1
|
Luo W, Zheng X, Lin H, Fu L, Long L, Yu D, Chen Z, Yang M, Wang ZX. Discovery of intermolecular cascade annulation for dihydrobenzo[ b][1,8]naphthyridine-ylidene-pyrrolidinetriones. Chem Sci 2025; 16:4119-4126. [PMID: 39906387 PMCID: PMC11788672 DOI: 10.1039/d4sc07999j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025] Open
Abstract
Developing efficient procedures for the synthesis of combinations of pharmacophores continues to be a vital objective in synthetic science. Herein, we report an unprecedented family of dihydrobenzo[b][1,8]naphthyridine-ylidene-pyrrolidinetriones achieved by reacting ortho-halogenated quinolonechalcones with aminomaleimides under metal-free conditions. Among these compounds, several exhibit the potential to serve as fluorescent dyes for biological applications. Mechanistic investigations indicate that the reaction proceeds via a 1,4-Michael addition followed by an intermolecular cascade annulation, which involves aniline fragment transfer and SNAr processes. As far as we know, studies regarding the synthesis of dihydrobenzo[b][1,8]naphthyridine-ylidene-pyrrolidinetriones are rare. This discovery offers great inspiration for a feasible approach toward the creation of more complex and useful molecules.
Collapse
Affiliation(s)
- Wenjun Luo
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University Ganzhou 341000 P. R. China
| | - Xinghua Zheng
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University Ganzhou 341000 P. R. China
| | - Hehua Lin
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University Ganzhou 341000 P. R. China
| | - Li Fu
- School of Pharmacy, Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University Ganzhou 341000 China
| | - Lipeng Long
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University Ganzhou 341000 P. R. China
| | - Daohong Yu
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University Ganzhou 341000 P. R. China
| | - Zhengwang Chen
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University Ganzhou 341000 P. R. China
| | - Min Yang
- School of Pharmacy, Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University Ganzhou 341000 China
| | - Zhong-Xia Wang
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University Ganzhou 341000 P. R. China
| |
Collapse
|
2
|
An L, Yang L, Yan T, Yi M, Liu S, Li H, Bao X. Synthesis and agricultural antimicrobial evaluation of new quinazoline derivatives containing both a piperazine linker and the N-acetyl moiety. PEST MANAGEMENT SCIENCE 2024; 80:5307-5321. [PMID: 38899477 DOI: 10.1002/ps.8256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND To discover more efficient agricultural antimicrobial agents, a series of new quinazoline derivatives containing both a piperazine linker and the N-acetyl moiety were prepared and assessed for their antibacterial and antifungal activities. RESULTS All the target compounds were characterized by 1H and 13C NMR as well as high-resolution mass spectrometry (HRMS), and the chemical structure of the most potent compound E19 incorporating a 4-trifluoromethoxy substituent was clearly confirmed via single crystal X-ray diffraction measurements. The bioassay results indicated that some compounds possessed notable inhibitory effects in vitro against the bacterium Xanthomonas oryzae pv. oryzicola (Xoc). For example, compound E19 had an EC50 (effective concentration for 50% activity) value of 7.1 μg/mL towards this pathogen, approximately 15- and 10-fold more effective than the commercial bactericides thiodiazole copper and bismerthiazol (EC50 = 110.2 and 72.4 μg/mL, respectively). Subsequently, the mechanistic studies showed that compound E19 likely exerted its antibacterial efficacies by altering the cell morphology, increasing the permeability of bacterial cytoplasmic membrane, suppressing the production of bacterial extracellular polysaccharides and the extracellular enzyme activities (amylase and cellulase), and blocking the swimming motility of Xoc. Moreover, the proteomic analysis revealed that compound E19 could reduce the bacterial flagellar biosynthesis and decrease the flagellar motility by down-regulating the expression of the related differential proteins. CONCLUSION Compound E19 exhibited good potential for further development as a bactericide candidate for control of Xoc. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lian An
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Lan Yang
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
| | - Taisen Yan
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Mingyan Yi
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Songsong Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Hong Li
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Xiaoping Bao
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| |
Collapse
|
3
|
Xue J, Guo X, Xu G, Chen X, Jiao L, Tang X. Discovery, Identification, and Mode of Action of Phenolics from Marine-Derived Fungus Aspergillus ustus as Antibacterial Wilt Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2989-2996. [PMID: 38214488 DOI: 10.1021/acs.jafc.3c07826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The bacterial wilt caused by Ralstonia solanacearum seriously affects crop yield and safety and is difficult to control. Biological activity-guided screening led to the isolation of 11 phenolic compounds including three undescribed compounds (carnemycin H-I and stromemycin B) from the secondary metabolites of a marine-derived Aspergillus ustus. One new compound is an unusual phenolic dimer. Their structures were elucidated by comprehensive spectroscopic data and J-based configurational analysis. The antibacterial activities of the isolated compounds against R. solanacearum were evaluated. Compound 3 exhibited excellent inhibitory activity with an MIC value of 3 μg/mL, which was comparable to that of streptomycin sulfate. Additionally, 3 significantly changed the morphology and inhibited the activity of succinate dehydrogenase (SDH) to interfere with the growth of R. solanacearum. Molecular docking was conducted to clarify the potential mechanisms of compound 3 with SDH. Further in vivo experiments demonstrated that 3 could remarkably inhibit the occurrence of bacterial wilt on tomatoes.
Collapse
Affiliation(s)
- Jingjing Xue
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, People's Republic of China
| | - Xiaopeng Guo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, People's Republic of China
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guangxin Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, People's Republic of China
| | - Xi Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, People's Republic of China
| | - Lihang Jiao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, People's Republic of China
| | - Xixiang Tang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, People's Republic of China
| |
Collapse
|
4
|
Tang J, Wu L, Tang XF, Liu WB, Chen C, Li JL, Long YH. A new alkaloid from Thespesia populnea endophytic fungus Penicillium sp. TM-Y1-1. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:905-911. [PMID: 36583379 DOI: 10.1080/10286020.2022.2162887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
A new alkaloid (3), together with three known compounds, were isolated from the Thespesia populnea endophytic fungus TM-Y1-1. Their structures were elucidated by extensive spectroscopic methods. The absolute configuration of compound 3 was determined for the first time by ECD calculation and DP4+ analysis. All compounds were evaluated for antimicrobial activity. The results showed that compounds 1 and 2 both exhibited moderate inhibitory activity against banana Colletotrichum gloeosporioides with MIC value of 31.25 μg/ml.
Collapse
Affiliation(s)
- Jing Tang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510000, China
| | - Li Wu
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510000, China
| | - Xin-Fan Tang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510000, China
| | - Wen-Bin Liu
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510000, China
| | - Chen Chen
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510000, China
| | - Jia-Lin Li
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510000, China
| | - Yu-Hua Long
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510000, China
| |
Collapse
|
5
|
Matilla MA, Evans TJ, Martín J, Udaondo Z, Lomas‐Martínez C, Rico‐Jiménez M, Reyes F, Salmond GPC. Herbicolin A production and its modulation by quorum sensing in a
Pantoea agglomerans
rhizobacterium bioactive against a broad spectrum of plant‐pathogenic fungi. Microb Biotechnol 2022. [PMID: 36528875 PMCID: PMC10364316 DOI: 10.1111/1751-7915.14193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Global population growth makes it necessary to increase agricultural production yields. However, climate change impacts and diseases caused by plant pathogens are challenging modern agriculture. Therefore, it is necessary to look for alternatives to the excessive use of chemical fertilizers and pesticides. The plant microbiota plays an essential role in plant nutrition and health, and offers enormous potential to meet future challenges of agriculture. In this context, here we characterized the antifungal properties of the rhizosphere bacterium Pantoea agglomerans 9Rz4, which is active against a broad spectrum of plant pathogenic fungi. Chemical analyses revealed that strain 9Rz4 produces the antifungal herbicolin A and its biosynthetic gene cluster was identified and characterized. We found that the only acyl-homoserine lactone-based quorum sensing system of 9Rz4 modulates herbicolin A gene cluster expression. No role of plasmid carriage in the production of herbicolin A was observed. Plant assays revealed that herbicolin A biosynthesis does not affect the root colonization ability of P. agglomerans 9Rz4. Current legislative restrictions are aimed at reducing the use of chemical pesticides in agriculture, and the results derived from this study may lay the foundations for the development of novel biopesticides from rhizosphere microorganisms.
Collapse
Affiliation(s)
- Miguel A. Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín Consejo Superior de Investigaciones Científicas Granada Spain
- Department of Biochemistry University of Cambridge Cambridge UK
| | - Terry J. Evans
- Department of Biochemistry University of Cambridge Cambridge UK
| | - Jesús Martín
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Granada Spain
| | - Zulema Udaondo
- Department of Biomedical Informatics University of Arkansas for Medical Sciences Little Rock Arkansas USA
| | - Cristina Lomas‐Martínez
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín Consejo Superior de Investigaciones Científicas Granada Spain
| | - Míriam Rico‐Jiménez
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín Consejo Superior de Investigaciones Científicas Granada Spain
| | - Fernando Reyes
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Granada Spain
| | | |
Collapse
|
6
|
Wang F, Zhang Z, Chen Y, Ratovelomanana-Vidal V, Yu P, Chen GQ, Zhang X. Stereodivergent synthesis of chiral succinimides via Rh-catalyzed asymmetric transfer hydrogenation. Nat Commun 2022; 13:7794. [PMID: 36528669 PMCID: PMC9759521 DOI: 10.1038/s41467-022-35124-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Chiral succinimide moieties are ubiquitous in biologically active natural products and pharmaceuticals. Until today, despite the great interest, little success has been made for stereodivergent synthesis of chiral succinimides. Here, we report a general and efficient method for accessing 3,4-disubstituted succinimides through a dynamic kinetic resolution strategy based on asymmetric transfer hydrogenation. The Rh catalyst system exhibit high activities, enantioselectivities, and diastereoselectivities (up to 2000 TON, up to >99% ee, and up to >99:1 dr). Products with syn- and anti-configuration are obtained separately by control of the reaction conditions. For the N-unprotected substrates, both the enol and the imide group can be reduced by control of reaction time and catalyst loading. In addition, the detailed reaction pathway and origin of stereoselectivity are elucidated by control experiments and theoretical calculations. This study offers a straightforward and stereodivergent approach to the valuable enantioenriched succinimides (all 4 stereoisomers) from cheap chemical feedstocks in a single reaction step.
Collapse
Affiliation(s)
- Fangyuan Wang
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Zongpeng Zhang
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Yu Chen
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Virginie Ratovelomanana-Vidal
- grid.4444.00000 0001 2112 9282PSL University, Chimie ParisTech, CNRS, Institute1 of Chemistry for Life and Health Sciences, CSB2D team, 75005 Paris, France
| | - Peiyuan Yu
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Gen-Qiang Chen
- grid.263817.90000 0004 1773 1790Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Xumu Zhang
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| |
Collapse
|
7
|
Clements-Decker T, Rautenbach M, Khan S, Khan W. Metabolomics and Genomics Approach for the Discovery of Serrawettin W2 Lipopeptides from Serratia marcescens NP2. JOURNAL OF NATURAL PRODUCTS 2022; 85:1256-1266. [PMID: 35438991 DOI: 10.1021/acs.jnatprod.1c01186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A metabolomics/peptidomics and genomics approach, using UPLC-MSE, molecular networking, and genome mining, was used to describe the serrawettin W2 lipopeptide family produced by Serratia marcescens NP2. Seven known serrawettin W2 analogues were structurally elucidated along with 17 new analogues, which varied based on the first (fatty acyl length of C8, C10, C12, or C12:1), fifth (Phe, Tyr, Trp, or Leu/Ile), and sixth (Leu, Ile, or Val) residues. Tandem MS results suggested that the previously classified serrawettin W3 may be an analogue of serrawettin W2, with a putative structure of cyclo(C10H18O2-Leu-Ser-Thr-Leu/Ile-Val). Chiral phase amino acid analysis enabled the distinction between l/d-Leu and l-Ile residues within nine purified compounds. 1H and 13C NMR analyses confirmed the structures of four purified new analogues. Additionally, genome mining was conducted using Serratia genome sequences available on the NCBI database to identify the swrA gene using the antiSMASH software. NRPSpredictor2 predicted the specificity score of the adenylation-domain within swrA with 100% for the first, second, and third modules (Leu-Ser-Thr), 60-70% for the fourth module (Phe/Trp/Tyr/Val), and 70% for the fifth module (Val/Leu/Ile), confirming MSE data. Finally, antibacterial activity was observed for compounds 6 and 11 against a clinical Enterococcus faecium strain.
Collapse
Affiliation(s)
- Tanya Clements-Decker
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein 2028, South Africa
| | - Marina Rautenbach
- BioPep Peptide Group, Department of Biochemistry, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein 2028, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| |
Collapse
|
8
|
Santos-Aberturas J, Vior NM. Beyond Soil-Dwelling Actinobacteria: Fantastic Antibiotics and Where to Find Them. Antibiotics (Basel) 2022; 11:195. [PMID: 35203798 PMCID: PMC8868522 DOI: 10.3390/antibiotics11020195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022] Open
Abstract
Bacterial secondary metabolites represent an invaluable source of bioactive molecules for the pharmaceutical and agrochemical industries. Although screening campaigns for the discovery of new compounds have traditionally been strongly biased towards the study of soil-dwelling Actinobacteria, the current antibiotic resistance and discovery crisis has brought a considerable amount of attention to the study of previously neglected bacterial sources of secondary metabolites. The development and application of new screening, sequencing, genetic manipulation, cultivation and bioinformatic techniques have revealed several other groups of bacteria as producers of striking chemical novelty. Biosynthetic machineries evolved from independent taxonomic origins and under completely different ecological requirements and selective pressures are responsible for these structural innovations. In this review, we summarize the most important discoveries related to secondary metabolites from alternative bacterial sources, trying to provide the reader with a broad perspective on how technical novelties have facilitated the access to the bacterial metabolic dark matter.
Collapse
Affiliation(s)
| | - Natalia M. Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich NR7 4UH, UK
| |
Collapse
|