenetic modification regulates gene transcription from chromatin or directly influences non‑histone proteins by modulating protein‑DNA/protein interactions, activity and stability. The dual functions of lactylation in both histone and non‑histone proteins establish it as a crucial mechanism involved in various cellular processes, such as cell proliferation, differentiation, immune and inflammatory responses and metabolism. Specific enzymes, referred to as 'writers' and 'erasers', catalyze the addition or removal of lactyl groups at designated lysine sites, thereby dynamically modulating lactylation through alterations in their enzymatic activities. The respiratory system has a remarkably intricate metabolic profile. Numerous pulmonary diseases feature an atypical transition towards glycolytic metabolism, which is linked to an overproduction of lactate, a possible substrate for lactylation. However, there has yet to be a comprehensive review elucidating the full impact of lactylation on the onset, progression and potential treatment of neoplastic and inflammatory pulmonary diseases. In the present review, an extensive overview of the discovery of lactylation and advancements in research on the existing lactylation sites were discussed. Furthermore, the review particularly investigated the potential roles and mechanisms of histone and non‑histone lactylation in various neoplastic and inflammatory pulmonary diseases, including non‑small cell lung cancers, malignant pleural effusion, pulmonary fibrosis, acute lung injury and asthma, to excavate the new therapeutic effects of post‑translational modification on various pulmonary diseases.
Collapse
Affiliation(s)
| | | | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
5
|
Ren H, Tang Y, Zhang D. The emerging role of protein L-lactylation in metabolic regulation and cell signalling. Nat Metab 2025; 7:647-664. [PMID: 40175761 DOI: 10.1038/s42255-025-01259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/03/2025] [Indexed: 04/04/2025]
Abstract
L-Lactate has emerged as a crucial metabolic intermediate, moving beyond its traditional view as a mere waste product. The recent discovery of L-lactate-driven protein lactylation as a post-translational modification has unveiled a pathway that highlights the role of lactate in cellular signalling. In this Perspective, we explore the enzymatic and metabolic mechanisms underlying protein lactylation and its impacts on both histone and non-histone proteins in the contexts of physiology and diseases. We discuss growing evidence suggesting that this modification regulates a wide range of cellular functions and is involved in various physiological and pathological processes, such as cell-fate determination, development, cardiovascular diseases, cancer and autoimmune disorders. We propose that protein lactylation acts as a pivotal mechanism, integrating metabolic and signalling pathways to enable cellular adaptation, and highlight its potential as a therapeutic target in various diseases.
Collapse
Affiliation(s)
- Haowen Ren
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Yuwei Tang
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Di Zhang
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
6
|
Hayashi Y, Sato B, Kageyama R, Miyado K, Saito D, Kobayashi S, Kawano N. Comprehensive observation of histone lysine lactylation during gametogenesis of Drosophila melanogaster. Dev Dyn 2025. [PMID: 40152687 DOI: 10.1002/dvdy.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/28/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Histone post-translational modification (PTM) is an important epigenomic regulation content and an essential process regulating gene expression. Histone lysine lactylation is the newly identified histone PTM that utilizes the lactyl moiety for its modification. Although histone lysine lactylation is considered an essential outcome of the Wardburg effects and the interconnection between cellular metabolism and gene regulation, the developmental contexts involving this PTM are largely unknown. In this study, we comprehensively observed histone lysine lactylation during Drosophila oogenesis, one of the developmental contexts in which chromatin regulation plays crucial roles. RESULTS Our study revealed that lactylation on the specific histone lysine mainly occurs in the oocyte karyosome and condensed meiotic chromosome, suggesting histone lysine lactylation has a vital role in female meiosis. Interestingly, one of the histone lysine lactylations, lactylation of lysine 14 of histone H3, is intensively observed in the meiotic germline in the mouse ovary, suggesting that lactylation has an evolutionarily conserved role. CONCLUSIONS Our results revealed that histone lysine lactylation is predominantly present in transcriptionally repressive meiotic chromatin, which contradicts the previously reported function of histone lactylation in transcriptional activation. This study, therefore, provides the first fundamental information to understand the role of histone lysine lactylation in the germline and repressive chromatin.
Collapse
Affiliation(s)
- Yoshiki Hayashi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Ban Sato
- Department of Life Science, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Rio Kageyama
- College of Biological Sciences, School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Kenji Miyado
- Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Daisuke Saito
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Satoru Kobayashi
- College of Biological Sciences, School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, Japan
| | - Natsuko Kawano
- Department of Life Science, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| |
Collapse
|
7
|
Li C, Zhao Y, Li Q, Chen R, Feng Y, Sang X, Li X, Shen B, Jiang N, Chen Q. The TgAMPK-TgPFKII axis essentially regulates protein lactylation in the zoonotic parasite Toxoplasma gondii. Microbiol Spectr 2025; 13:e0204424. [PMID: 39918324 PMCID: PMC11878075 DOI: 10.1128/spectrum.02044-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025] Open
Abstract
Toxoplasma gondii infects nucleated cells of warm-blooded animals and cause zoonotic toxoplasmosis. Lysine lactylation, as a novel post-translational modification, is essential for epigenetic regulation and cellular processes, and proteomic analyses have shown that lactylated proteins are involved in a wide range of biological processes including energy metabolism, gene regulation, and protein biosynthesis. Additionally, protein lactylation is prevalent in T. gondii, while its regulatory mechanisms have not been fully understood. In this study, we investigated the role of T. gondii phosphofructokinase-2 (TgPFKII) and the adenosine-5'-monophosphate-activated protein kinase (AMPK) signaling pathway in the invasion, replication, and lactylation regulation of T. gondii. We localized TgPFKII in the cytoplasm of T. gondii tachyzoites and demonstrated its necessity for parasite growth and protein lactylation through auxin-induced degradation. Our results showed that inhibition of the AMPK pathway led to decreased TgPFKII expression and reduced protein lactylation levels. Furthermore, AMPK-specific inhibitors significantly impaired parasite invasion and proliferation. These findings highlight TgPFKII as a crucial regulator of lactylation and underscore the importance of the AMPK pathway in T. gondii's pathogenic mechanisms, offering potential targets for therapeutic intervention.IMPORTANCEUnderstanding the intricate mechanisms by which Toxoplasma gondii invades and proliferates within host cells is essential for developing novel therapeutic strategies against toxoplasmosis. This study focuses on the pivotal roles of T. gondii phosphofructokinase-2 (TgPFKII) and the adenosine-5'-monophosphate-activated protein kinase (AMPK) signaling pathway in regulating protein lactylation in association with parasite invasion and growth. By elucidating the cellular localization and functional importance of TgPFKII, as well as its regulation through AMPK-specific inhibitors, we provide comprehensive insights into the metabolic and signaling networks that underpin T. gondii pathogenicity. Our findings reveal that TgPFKII is a critical regulator of lactylation and that the AMPK pathway significantly influences T. gondii's ability to invade and replicate within host cells. These insights pave the way for targeted interventions aimed at disrupting key metabolic and signaling pathways in T. gondii, potentially leading to more effective treatments for toxoplasmosis.
Collapse
Affiliation(s)
- Chenghuan Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yang Zhao
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Qilong Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
8
|
Ma C, Zhang W, Xing L. Differences in protein lactylation between pale, soft and exudative and red, firm and non-exudative pork. Meat Sci 2025; 221:109736. [PMID: 39740368 DOI: 10.1016/j.meatsci.2024.109736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025]
Abstract
This study aimed to understand the development of pale, soft, and exudative (PSE) pork from a new perspective by comparing the differences of lactate-induced protein lactylation and its potential regulators including E1A binding protein p300 (p300) and cAMP response element binding protein (CBP) between PSE and red, firm, and non-exudative (RFN) pork at 1 h postmortem. Results demonstrated that PSE pork presented lower glycogen contents and higher lactate levels than RFN pork (P < 0.05). Meanwhile, p300/CBP and protein lactylation levels in PSE pork were higher (P < 0.05). Besides, the immunofluorescence results showed that p300/CBP and lactylated proteins were predominantly localized around the nucleus and sarcolemma membrane with small amounts in the cytoplasm, and these distribution signals were intensified in PSE pork. Importantly, a high degree of co-localization of p300/CBP and lactylated proteins was also observed in postmortem myocytes, confirming that p300/CBP were the critical regulators of lactylation modification in postmortem muscle. This work for the first time demonstrates that protein lactylation levels between PSE and RFN pork were notably diverse, which may potentially be involved in the regulation of various postmortem muscle biochemical metabolism.
Collapse
Affiliation(s)
- Chao Ma
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangang Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lujuan Xing
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Yang H, Mo N, Tong L, Dong J, Fan Z, Jia M, Yue J, Wang Y. Microglia lactylation in relation to central nervous system diseases. Neural Regen Res 2025; 20:29-40. [PMID: 38767474 PMCID: PMC11246148 DOI: 10.4103/nrr.nrr-d-23-00805] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/09/2023] [Accepted: 01/08/2024] [Indexed: 05/22/2024] Open
Abstract
The development of neurodegenerative diseases is closely related to the disruption of central nervous system homeostasis. Microglia, as innate immune cells, play important roles in the maintenance of central nervous system homeostasis, injury response, and neurodegenerative diseases. Lactate has been considered a metabolic waste product, but recent studies are revealing ever more of the physiological functions of lactate. Lactylation is an important pathway in lactate function and is involved in glycolysis-related functions, macrophage polarization, neuromodulation, and angiogenesis and has also been implicated in the development of various diseases. This review provides an overview of the lactate metabolic and homeostatic regulatory processes involved in microglia lactylation, histone versus non-histone lactylation, and therapeutic approaches targeting lactate. Finally, we summarize the current research on microglia lactylation in central nervous system diseases. A deeper understanding of the metabolic regulatory mechanisms of microglia lactylation will provide more options for the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Hui Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Nan Mo
- Department of Clinical Laboratory, The Fourth Clinical Medical College of Zhejiang University of Traditional Chinese Medicine (Hangzhou First People’s Hospital), Hangzhou, Zhejiang Province, China
| | - Le Tong
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jianhong Dong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Ziwei Fan
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Mengxian Jia
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Juanqing Yue
- Department of Pathology, Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Ying Wang
- Department of Clinical Research Center, Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
10
|
Soni KK, Gurjar K, Ranjan A, Sinha S, Srivastava M, Verma V. Post-translational modifications control the signal at the crossroads of plant-pathogen interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6957-6979. [PMID: 39177255 DOI: 10.1093/jxb/erae358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
The co-evolution of plants and pathogens has enabled them to 'outsmart' each other by promoting their own defence responses and suppressing those of the other. While plants are reliant on their sophisticated immune signalling pathways, pathogens make use of effector proteins to achieve the objective. This entails rapid regulation of underlying molecular mechanisms for prompt induction of associated signalling events in both plants as well as pathogens. The past decade has witnessed the emergence of post-translational modification (PTM) of proteins as a key a factor in modulating cellular responses. The ability of PTMs to expand the functional diversity of the proteome and induce rapid changes at the appropriate time enables them to play crucial roles in the regulation of plant-pathogen interactions. Therefore, this review will delve into the intricate interplay of five major PTMs involved in plant defence and pathogen countermeasures. We discuss how plants employ PTMs to fortify their immune networks, and how pathogen effectors utilize/target host modification systems to gain entry into plants and cause disease. We also emphasize the need for identification of novel PTMs and propose the use of PTM pathways as potential targets for genome editing approaches.
Collapse
Affiliation(s)
- Kamlesh Kumar Soni
- Department of Biotechnology, AKS University, Satna, Madhya Pradesh-485001, India
| | - Kishan Gurjar
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
| | - Aastha Ranjan
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
| | - Shashank Sinha
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
| | - Moumita Srivastava
- Plant Biotechnology and Disease Biology, Rajiv Gandhi Centre for Biotechnology, Thycaud Post, Poojappura, Thiruvananthapuram, Kerala-695014, India
| | - Vivek Verma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
- Plant Biotechnology Department, Gujarat Biotechnology University, Near Gujarat International Finance Tec City, Gandhinagar, Gujarat-382355, India
| |
Collapse
|
11
|
Guan J, Xie P, Dong D, Liu Q, Zhao Z, Guo Y, Zhang Y, Lee TY, Yao L, Chiang YC. DeepKlapred: A deep learning framework for identifying protein lysine lactylation sites via multi-view feature fusion. Int J Biol Macromol 2024; 283:137668. [PMID: 39566793 DOI: 10.1016/j.ijbiomac.2024.137668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Lysine lactylation (Kla) is a post-translational modification (PTM) that holds significant importance in the regulation of various biological processes. While traditional experimental methods are highly accurate for identifying Kla sites, they are both time-consuming and labor-intensive. Recent machine learning advances have enabled computational models for Kla site prediction. In this study, we propose a novel framework that integrates sequence embedding with sequence descriptors to enhance the representation of protein sequence features. Our framework employs a BiGRU-Transformer architecture to capture both local and global dependencies within the sequence, while incorporating six sequence descriptors to extract biochemical properties and evolutionary patterns. Additionally, we apply a cross-attention fusion mechanism to combine sequence embeddings with descriptor-based features, enabling the model to capture complex interactions between different feature representations. Our model demonstrated excellent performance in predicting Kla sites, achieving an accuracy of 0.998 on the training set and 0.969 on the independent set. Additionally, through attention analysis and motif discovery, our model provided valuable insights into key sequence patterns and regions that are crucial for Kla modification. This work not only deepens the understanding of Kla's functional roles but also holds the potential to positively impact future research in protein modification prediction and functional annotation.
Collapse
Affiliation(s)
- Jiahui Guan
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China; School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Peilin Xie
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China; School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Danhong Dong
- School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Qianchen Liu
- School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Zhihao Zhao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Yilin Guo
- School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Yilun Zhang
- School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, 1001 Daxue Road, Hsinchu 300093, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 1001 Daxue Road, Hsinchu 300093, Taiwan.
| | - Lantian Yao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China; School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China.
| | - Ying-Chih Chiang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China; School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China; School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China.
| |
Collapse
|
12
|
Wang Z, Xing T, Zhang L, Zhao L, Gao F. Dynamic changes of protein lactylation and their correlations with the glycolytic process during the postmortem acidification of broiler breast. Poult Sci 2024; 103:104354. [PMID: 39368431 PMCID: PMC11490697 DOI: 10.1016/j.psj.2024.104354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024] Open
Abstract
This experiment aimed to reveal the dynamic changes of protein post-translational lactylation modifications and their correlations with the glycolytic process in broiler breast muscle within 48 h of postmortem acidification. The experiment involved 12 male AA broilers, 42 days old, with similar body weights (2.8 ± 0.05 kg). The breast fillets (Pectoralis major) were collected after slaughter, and samples were taken at various time points: 0, 15 min, 30 min, 45 min, 60 min, 2 h, 4 h, 6 h, 8 h, 12 h, 18 h, 24 h, 36 h, and 48 h postmortem. The results showed that the rate of glycogen decline in the muscle was highest at 45 min postmortem, and glycogen levels tended to stabilize at 8 h postmortem. The lactate content in the breast reached its highest level at 4 h postmortem and began to decrease, stabilizing at 24 h postmortem. Additionally, the glycolytic potential increased gradually in the first 4 h postmortem, decreased rapidly from 4 to 8 h. Similarly, lactylation modification levels were highest at 8 h postmortem, but stabilized at 12 h postmortem. During this process, the protein expression of the enzymatic lactylation modifier p300 showed no significant difference, while the content of the nonenzymatic lactylation substrate lactoylglutathione significantly decreased at 8 h and 24 h postmortem. Correlation analysis found that lactylation levels were negatively correlated with glycogen content, glucose content, glycolytic potential, and pH value, while positively correlated with lactate content. Besides, there was a positive correlation between lactylation levels and the protein expression of hexokinase, phosphoglycerate kinase 2, phosphoglucomutase 1, and triosephosphate isomerase. Additionally, lactylation levels were positively correlated with the activities of lactate dehydrogenase and phosphofructokinase. In summary, our experiment elucidated the dynamic changes in the entire glycolytic pathway in broiler pectoral muscle during acidification. During this process, lactylation modifications may participate in the glycolysis process by regulating the protein expression and activity of glycolytic enzymes.
Collapse
Affiliation(s)
- Zhenxin Wang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Sun K, Shen Y, Xiao X, Xu H, Zhang Q, Li M. Crosstalk between lactate and tumor-associated immune cells: clinical relevance and insight. Front Oncol 2024; 14:1506849. [PMID: 39678492 PMCID: PMC11638036 DOI: 10.3389/fonc.2024.1506849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024] Open
Abstract
Lactate, which was traditionally viewed as a metabolic byproduct of anaerobic glycolysis, has emerged as a significant signaling molecule involved in the development of tumors. Current studies highlight its dual function, where it not only fuels tumor development but also modulates immune responses. Lactate has an effect on various tumor-associated immune cells, promoting immunosuppressive conditions that facilitate tumor growth and immune evasion. This phenomenon is strongly associated with the Warburg effect, a metabolic shift observed in many cancers that favors glycolysis over oxidative phosphorylation, resulting in elevated lactate production. Exploring the complex interplay between lactate metabolism and tumor immunity provides a novel understanding regarding the mechanisms of tumor immune evasion and resistance to therapies. This review discusses the unique biology of lactate in the TME, its impact on immune cell dynamics, and its potential as a tumor treatment target.
Collapse
Affiliation(s)
- Kemin Sun
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ye Shen
- School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Xiang Xiao
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Xu
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Quanli Zhang
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, China
- Department of Scientific Research, Jiangsu Cancer Hospital & the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, China
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ming Li
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Yan Y, Li M, Ding Z, Yang J, Xie Z, Ye X, Tie W, Tao X, Chen G, Huo K, Ma J, Ye J, Hu W. The regulation mechanism of ethephon-mediated delaying of postharvest physiological deterioration in cassava storage roots based on quantitative acetylproteomes analysis. Food Chem 2024; 458:140252. [PMID: 38964113 DOI: 10.1016/j.foodchem.2024.140252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Ethylene plays diverse roles in post-harvest processes of horticultural crops. However, its impact and regulation mechanism on the postharvest physiological deterioration (PPD) of cassava storage roots is unknown. In this study, a notable delay in PPD of cassava storage roots was observed when ethephon was utilized as an ethylene source. Physiological analyses and quantitative acetylproteomes were employed to investigate the regulation mechanism regulating cassava PPD under ethephon treatment. Ethephon was found to enhance the reactive oxygen species (ROS) scavenging system, resulting in a significant decrease in H2O2 and malondialdehyde (MDA) content. The comprehensive acetylome analysis identified 12,095 acetylation sites on 4403 proteins. Subsequent analysis demonstrated that ethephon can regulate the acetylation levels of antioxidant enzymes and members of the energy metabolism pathways. In summary, ethephon could enhance the antioxidant properties and regulate energy metabolism pathways, leading to the delayed PPD of cassava.
Collapse
Affiliation(s)
- Yan Yan
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China
| | - Meiying Li
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China
| | - Zehong Ding
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China
| | - Jinghao Yang
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zhengnan Xie
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiaoxue Ye
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China
| | - Weiwei Tie
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China
| | - Xiangru Tao
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ganlu Chen
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Kaisen Huo
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China
| | - Jianxiang Ma
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China
| | - Jianqiu Ye
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wei Hu
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China; Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China.
| |
Collapse
|
15
|
Sheng L, Xu H, Wang Y, Ni J, Xiang T, Xu H, Zhou X, Wei K, Dai J. Systematic analysis of lysine lactylation in nucleus pulposus cells. iScience 2024; 27:111157. [PMID: 39524337 PMCID: PMC11546124 DOI: 10.1016/j.isci.2024.111157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/28/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Nucleus pulposus (NP) resides in hypoxic microenvironment and NP cells (NPCs), primarily reply on glycolysis and producing high levels of lactate. Intracellular lactate drives lysine lactylation (Kla) as a newly epigenetic modification. However, the impact of Kla on NPCs remains unknown. Here, single-cell RNA sequencing (scRNA-seq) data suggested an altered balance between glycolysis and aerobic oxidation in intervertebral disc degeneration (IDD). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis displayed 3510 lactylation sites on 1052 non-histone proteins of NPCs isolated from rat cultured in normoxia and hypoxia. Moreover, there are 18 proteins with 129 Kla sites and 117 Kla sites in 27 proteins exclusively detected in normoxia and hypoxia group, respectively. Bioinformatics analysis displayed that these lactylated proteins are tightly related to ribosome, spliceosome and the VEGFA-VEGFA2 signaling pathway. Together, our study reveals that Kla may play an important role in regulating cellular metabolism of NPCs.
Collapse
Affiliation(s)
- Lei Sheng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Haoran Xu
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Yuexing Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Jinhao Ni
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Taiyang Xiang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Huanhuan Xu
- Department of Obstetrics and Gynecology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Kang Wei
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Jun Dai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
16
|
Zhu Y, Liu W, Luo Z, Xiao F, Sun B. New insights into the roles of lactylation in cancer. Front Pharmacol 2024; 15:1412672. [PMID: 39502530 PMCID: PMC11534861 DOI: 10.3389/fphar.2024.1412672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Lactylation, a novel discovered posttranslational modification, is a vital component of lactate function and is prevalent in a wide range of cells, interacting with both histone and non-histone proteins. Recent studies have confirmed that lactylation as a new contributor to epigenetic landscape is involved in multiple pathological processes. Accumulating evidence reveals that lactylation exists in different pathophysiological states and leads to inflammation and cancer; however, few mechanisms of lactylation have been elaborated. This review summarizes the biological processes and pathophysiological roles of lactylation in cancer, as well as discusses the relevant mechanisms and potential therapeutic targets, aiming to provide new insights for targeted cancer therapy.
Collapse
Affiliation(s)
- Yajun Zhu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenhui Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Zhiying Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Feiyan Xiao
- Center for Clinical Trial and Research, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
17
|
Huang F, He Y. Epigenetic control of gene expression by cellular metabolisms in plants. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102572. [PMID: 38875845 DOI: 10.1016/j.pbi.2024.102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
Covalent modifications on DNA and histones can regulate eukaryotic gene expression and are often referred to as epigenetic modifications. These chemical reactions require various metabolites as donors or co-substrates, such as acetyl coenzyme A, S-adenosyl-l-methionine, and α-ketoglutarate. Metabolic processes that take place in the cytoplasm, nucleus, or other cellular compartments may impact epigenetic modifications in the nucleus. Here, we review recent advances on metabolic control of chromatin modifications and thus gene expression in plants, with a focus on the functions of nuclear compartmentalization of metabolic processes and enzymes in DNA and histone modifications. Furthermore, we discuss the functions of cellular metabolisms in fine-tuning gene expression to facilitate the responses or adaptation to environmental changes in plants.
Collapse
Affiliation(s)
- Fei Huang
- Peking-Tsinghua Center for Life Sciences & National Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yuehui He
- Peking-Tsinghua Center for Life Sciences & National Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China.
| |
Collapse
|
18
|
Yu H, Zhu T, Ma D, Cheng X, Wang S, Yao Y. The role of nonhistone lactylation in disease. Heliyon 2024; 10:e36296. [PMID: 39315193 PMCID: PMC11417196 DOI: 10.1016/j.heliyon.2024.e36296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
In 2019, a novel post-translational modification termed lactylation was identified, which established a connection among lactate, transcriptional regulation and epigenetics. Lactate, which is traditionally viewed as a metabolic byproduct, is now recognized for its significant functional role, including modulating the tumor microenvironment, engaging in signaling and interfering in immune regulation. While research on lactylation (KLA) is advancing, the focus has primarily been on histone lactylation. This paper aims to explore the less-studied area of nonhistone lactylation, highlighting its involvement in certain diseases and physiological processes. Additionally, the clinical relevance and potential implications of nonhistone lactylation will be discussed.
Collapse
Affiliation(s)
- Hao Yu
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tingting Zhu
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Medicine, Southeast University, China
| | - Dongwen Ma
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Medicine, Southeast University, China
| | - Xiaohan Cheng
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| | - Shengjia Wang
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Medicine, Southeast University, China
| | - Yongzhong Yao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Medicine, Southeast University, China
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Feng J, Chen X, Li R, Xie Y, Zhang X, Guo X, Zhao L, Xu Z, Song Y, Song J, Bi H. Lactylome analysis reveals potential target modified proteins in the retina of form-deprivation myopia. iScience 2024; 27:110606. [PMID: 39246443 PMCID: PMC11379675 DOI: 10.1016/j.isci.2024.110606] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/19/2024] [Accepted: 07/25/2024] [Indexed: 09/10/2024] Open
Abstract
The biological mechanisms underlying the development of myopia have not yet been completely elucidated. The retina is critical for visual signal processing, which primarily utilizes aerobic glycolysis to produce lactate as a metabolic end product. Lactate facilitates lysine lactylation (Kla), a posttranslational modification essential for transcriptional regulation. This study found increased glycolytic flux and lactate accumulation in the retinas of form-deprived myopic guinea pigs. Subsequently, a comprehensive analysis of Kla levels in retinal proteins revealed that Kla was upregulated at 124 sites in 92 proteins and downregulated at three sites in three proteins. Functional enrichment and protein interaction analyses showed significant enrichment in pathways related to energy metabolism, including glutathione metabolism, glycolysis, and the hypoxia-inducible factor-1 signaling pathway. Parallel-reaction monitoring confirmed data reliability. These findings suggest a connection between myopia and retinal energy metabolism imbalance, providing new insights into the pathogenesis of myopia.
Collapse
Affiliation(s)
- Jiaojiao Feng
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiaoniao Chen
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing 100853, China
| | - Runkuan Li
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yunxiao Xie
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
- Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan 250002, China
| | - Xiuyan Zhang
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
- Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan 250002, China
| | - Xiaoxiao Guo
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Lianghui Zhao
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Zhe Xu
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yifan Song
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jike Song
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
- Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan 250002, China
| |
Collapse
|
20
|
Liu J, Zhao F, Qu Y. Lactylation: A Novel Post-Translational Modification with Clinical Implications in CNS Diseases. Biomolecules 2024; 14:1175. [PMID: 39334941 PMCID: PMC11430557 DOI: 10.3390/biom14091175] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Lactate, an important metabolic product, provides energy to neural cells during energy depletion or high demand and acts as a signaling molecule in the central nervous system. Recent studies revealed that lactate-mediated protein lactylation regulates gene transcription and influences cell fate, metabolic processes, inflammation, and immune responses. This review comprehensively examines the regulatory roles and mechanisms of lactylation in neurodevelopment, neuropsychiatric disorders, brain tumors, and cerebrovascular diseases. This analysis indicates that lactylation has multifaceted effects on central nervous system function and pathology, particularly in hypoxia-induced brain damage. Highlighting its potential as a novel therapeutic target, lactylation may play a significant role in treating neurological diseases. By summarizing current findings, this review aims to provide insights and guide future research and clinical strategies for central nervous system disorders.
Collapse
Affiliation(s)
- Junyan Liu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Neonatal Intensive Care Unit, Binzhou Medical University Hospital, Binzhou 256600, China
| | - Fengyan Zhao
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Song F, Hou C, Huang Y, Liang J, Cai H, Tian G, Jiang Y, Wang Z, Hou J. Lactylome analyses suggest systematic lysine-lactylated substrates in oral squamous cell carcinoma under normoxia and hypoxia. Cell Signal 2024; 120:111228. [PMID: 38750680 DOI: 10.1016/j.cellsig.2024.111228] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/05/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Cancer cells tend to live in hypoxic environment characterized by enhanced glycolysis and accumulation of lactate. Intracellular lactate is shown to drive a novel type of post-translational modification (PTM), lysine lactylation (Kla). Kla has been confirmed to affect the malignant progression of tumors such as hepatocellular carcinoma (HCC) and colon cancer, whereas the global lactylomic profiling of oral squamous cell carcinoma (OSCC) is unclear. Here, the integrative lactylome and proteome analyses by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 1011 Kla sites within 532 proteins and 1197 Kla sites within 608 proteins in SCC25 cells under normoxic and hypoxic environments, respectively. Among these lactylated proteins, histones accounted for only a small fraction, suggesting the presence of Kla modification of OSCC in a large number of non-histone proteins. Notably, Kla preferred to enrich in spliceosome, ribosome and glycolysis/gluconeogenesis pathway in both normoxic and hypoxic cultures. Compared with normoxia, 589 differential proteins with 898 differentially lactylated sites were detected under hypoxia, which were mainly associated with the glycolysis/gluconeogenesis pathway by KEGG analysis. Importantly, we verified the presence of lactylation modification in the spliceosomal proteins hnRNPA1, SF3A1, hnRNPU and SLU7, as well as in glycolytic enzyme PFKP. In addition, the differential alternative splicing analysis described the divergence of pre-mRNA splicing patterns in the presence or absence of sodium lactate and at different oxygen concentrations. Finally, a negative correlation between tissue Kla levels and the prognosis of OSCC patients was revealed by immunohistochemistry. Our study is the first report to elucidate the lactylome and its biological function in OSCC, which deepens our understanding of the mechanisms underlying OSCC progression and provides a novel strategy for targeted therapy for OSCC.
Collapse
Affiliation(s)
- Fan Song
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Chen Hou
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Yingzhao Huang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Jianfeng Liang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Hongshi Cai
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Guoli Tian
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Yaoqi Jiang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Ziyi Wang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Jinsong Hou
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| |
Collapse
|
22
|
Lu Z, Zheng X, Shi M, Yin Y, Liang Y, Zou Z, Ding C, He Y, Zhou Y, Li X. Lactylation: The emerging frontier in post-translational modification. Front Genet 2024; 15:1423213. [PMID: 38993478 PMCID: PMC11236606 DOI: 10.3389/fgene.2024.1423213] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Lactate, a metabolic byproduct, has gained recognition as a highly influential signaling molecule. Lactylation, an emerging form of post-translational modification derived from lactate, plays a crucial role in numerous cellular processes such as inflammation, embryonic development, tumor proliferation, and metabolism. However, the precise molecular mechanisms through which lactylation governs these biological functions in both physiological and pathological contexts remain elusive. Hence, it is imperative to provide a comprehensive overview of lactylation in order to elucidate its significance in biological processes and establish a foundation for forthcoming investigations. This review aims to succinctly outline the process of lactylation modification and the characterization of protein lactylation across diverse organisms. Additionally, A summary of the regulatory mechanisms of lactylation in cellular processes and specific diseases is presented. Finally, this review concludes by delineating existing research gaps in lactylation and proposing primary directions for future investigations.
Collapse
Affiliation(s)
- Zhou Lu
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Xueting Zheng
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Mingsong Shi
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yuan Yin
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yuanyuan Liang
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Zhiyan Zou
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Chenghe Ding
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yuanjing He
- Department of Gastroenterology, National Clinical Key Specialty, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yan Zhou
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Xiaoan Li
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Department of Gastroenterology, National Clinical Key Specialty, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
23
|
Wu Z, Chai Z, Cai X, Wang J, Wang H, Yue B, Zhang M, Wang J, Wang H, Zhong J, Xin J. Protein Lactylation Profiles Provide Insights into Molecular Mechanisms Underlying Metabolism in Yak. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38850252 DOI: 10.1021/acs.jafc.4c01800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
Protein lysine lactylation, a recently discovered post-translational modification (PTM), is prevalent across tissues and cells of diverse species, serving as a regulator of glycolytic flux and biological metabolism. The yak (Bos grunniens), a species that has inhabited the Qinghai-Tibetan Plateau for millennia, has evolved intricate adaptive mechanisms to cope with the region's unique geographical and climatic conditions, exhibiting remarkable energy utilization and metabolic efficiency. Nonetheless, the specific landscape of lysine lactylation in yaks remains poorly understood. Herein, we present the first comprehensive lactylome profile of the yak, effectively identifying 421, 308, and 650 lactylated proteins in the heart, muscles, and liver, respectively. These lactylated proteins are involved in glycolysis/gluconeogenesis, the tricarboxylic acid cycle, oxidative phosphorylation, and metabolic process encompassing carbohydrates, lipids, and proteins during both anaerobic and aerobic glucose bio-oxidation, implying their crucial role in material and energy metabolism, as well as in maintaining homeostasis in yaks.
Collapse
Affiliation(s)
- Zhijuan Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Ming Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Haibo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610225, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Jinwei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet 850000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850009, China
| |
Collapse
|
24
|
Ouyang L, Wang J, Zhu H, Wu Y, Wei L. Integration of Epigenome and Lactylome Reveals the Regulation of Lipid Production in Nannochloropsis oceanica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13785-13800. [PMID: 38842303 PMCID: PMC11191683 DOI: 10.1021/acs.jafc.4c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
Lysine lactylation (Kla) is a kind of novel post-translational modification (PTM) that participates in gene expression and various metabolic processes. Nannochloropsis has a remarkable capacity for triacylglycerol (TAG) production under nitrogen stress. To elucidate the involvement of lactylation in lipid synthesis, we conducted chromatin immunoprecipitation sequencing (ChIP-seq) and mRNA-seq analyses to monitor lactylation modifications and transcriptome alterations in Nannochloropsis oceanica. In all, 2057 genes showed considerable variation between nitrogen deprivation (ND) and nitrogen repletion (NR) conditions. Moreover, a total of 5375 differential Kla peaks were identified, including 5331 gain peaks and 44 loss peaks under ND vs NR. The differential Kla peaks were primarily distributed in the promoter (≤1 kb) (71.07%), 5'UTR (22.64%), and exon (4.25%). Integrative analysis of ChIP-seq, transcriptome, and previous proteome and lactylome data elucidates the potential mechanism by which lactylation promotes lipid accumulation under ND. Lactylation facilitates autophagy and protein degradation, leading to the recycling of carbon into the tricarboxylic acid (TCA) cycle, thereby providing carbon precursors for lipid synthesis. Additionally, lactylation induces the redirection of carbon from membrane lipids to TAG by upregulating lipases and enhancing the TCA cycle and β-oxidation pathways. This research offers a new perspective for the investigation of lipid biosynthesis in Nannochloropsis.
Collapse
Affiliation(s)
- Lingyu Ouyang
- Ministry
of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory
of Tropical Animal and Plant Ecology of Hainan Province, College of
Life Sciences, Hainan Normal University, Haikou 571158, China
- International
Science and Technology Cooperation Laboratory for Marine Microalgae
Ecological Carbon Sinks, Hainan Normal University, Haikou 571158, China
| | - Jiao Wang
- Ministry
of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory
of Tropical Animal and Plant Ecology of Hainan Province, College of
Life Sciences, Hainan Normal University, Haikou 571158, China
- International
Science and Technology Cooperation Laboratory for Marine Microalgae
Ecological Carbon Sinks, Hainan Normal University, Haikou 571158, China
| | - Han Zhu
- Ministry
of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory
of Tropical Animal and Plant Ecology of Hainan Province, College of
Life Sciences, Hainan Normal University, Haikou 571158, China
- International
Science and Technology Cooperation Laboratory for Marine Microalgae
Ecological Carbon Sinks, Hainan Normal University, Haikou 571158, China
| | - Yikai Wu
- Ministry
of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory
of Tropical Animal and Plant Ecology of Hainan Province, College of
Life Sciences, Hainan Normal University, Haikou 571158, China
- International
Science and Technology Cooperation Laboratory for Marine Microalgae
Ecological Carbon Sinks, Hainan Normal University, Haikou 571158, China
| | - Li Wei
- Ministry
of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory
of Tropical Animal and Plant Ecology of Hainan Province, College of
Life Sciences, Hainan Normal University, Haikou 571158, China
- Hainan
Observation and Research Station of Dongzhaigang Mangrove Wetland
Ecosystem, Haikou 571129, China
- International
Science and Technology Cooperation Laboratory for Marine Microalgae
Ecological Carbon Sinks, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
25
|
Hu Y, He Z, Li Z, Wang Y, Wu N, Sun H, Zhou Z, Hu Q, Cong X. Lactylation: the novel histone modification influence on gene expression, protein function, and disease. Clin Epigenetics 2024; 16:72. [PMID: 38812044 PMCID: PMC11138093 DOI: 10.1186/s13148-024-01682-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
Lactic acid, traditionally considered as a metabolic waste product arising from glycolysis, has undergone a resurgence in scientific interest since the discovery of the Warburg effect in tumor cells. Numerous studies have proved that lactic acid could promote angiogenesis and impair the function of immune cells within tumor microenvironments. Nevertheless, the precise molecular mechanisms governing these biological functions remain inadequately understood. Recently, lactic acid has been found to induce a posttranslational modification, lactylation, that may offer insight into lactic acid's non-metabolic functions. Notably, the posttranslational modification of proteins by lactylation has emerged as a crucial mechanism by which lactate regulates cellular processes. This article provides an overview of the discovery of lactate acidification, outlines the potential "writers" and "erasers" responsible for protein lactylation, presents an overview of protein lactylation patterns across different organisms, and discusses the diverse physiological roles of lactylation. Besides, the article highlights the latest research progress concerning the regulatory functions of protein lactylation in pathological processes and underscores its scientific significance for future investigations.
Collapse
Affiliation(s)
- Yue Hu
- Department of Tissues Bank, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Zhenglin He
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, China
| | - Zongjun Li
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, China
| | - Yihan Wang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, China
| | - Nan Wu
- Department of Tissues Bank, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Hongyan Sun
- Department of Tissues Bank, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Zilong Zhou
- Department of Tissues Bank, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Qianying Hu
- Department of Tissues Bank, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xianling Cong
- Department of Tissues Bank, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
26
|
Li X, Cai P, Tang X, Wu Y, Zhang Y, Rong X. Lactylation Modification in Cardiometabolic Disorders: Function and Mechanism. Metabolites 2024; 14:217. [PMID: 38668345 PMCID: PMC11052226 DOI: 10.3390/metabo14040217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Cardiovascular disease (CVD) is recognized as the primary cause of mortality and morbidity on a global scale, and developing a clear treatment is an important tool for improving it. Cardiometabolic disorder (CMD) is a syndrome resulting from the combination of cardiovascular, endocrine, pro-thrombotic, and inflammatory health hazards. Due to their complex pathological mechanisms, there is a lack of effective diagnostic and treatment methods for cardiac metabolic disorders. Lactylation is a type of post-translational modification (PTM) that plays a regulatory role in various cellular physiological processes by inducing changes in the spatial conformation of proteins. Numerous studies have reported that lactylation modification plays a crucial role in post-translational modifications and is closely related to cardiac metabolic diseases. This article discusses the molecular biology of lactylation modifications and outlines the roles and mechanisms of lactylation modifications in cardiometabolic disorders, offering valuable insights for the diagnosis and treatment of such conditions.
Collapse
Affiliation(s)
- Xu Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pingdong Cai
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xinyuan Tang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingzi Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
27
|
Fan S, Kong C, Zhou R, Zheng X, Ren D, Yin Z. Protein Post-Translational Modifications Based on Proteomics: A Potential Regulatory Role in Animal Science. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6077-6088. [PMID: 38501450 DOI: 10.1021/acs.jafc.3c08332] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Genomic studies in animal breeding have provided a wide range of references; however, it is important to note that genes and mRNA alone do not fully capture the complexity of living organisms. Protein post-translational modification, which involves covalent modifications regulated by genetic and environmental factors, serves as a fundamental epigenetic mechanism that modulates protein structure, activity, and function. In this review, we comprehensively summarize various phosphorylation and acylation modifications on metabolic enzymes relevant to energy metabolism in animals, including acetylation, succinylation, crotonylation, β-hydroxybutylation, acetoacetylation, and lactylation. It is worth noting that research on animal energy metabolism and modification regulation lags behind the demands for growth and development in animal breeding compared to human studies. Therefore, this review provides a novel research perspective by exploring unreported types of modifications in livestock based on relevant findings from human or animal models.
Collapse
Affiliation(s)
- Shuhao Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chengcheng Kong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230013, China
| | - Ren Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Dalong Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
28
|
Wang J, Wang Z, Wang Q, Li X, Guo Y. Ubiquitous protein lactylation in health and diseases. Cell Mol Biol Lett 2024; 29:23. [PMID: 38317138 PMCID: PMC10845568 DOI: 10.1186/s11658-024-00541-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
For decades, lactate has been considered a byproduct of glycolysis. The lactate shuttle hypothesis shifted the lactate paradigm, demonstrating that lactate not only plays important roles in cellular metabolism but also cellular communications, which can transcend compartment barriers and can occur within and among different cells, tissues and organs. Recently, the discovery that lactate can induce a novel post-translational modification, named lysine lactylation (Kla), brings forth a new avenue to study nonmetabolic functions for lactate, which has inspired a 'gold rush' of academic and commercial interest. Zhang et al. first showed that Kla is manifested in histones as epigenetic marks, and then mounting evidences demonstrated that Kla also occurs in diverse non-histone proteins. The widespread Kla faithfully orchestrates numerous biological processes, such as transcription, metabolism and inflammatory responses. Notably, dysregulation of Kla touches a myriad of pathological processes. In this review, we comprehensively reviewed and curated the existing literature to retrieve the new identified Kla sites on both histones and non-histone proteins and summarized recent major advances toward its regulatory mechanism. We also thoroughly investigated the function and underlying signaling pathway of Kla and comprehensively summarize how Kla regulates various biological processes in normal physiological states. In addition, we also further highlight the effects of Kla in the development of human diseases including inflammation response, tumorigenesis, cardiovascular and nervous system diseases and other complex diseases, which might potentially contribute to deeply understanding and interpreting the mechanism of its pathogenicity.
Collapse
Affiliation(s)
- Junyong Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Science Avenue 100, Zhengzhou, 450001, Henan, China
- Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Ziyi Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Science Avenue 100, Zhengzhou, 450001, Henan, China
- Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Qixu Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Science Avenue 100, Zhengzhou, 450001, Henan, China
- Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiao Li
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450001, Henan, China
| | - Yaping Guo
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Science Avenue 100, Zhengzhou, 450001, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, 450001, Henan, China.
- Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
29
|
Pang Y, Zhou Y, Wang Y, Fang L, Xiao S. Lactate-lactylation-HSPA6 axis promotes PRRSV replication by impairing IFN-β production. J Virol 2024; 98:e0167023. [PMID: 38088561 PMCID: PMC10804950 DOI: 10.1128/jvi.01670-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024] Open
Abstract
Lactate, traditionally considered a metabolic by-product, has recently been identified as a substrate for the induction of lactylation, a newly identified epigenetic modification that plays an important role in the regulation of host gene expression. Our previous study showed that lactate levels were significantly elevated in cells infected with the porcine reproductive and respiratory syndrome virus (PRRSV), an Arterivirus that has devastated the swine industry worldwide for over 30 years. However, the role of elevated lactate in PRRSV infections remains unknown. In this study, we found that lactate was required for optimal PRRSV proliferation, and PRRSV infection increased cellular lactylation in a dose-dependent manner. Using the Cleavage Under Targets and Tagmentation (CUT&Tag) combined with RNA sequencing (RNA-seq) to screen the downstream genes regulated by lactylation in PRRSV-infected cells, we found that PRRSV-induced lactylation activated the expression of heat shock 70 kDa protein 6 (HSPA6). Follow-up experiments showed that HSPA6 is important for PRRSV proliferation by negatively modulating interferon (IFN)-β induction. Mechanistically, HSPA6 impeded the interaction between TNF-receptor-associated factor 3 (TRAF3) and inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKKε), thereby hindering the production of IFN-β. Taken together, these results indicate that the activated lactate-lactylation-HSPA6 axis promotes viral growth by impairing IFN-β induction, providing new therapeutic targets for the prevention and control of PRRSV infection. The results presented here also link lactylation to the virus life cycle, improving our understanding of epigenetic regulation in viral infection.IMPORTANCEAs a newly identified epigenetic modification, lactate-induced lactylation has received attentions because it plays important roles in gene expression and contributes to tumorigenesis and the innate immune response. Previous studies showed that many viruses upregulate cellular lactate levels; however, whether virus-elevated lactate induces lactylation and the subsequent biological significance of the modification to viral infection have not been reported. In this study, we demonstrated that porcine reproductive and respiratory syndrome virus (PRRSV) infection induced cellular lactylation, which, in turn, upregulated the expression of HSPA6, an IFN-negative regulator. We also dissected the mechanism by which HSPA6 negatively regulates IFN-β production. To our knowledge, this is the first report to study virus-induced lactylation and establish the relationship between lactylation and virus infection.
Collapse
Affiliation(s)
- Yu Pang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yanrong Zhou
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yucheng Wang
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
30
|
Yang YH, Yang JT, Liu JF. Lactylation prediction models based on protein sequence and structural feature fusion. Brief Bioinform 2024; 25:bbad539. [PMID: 38385873 PMCID: PMC10939394 DOI: 10.1093/bib/bbad539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/14/2023] [Accepted: 12/27/2023] [Indexed: 02/23/2024] Open
Abstract
Lysine lactylation (Kla) is a newly discovered posttranslational modification that is involved in important life activities, such as glycolysis-related cell function, macrophage polarization and nervous system regulation, and has received widespread attention due to the Warburg effect in tumor cells. In this work, we first design a natural language processing method to automatically extract the 3D structural features of Kla sites, avoiding potential biases caused by manually designed structural features. Then, we establish two Kla prediction frameworks, Attention-based feature fusion Kla model (ABFF-Kla) and EBFF-Kla, to integrate the sequence features and the structure features based on the attention layer and embedding layer, respectively. The results indicate that ABFF-Kla and Embedding-based feature fusion Kla model (EBFF-Kla), which fuse features from protein sequences and spatial structures, have better predictive performance than that of models that use only sequence features. Our work provides an approach for the automatic extraction of protein structural features, as well as a flexible framework for Kla prediction. The source code and the training data of the ABFF-Kla and the EBFF-Kla are publicly deposited at: https://github.com/ispotato/Lactylation_model.
Collapse
Affiliation(s)
- Ye-Hong Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, No.5, Dongdan 3, Dongcheng District Municipality of Beijing, Beijing 100005, China
| | - Jun-Tao Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, No.5, Dongdan 3, Dongcheng District Municipality of Beijing, Beijing 100005, China
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, PR China
| | - Jiang-Feng Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, No.5, Dongdan 3, Dongcheng District Municipality of Beijing, Beijing 100005, China
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, PR China
| |
Collapse
|
31
|
Ding T, Yang YH, Wang QC, Wu Y, Han R, Zhang XT, Kong J, Yang JT, Liu JF. Global profiling of protein lactylation in Caenorhabditis elegans. Proteomics 2024; 24:e2300185. [PMID: 37847886 DOI: 10.1002/pmic.202300185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
Lactylation, as a novel posttranslational modification, is essential for studying the functions and regulation of proteins in physiological and pathological processes, as well as for gaining in-depth knowledge on the occurrence and development of many diseases, including tumors. However, few studies have examined the protein lactylation of one whole organism. Thus, we studied the lactylation of global proteins in Caenorhabditis elegans to obtain an in vivo lactylome. Using an MS-based platform, we identified 1836 Class I (localization probabilities > 0.75) lactylated sites in 487 proteins. Bioinformatics analysis showed that lactylated proteins were mainly located in the cytoplasm and involved in the tricarboxylic acid cycle (TCA cycle) and other metabolic pathways. Then, we evaluated the conservation of lactylation in different organisms. In total, 41 C. elegans proteins were lactylated and homologous to lactylated proteins in humans and rats. Moreover, lactylation on H4K80 was conserved in three species. An additional 238 lactylated proteins were identified in C. elegans for the first time. This study establishes the first lactylome database in C. elegans and provides a basis for studying the role of lactylation.
Collapse
Affiliation(s)
- Tao Ding
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy ofMedical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- School of Basic Medical Science, Guizhou Medical University, Guiyang, China
| | - Ye-Hong Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy ofMedical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Qiao-Chu Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy ofMedical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yue Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy ofMedical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Rong Han
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy ofMedical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xu-Tong Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy ofMedical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jie Kong
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy ofMedical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jun-Tao Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy ofMedical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- School of Basic Medical Science, Guizhou Medical University, Guiyang, China
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang-Feng Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy ofMedical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
Yin D, Jiang N, Cheng C, Sang X, Feng Y, Chen R, Chen Q. Protein Lactylation and Metabolic Regulation of the Zoonotic Parasite Toxoplasma gondii. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1163-1181. [PMID: 36216028 PMCID: PMC11082259 DOI: 10.1016/j.gpb.2022.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 09/06/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The biology of Toxoplasma gondii, the causative pathogen of one of the most widespread parasitic diseases (toxoplasmosis), remains poorly understood. Lactate, which is derived from glucose metabolism, is not only an energy source in a variety of organisms, including T. gondii, but also a regulatory molecule that participates in gene activation and protein function. Lysine lactylation (Kla) is a type of post-translational modifications (PTMs) that has been recently associated with chromatin remodeling; however, Kla of histone and non-histone proteins has not yet been studied in T. gondii. To examine the prevalence and function of lactylation in T. gondii parasites, we mapped the lactylome of proliferating tachyzoite cells and identified 1964 Kla sites on 955 proteins in the T. gondii RH strain. Lactylated proteins were distributed in multiple subcellular compartments and were closely related to a wide variety of biological processes, including mRNA splicing, glycolysis, aminoacyl-tRNA biosynthesis, RNA transport, and many signaling pathways. We also performed a chromatin immunoprecipitation sequencing (ChIP-seq) analysis using a lactylation-specific antibody and found that the histones H4K12la and H3K14la were enriched in the promoter and exon regions of T. gondii associated with microtubule-based movement and cell invasion. We further confirmed the delactylase activity of histone deacetylases TgHDAC2-4, and found that treatment with anti-histone acetyltransferase (TgMYST-A) antibodies profoundly reduced protein lactylation in T. gondii. This study offers the first dataset of the global lactylation proteome and provides a basis for further dissecting the functional biology of T. gondii.
Collapse
Affiliation(s)
- Deqi Yin
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110166, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110166, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Chang Cheng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110166, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110166, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110166, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110166, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110166, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China.
| |
Collapse
|
33
|
Liu Z, Yang J, Du M, Xin W. Functioning and mechanisms of PTMs in renal diseases. Front Pharmacol 2023; 14:1238706. [PMID: 38074159 PMCID: PMC10702752 DOI: 10.3389/fphar.2023.1238706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/13/2023] [Indexed: 12/22/2024] Open
Abstract
Post-translational modifications (PTMs) are crucial epigenetic mechanisms that regulate various cellular biological processes. The use of mass spectrometry (MS)-proteomics has led to the discovery of numerous novel types of protein PTMs, such as acetylation, crotonylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation, protein propionylation and butyrylation, succinylation, malonylation, lactylation, and histone methylation. In this review, we specifically highlight the molecular mechanisms and roles of various histone and some non-histone PTMs in renal diseases, including diabetic kidney disease. PTMs exhibit diverse effects on renal diseases, which can be either protective or detrimental, depending on the specific type of protein PTMs and their respective targets. Different PTMs activate various signaling pathways in diverse renal pathological conditions, which could provide novel insights for studying epigenetic mechanisms and developing potential therapeutic strategies for renal diseases.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jian Yang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Minghui Du
- Biomedical Science College, Shandong First Medical University, Jinan, China
| | - Wei Xin
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
34
|
Zhu J, Guo W, Lan Y. Global Analysis of Lysine Lactylation of Germinated Seeds in Wheat. Int J Mol Sci 2023; 24:16195. [PMID: 38003390 PMCID: PMC10671351 DOI: 10.3390/ijms242216195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Protein lactylation is a newly discovered posttranslational modification (PTM) and is involved in multiple biological processes, both in mammalian cells and rice grains. However, the function of lysine lactylation remains unexplored in wheat. In this study, we performed the first comparative proteomes and lysine lactylomes during seed germination of wheat. In total, 8000 proteins and 927 lactylated sites in 394 proteins were identified at 0 and 12 h after imbibition (HAI). Functional enrichment analysis showed that glycolysis- and TCA-cycle-related proteins were significantly enriched, and more differentially lactylated proteins were enriched in up-regulated lactylated proteins at 12 HAI vs. 0 HAI through the KEGG pathway and protein domain enrichment analysis compared to down-regulated lactylated proteins. Meanwhile, ten particularly preferred amino acids near lactylation sites were found in the embryos of germinated seeds: AA*KlaT, A***KlaD********A, KlaA**T****K, K******A*Kla, K*Kla********K, KlaA******A, Kla*A, KD****Kla, K********Kla and KlaG. These results supplied a comprehensive profile of lysine lactylation of wheat and indicated that protein lysine lactylation played important functions in several biological processes.
Collapse
Affiliation(s)
- Junke Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China;
| | - Weiwei Guo
- College of Agronomy, Qingdao Agricultural University/Shandong Key Laboratory of Dryland Farming Technology/Shandong Engineering Research Center of Germplasm, Innovation and Utilization of Salt-Tolerant Crops, Qingdao 266109, China
| | - Yubin Lan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China;
- National Sub-Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology, Shandong University of Technology, Zibo 255000, China
- Academy of Ecological Unmanned Farm, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
35
|
Balbinott N, Margis R. The many faces of lysine acylation in proteins: Phytohormones as unexplored substrates. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111866. [PMID: 37714383 DOI: 10.1016/j.plantsci.2023.111866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Protein post-translational modification (PTM) is a ubiquitous process that occurs in most proteins. Lysine residues containing an ε-amino group are recognized as hotspots for the addition of different chemical groups. Lysine acetylation, extensively studied in histones, serves as an epigenetic hallmark capable of promoting changes in chromatin structure and availability. Acyl groups derived from molecules involved in carbohydrate and lipid metabolisms, such as lactate, succinate and hydroxybutyrate, were identified as lysine modifications of histones and other proteins. Lysine-acyltransferases do not exhibit significant substrate specificity concerning acyl donors. Furthermore, plant hormones harboring acyl groups often form conjugates with free amino acids to regulate their activity and function during plant physiological processes and responses, a process mediated by GH3 enzymes. Besides forming low-molecular weight conjugates, auxins have been shown to covalently modify proteins in bean seeds. Aside from auxins, other phytohormones with acyl groups are unexplored potential substrates for post-translational acylation of proteins. Using MS data searches, we revealed various proteins with lysine residues linked to auxin, abscisic acid, gibberellic acid, jasmonic acid, and salicylic acid. These findings raise compelling questions about the ability of plant hormones harboring carboxyl groups to serve as new candidates for protein acylation and acting in protein PTM and modulation.
Collapse
Affiliation(s)
- Natalia Balbinott
- Programa de Pós-graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rogerio Margis
- Programa de Pós-graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
36
|
Qu J, Li P, Sun Z. Histone lactylation regulates cancer progression by reshaping the tumor microenvironment. Front Immunol 2023; 14:1284344. [PMID: 37965331 PMCID: PMC10641494 DOI: 10.3389/fimmu.2023.1284344] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
As a major product of glycolysis and a vital signaling molecule, many studies have reported the key role of lactate in tumor progression and cell fate determination. Lactylation is a newly discovered post-translational modification induced by lactate. On the one hand, lactylation introduced a new era of lactate metabolism in the tumor microenvironment (TME), and on the other hand, it provided a key breakthrough point for elucidation of the interaction between tumor metabolic reprogramming and epigenetic modification. Studies have shown that the lactylation of tumor cells, tumor stem cells and tumor-infiltrating immune cells in TME can participate in the development of cancer through downstream transcriptional regulation, and is a potential and promising tumor treatment target. This review summarized the discovery and effects of lactylation, as well as recent research on histone lactylation regulating cancer progression through reshaping TME. We also focused on new strategies to enhance anti-tumor effects via targeting lactylation. Finally, we discussed the limitations of existing studies and proposed new perspectives for future research in order to further explore lactylation targets. It may provide a new way and direction to improve tumor prognosis.
Collapse
Affiliation(s)
- Junxing Qu
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| | - Peizhi Li
- The First People’s Hospital of Xinxiang City, The Fifth Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Zhiheng Sun
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
37
|
Li Z, Gong T, Wu Q, Zhang Y, Zheng X, Li Y, Ren B, Peng X, Zhou X. Lysine lactylation regulates metabolic pathways and biofilm formation in Streptococcus mutans. Sci Signal 2023; 16:eadg1849. [PMID: 37669396 DOI: 10.1126/scisignal.adg1849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/11/2023] [Indexed: 09/07/2023]
Abstract
In eukaryotes, lactate produced during glycolysis is involved in regulating multiple metabolic processes through lysine lactylation (Kla). To explore the potential link between metabolism and Kla in prokaryotes, we investigated the distribution of Kla in the cariogenic bacterium Streptococcus mutans during planktonic growth in low-sugar conditions and in biofilm-promoting, high-sugar conditions. We identified 1869 Kla sites in 469 proteins under these two conditions, with the biofilm growth state showing a greater number of lactylated sites and proteins. Although high sugar increased Kla globally, it reduced lactylation of RNA polymerase subunit α (RpoA) at Lys173. Lactylation at this residue inhibited the synthesis of extracellular polysaccharides, a major constituent of the cariogenic biofilm. The Gcn5-related N-acetyltransferase (GNAT) superfamily enzyme GNAT13 exhibited lysine lactyltransferase activity in cells and lactylated Lys173 in RpoA in vitro. Either GNAT13 overexpression or lactylation of Lys173 in RpoA inhibited biofilm formation. These results provide an overview of the distribution and potential functions of Kla and improve our understanding of the role of lactate in the metabolic regulation of prokaryotes.
Collapse
Affiliation(s)
- Zhengyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qinrui Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Shi Z, Zhou M, Song W, Liu Y, Wang R, Wang Y, Zhang R, Zhao J, Ren W. Trash to treasure: lactate and protein lactylation in maize root impacts response to drought. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1903-1914. [PMID: 37273069 DOI: 10.1007/s11427-023-2361-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023]
Abstract
Lactate, protein lactylation (Kla), and specifically histone lactylation have recently been shown to regulate antipathogenic immune responses in mammals. Herein, after we confirmed the presence and accumulation of lactate in maize roots under drought conditions, a lactylome profiling analysis revealed that Kla modifications were invariably present in maize roots, that there were obvious differences in the lactylomes of drought-sensitive (B73) vs. drought-tolerant (Jing2416) lines, and that growing Jing2416 under drought conditions caused significant decreases in the lactylation of multiple enzymes responsible for fatty acid degradation. Inspired by findings of histone-Kla based epigenetic regulation of immune functions in animals, we initially discovered 37 Kla sites on 16 histones in the maize genome, and again detected obvious differential histone Kla-mediated trends between two lines by ChIP-Seq. Notably, only 2.7% of genes with differential histone Kla peaks detected during drought stress were commonly present in both lines, a finding demonstrating that abiotic stress triggers distinct epigenetic activities in diverse germplasm while also strongly supporting that a histone Kla layer of regulation is associated with physiological responses to drought stress. Interestingly, exogenous application of spermidine improved the drought tolerance of B73 and substantially altered the levels of lactate, protein lactylation, and histone Kla modification. Thus, beyond extending the known domain of Kla-based biochemical and epigenetic regulation from animal immunity to plant stress physiology, our study suggests the physiological, biochemical, and genetic function of "the best-known metabolic waste", lactate.
Collapse
Affiliation(s)
- Zi Shi
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Miaoyi Zhou
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wei Song
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ya Liu
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ronghuan Wang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yuandong Wang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ruyang Zhang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jiuran Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Wen Ren
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
39
|
Li R, Yang Y, Wang H, Zhang T, Duan F, Wu K, Yang S, Xu K, Jiang X, Sun X. Lactate and Lactylation in the Brain: Current Progress and Perspectives. Cell Mol Neurobiol 2023; 43:2541-2555. [PMID: 36928470 PMCID: PMC11410153 DOI: 10.1007/s10571-023-01335-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023]
Abstract
As the final product of glycolysis, lactate features not only as an energy substrate, a metabolite, and a signaling molecule in a variety of diseases-such as cancer, inflammation, and sepsis-but also as a regulator of protein lactylation; this is a newly proposed epigenetic modification that is considered to be crucial for energy metabolism and signaling in brain tissues under both physiological and pathological conditions. In this review, evidence on lactylation from studies on lactate metabolism and disease has been summarized, revealing the function of lactate and its receptors in the regulation of brain function and summarizing the levels of lactylation expression in various brain diseases. Finally, the function of lactate and lactylation in the brain and the potential mechanisms of intervention in brain diseases are presented and discussed, providing optimal perspectives for future research on the role of lactylation in the brain.
Collapse
Affiliation(s)
- Ruobing Li
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Yi Yang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Haoyu Wang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Tingting Zhang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Fangfang Duan
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Kaidi Wu
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Siyu Yang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Ke Xu
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Xicheng Jiang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China.
| | - Xiaowei Sun
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China.
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Xiangfang District, Harbin, 8615-0040, China.
| |
Collapse
|
40
|
Wu Q, Li Z, Yang J, Xu F, Fu X, Xu L, You C, Wang D, Su Y, Que Y. Deciphering the Atlas of Post-Translational Modification in Sugarcane. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37339007 DOI: 10.1021/acs.jafc.3c01886] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
In plants, lysine acetylation (Kac), 2-hydroxyisobutyrylation (Khib), and lysine lactylation (Kla), the three new types of post-translational modification (PTM), play very important roles in growth, development, and resistance to adverse environmental stresses. Herein, we report the first global acetylome, 2-hydroxyisobutyrylome, and lactylome in sugarcane. A total of 8573 Kac, 4637 Khib, and 215 Kla sites across 3903, 1507, and 139 modified proteins were identified. Besides, homology analyses revealed the Kac, Khib, and Kla sites on histones were conserved between sugarcane and rice or poplar. Functional annotations demonstrated that the Kac, Khib, and Kla proteins were mainly involved in energy metabolism. In addition, a number of modified transcription factors and stress-related proteins, which were constitutively expressed in different tissues of sugarcane and induced by drought, cold or Sporisorium scitamineum stress, were identified. Finally, a proposed working mode on how PTM functions in sugarcane was depicted. We thus concluded that PTM should play a role in sugarcane growth, development, and response to biotic and abiotic stresses, but the mechanisms require further investigation. The present study provided the all-new comprehensive profile of proteins Kac, Khib, and Kla and a new perspective to understand the molecular mechanisms of protein PTMs in sugarcane.
Collapse
Affiliation(s)
- Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenxiang Li
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingtao Yang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fu Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xueqin Fu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chuihuai You
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Key Laboratory for Tropical Crop Breeding, Kaiyuan, Yunnan 661699, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Key Laboratory for Tropical Crop Breeding, Kaiyuan, Yunnan 661699, China
| |
Collapse
|
41
|
Lu Y, Bu Q, Chuan M, Cui X, Zhao Y, Zhou DX. Metabolic regulation of the plant epigenome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1001-1013. [PMID: 36705504 DOI: 10.1111/tpj.16122] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 05/31/2023]
Abstract
Chromatin modifications shape the epigenome and are essential for gene expression reprogramming during plant development and adaptation to the changing environment. Chromatin modification enzymes require primary metabolic intermediates such as S-adenosyl-methionine, acetyl-CoA, alpha-ketoglutarate, and NAD+ as substrates or cofactors. The availability of the metabolites depends on cellular nutrients, energy and reduction/oxidation (redox) states, and affects the activity of chromatin regulators and the epigenomic landscape. The changes in the plant epigenome and the activity of epigenetic regulators in turn control cellular metabolism through transcriptional and post-translational regulation of metabolic enzymes. The interplay between metabolism and the epigenome constitutes a basis for metabolic control of plant growth and response to environmental changes. This review summarizes recent advances regarding the metabolic control of plant chromatin regulators and epigenomes, which are involved in plant adaption to environmental stresses.
Collapse
Affiliation(s)
- Yue Lu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Qing Bu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Mingli Chuan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyun Cui
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dao-Xiu Zhou
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
42
|
Zhang L, Wang X, Che W, Zhou S, Feng Y. METTL3 silenced inhibited the ferroptosis development via regulating the TFRC levels in the Intracerebral hemorrhage progression. Brain Res 2023; 1811:148373. [PMID: 37105375 DOI: 10.1016/j.brainres.2023.148373] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/06/2023] [Accepted: 04/23/2023] [Indexed: 04/29/2023]
Abstract
Intracerebral hemorrhage (ICH) refers to the hemorrhage caused by the increase and rupture of vascular brittleness in non traumatic brain parenchyma, which has been demonstrated to be closely related to ferroptosis. This study aimed to examine the effects of methyltransferase like 3 (METTL3) on the ferroptosis in the ICH progression. The PC12 cells was stimulated by hemin to establish a ICH model. The cell viability was tested by CCK8 assay. The Fe2+, reactive oxygen species (ROS), and malondialdehyde (MDA) levels were determined by the corresponding commercial kits. The cell death was analyzed by propidium Iodide (PI) staining. The lactylation levels were detected by western blot. M6A dot blot assay was performed to detected the total m6A levels and MeRIP assay was conducted to determine the m6A levels of transferrin receptor (TFRC). We found that the METTL3 and m6A levels were increased in the hemin treated PC12 cells. METTL3 knockdown increased the cell viability and decreased Fe2+, ROS and MDA levels in the hemin treated PC12 cells. The role of METTL3 knockdown in the hemin treated PC12 cells was reversed after TFRC overexpression. Mechanistically, the METTL3 lactylation was increased in the hemin treated PC12 cells, which further enhanced the protein stability and expression of METTL3. The up-regulated METTL3 increased the m6A levels and mRNA expressions of TFRC, which further induced the ferroptosis of the PC12 cells. In conclusion, the up-regulation of METTL3 lactylation enhanced the METTL3 protein stability and expression levels in hemin treated PC12 cells. METTL3 silenced suppressed the ferroptosis development through regulating the m6A levels of TFRC mRNA.
Collapse
Affiliation(s)
- Liu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University
| | - Xiangyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University
| | - Wenqiang Che
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University
| | - Shuoming Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University
| | - Yongjian Feng
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University.
| |
Collapse
|
43
|
Beyond metabolic waste: lysine lactylation and its potential roles in cancer progression and cell fate determination. Cell Oncol (Dordr) 2023; 46:465-480. [PMID: 36656507 DOI: 10.1007/s13402-023-00775-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/21/2022] [Accepted: 11/26/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Lactate is an important metabolite derived from glycolysis under physiological and pathological conditions. The Warburg effect reveals the vital role of lactate in cancer progression. Numerous studies have reported crucial roles for lactate in cancer progression and cell fate determination. Lactylation, a novel posttranslational modification (PTM), has provided a new opportunity to investigate metabolic epigenetic regulation, and studies of this process have been initiated in a wide range of cancer cells, cancer-associated immune cells, and embryonic stem cells. CONCLUSION Lactylation is a novel and interesting mechanism of lactate metabolism linked to metabolic rewiring and epigenetic remodeling. It is a potential and hopeful target for cancer therapy. Here, we summarize the discovery of lactylation, the mechanisms of site modification, and progress in research on nonhistone lactylation. We focus on the potential roles of lactylation in cancer progression and cell fate determination and the possible therapeutic strategies for targeting lysine lactylation. Finally, we suggest some future research topics on lactylation to inspire some interesting ideas.
Collapse
|
44
|
Abstract
Histone lactylation, an indicator of lactate level and glycolysis, has intrinsic connections with cell metabolism that represents a novel epigenetic code affecting the fate of cells including carcinogenesis. Through delineating the relationship between histone lactylation and cancer hallmarks, we propose histone lactylation as a novel epigenetic code priming cells toward the malignant state, and advocate the importance of identifying novel therapeutic strategies or dual-targeting modalities against lactylation toward effective cancer control. This review underpins important yet less-studied area in histone lactylation, and sheds insights on its clinical impact as well as possible therapeutic tools targeting lactylation.
Collapse
|
45
|
Dong H, Zhang J, Zhang H, Han Y, Lu C, Chen C, Tan X, Wang S, Bai X, Zhai G, Tian S, Zhang T, Cheng Z, Li E, Xu L, Zhang K. YiaC and CobB regulate lysine lactylation in Escherichia coli. Nat Commun 2022; 13:6628. [PMID: 36333310 PMCID: PMC9636275 DOI: 10.1038/s41467-022-34399-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Lysine lactylation (Kla) has recently been reported to participate in regulating transcription in human cells. However, the characterization, regulatory mechanism and functional consequence of Kla in prokaryotes remain unclear. Here, we report that YiaC functions as a lysine lactylase and that CobB serves as a lysine delactylase in the regulation of metabolism. We demonstrate that YiaC catalyzes the addition of Kla, while CobB erases this PTM both in vitro and intracellularly. Moreover, we show that YdiF can catalyze the formation of a lactyl-coenzyme A, which donates lactyl group for Kla. Quantitative proteomic analysis further reveals 446 endogenous Kla sites targeted by CobB and 79 candidates targeted by YiaC in Escherichia coli (E. coli). Furthermore, we present that Kla can influence the functions of metabolic enzymes. Interestingly, we demonstrate that CobB can specifically modulate the activity of PykF by regulating K382la, promoting glycolysis and bacterial growth. Our study identifies the regulatory enzymes and functional network of Kla and reveals a Kla-mediated molecular mechanism catalyzed by CobB for glycolysis regulation in E. coli.
Collapse
Affiliation(s)
- Hanyang Dong
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Jianji Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Hui Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Yue Han
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Congcong Lu
- College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Chen Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Xiaoxia Tan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Siyu Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Xue Bai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Guijin Zhai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Shanshan Tian
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Tao Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Zhongyi Cheng
- Jingjie PTM Biolab (Hangzhou) Co. Ltd, Hangzhou, 310018, Zhejiang, China
| | - Enmin Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, 515041, Shantou, Guangdong, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Liyan Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, 515041, Shantou, Guangdong, China.
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China.
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, 300070, Tianjin, China.
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Medical University General Hospital, Tianjin Medical University, 300070, Tianjin, China.
| |
Collapse
|
46
|
An D, Song L, Li Y, Shen L, Miao P, Wang Y, Liu D, Jiang L, Wang F, Yang J. Comprehensive analysis of lysine lactylation in Frankliniella occidentalis. Front Genet 2022; 13:1014225. [PMID: 36386791 PMCID: PMC9663987 DOI: 10.3389/fgene.2022.1014225] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Western flower thrips (Frankliniella occidentalis) are among the most important pests globally that transmit destructive plant viruses and infest multiple commercial crops. Lysine lactylation (Klac) is a recently discovered novel post-translational modification (PTM). We used liquid chromatography-mass spectrometry to identify the global lactylated proteome of F. occidentalis, and further enriched the identified lactylated proteins using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). In the present study, we identified 1,458 Klac sites in 469 proteins from F. occidentalis. Bioinformatics analysis showed that Klac was widely distributed in F. occidentalis proteins, and these Klac modified proteins participated in multiple biological processes. GO and KEGG enrichment analysis revealed that Klac proteins were significantly enriched in multiple cellular compartments and metabolic pathways, such as the ribosome and carbon metabolism pathways. Two Klac proteins were found to be involved in the regulation of the TSWV (Tomato spotted wilt virus) transmission in F. occidentalis. This study provides a systematic report and a rich dataset of lactylation in F. occidentalis proteome for potential studies on the Klac protein of this notorious pest.
Collapse
Affiliation(s)
- Dong An
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Liyun Song
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ying Li
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lili Shen
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Pu Miao
- Luoyang City Company of Henan Province Tobacco Company, Luoyang, China
| | - Yujie Wang
- Luoyang City Company of Henan Province Tobacco Company, Luoyang, China
| | - Dongyang Liu
- Liangshan State Company of Sichuan Province Tobacco Company, Mile, China
| | - Lianqiang Jiang
- Liangshan State Company of Sichuan Province Tobacco Company, Mile, China
| | - Fenglong Wang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- *Correspondence: Fenglong Wang, ; Jinguang Yang,
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- *Correspondence: Fenglong Wang, ; Jinguang Yang,
| |
Collapse
|
47
|
Lin J, Liu G, Chen L, Kwok HF, Lin Y. Targeting lactate-related cell cycle activities for cancer therapy. Semin Cancer Biol 2022; 86:1231-1243. [PMID: 36328311 DOI: 10.1016/j.semcancer.2022.10.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Lactate has long been considered as a metabolic by-product of aerobic glycolysis for cancer. However, more and more studies have shown that lactate can regulate cancer progression via multiple mechanisms such as cell cycle regulation, immune suppression, energy metabolism and so on. A recent discovery of lactylation attracted a lot of attention and is already a hot topic in the cancer field. In this review, we summarized the latest functions of lactate and its underlying mechanisms in cancer. We also included our analysis of protein lactylation in different rat organs and compared them with other published lactylation data. The unresolved challenges in this field were discussed, and the potential application of these new discoveries of lactate-related cell cycle activities for cancer target therapy was speculated.
Collapse
Affiliation(s)
- Jia Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Collaborative Innovation Center for Rehabilitation Technology, the Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, China; Collaborative Innovation Center for Rehabilitation Technology, the Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, China
| | - Geng Liu
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, UK
| | - Lidian Chen
- Collaborative Innovation Center for Rehabilitation Technology, the Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, China.
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Collaborative Innovation Center for Rehabilitation Technology, the Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, China; Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, China.
| |
Collapse
|
48
|
Galle E, Wong CW, Ghosh A, Desgeorges T, Melrose K, Hinte LC, Castellano-Castillo D, Engl M, de Sousa JA, Ruiz-Ojeda FJ, De Bock K, Ruiz JR, von Meyenn F. H3K18 lactylation marks tissue-specific active enhancers. Genome Biol 2022; 23:207. [PMID: 36192798 PMCID: PMC9531456 DOI: 10.1186/s13059-022-02775-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background Histone lactylation has been recently described as a novel histone post-translational modification linking cellular metabolism to epigenetic regulation. Results Given the expected relevance of this modification and current limited knowledge of its function, we generate genome-wide datasets of H3K18la distribution in various in vitro and in vivo samples, including mouse embryonic stem cells, macrophages, adipocytes, and mouse and human skeletal muscle. We compare them to profiles of well-established histone modifications and gene expression patterns. Supervised and unsupervised bioinformatics analysis shows that global H3K18la distribution resembles H3K27ac, although we also find notable differences. H3K18la marks active CpG island-containing promoters of highly expressed genes across most tissues assessed, including many housekeeping genes, and positively correlates with H3K27ac and H3K4me3 as well as with gene expression. In addition, H3K18la is enriched at active enhancers that lie in proximity to genes that are functionally important for the respective tissue. Conclusions Overall, our data suggests that H3K18la is not only a marker for active promoters, but also a mark of tissue specific active enhancers. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02775-y.
Collapse
Affiliation(s)
- Eva Galle
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Chee-Wai Wong
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Adhideb Ghosh
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Functional Genomics Center Zurich, ETH Zurich and University Zurich, Zurich, Switzerland
| | - Thibaut Desgeorges
- Laboratory of Exercise and Health, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Kate Melrose
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Laura C Hinte
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Daniel Castellano-Castillo
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Magdalena Engl
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Joao Agostinho de Sousa
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Francisco Javier Ruiz-Ojeda
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, Neuherberg, 85764, Munich, Germany.,Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Katrien De Bock
- Laboratory of Exercise and Health, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
49
|
Certo M, Llibre A, Lee W, Mauro C. Understanding lactate sensing and signalling. Trends Endocrinol Metab 2022; 33:722-735. [PMID: 35999109 DOI: 10.1016/j.tem.2022.07.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 12/26/2022]
Abstract
Metabolites generated from cellular and tissue metabolism have been rediscovered in recent years as signalling molecules. They may act as cofactor of enzymes or be linked to proteins as post-translational modifiers. They also act as ligands for specific receptors, highlighting that their neglected functions have, in fact, a long standing in evolution. Lactate is one such metabolite that has been considered for long time a waste product of metabolism devoid of any biological function. However, in the past 10 years, lactate has gained much attention in several physio-pathological processes. Mechanisms of sensing and signalling have been discovered and implicated in a broad range of diseases, from cancer to inflammation and fibrosis, providing opportunities for novel therapeutic avenues. Here, we review some of the most recently discovered mechanisms of lactate sensing and signalling.
Collapse
Affiliation(s)
- Michelangelo Certo
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Alba Llibre
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | | | - Claudio Mauro
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| |
Collapse
|
50
|
Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, Zou Y, Wang JX, Wang Z, Yu T. Lactate metabolism in human health and disease. Signal Transduct Target Ther 2022; 7:305. [PMID: 36050306 PMCID: PMC9434547 DOI: 10.1038/s41392-022-01151-3] [Citation(s) in RCA: 524] [Impact Index Per Article: 174.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/17/2022] [Accepted: 08/09/2022] [Indexed: 12/29/2022] Open
Abstract
The current understanding of lactate extends from its origins as a byproduct of glycolysis to its role in tumor metabolism, as identified by studies on the Warburg effect. The lactate shuttle hypothesis suggests that lactate plays an important role as a bridging signaling molecule that coordinates signaling among different cells, organs and tissues. Lactylation is a posttranslational modification initially reported by Professor Yingming Zhao’s research group in 2019. Subsequent studies confirmed that lactylation is a vital component of lactate function and is involved in tumor proliferation, neural excitation, inflammation and other biological processes. An indispensable substance for various physiological cellular functions, lactate plays a regulatory role in different aspects of energy metabolism and signal transduction. Therefore, a comprehensive review and summary of lactate is presented to clarify the role of lactate in disease and to provide a reference and direction for future research. This review offers a systematic overview of lactate homeostasis and its roles in physiological and pathological processes, as well as a comprehensive overview of the effects of lactylation in various diseases, particularly inflammation and cancer.
Collapse
Affiliation(s)
- Xiaolu Li
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaotong Lin
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266555, China
| | - Yulin Zou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Jian-Xun Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| |
Collapse
|