1
|
Luo J, Li Y, Zhang Y, Peng K, Du Z, Ding W. Discovery of 7-hydroxy-3-(1'-methylbenzimidazol-2'-yl) coumarin as novel mitochondrial complex Ι inhibitor against Tetranychus cinnabarinus (Acari: Tetranychidae) via structure-based virtual screening. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106265. [PMID: 40015857 DOI: 10.1016/j.pestbp.2024.106265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 03/01/2025]
Abstract
Mitochondrial complex Ι is not only an important enzyme for ATP synthesis but also a promising target for acaricide discovery. However, in recent years, the complex Ι inhibitors with new scaffolds have been fewer reported. In this study, the full-length cDNA of subuits 49 kDa and PSST genes of complex Ι from Tetranychus cinnabarinus were cloned and characterized. Then, we integrated structure-based virtual screening, synthesis and acaricidal activity evaluation to discover complex Ι inhibitors with novel chemotypes. The results showed that the 49 kDa and PSST cDNA sequence of T. cinnabarinus consisted of 1443 bp and 687 bp with an open reading frame (ORF) encoding 480, 228 amino acids residues (GenBank accession number MZ172703 and MZ172704), and the highest relative expression of these two genes were nymphs and adults, respectively. The compound ZINC00042996 [7-hydroxy-3-(1'-methylbenzimidazol-2'-yl) coumarin] with highest acaricidal activity was obtained through virtual screening, its LC50 value was 84.85 mg/L, which was in the same order of magnitude as the LC50 value of pyridaben, and its control effect also could be comparable to that of the commercial acaricide pyridaben at 120 mg/L. The compound ZINC00042996 also exhibited excellent complex Ι inhibitory activity, the maximum inhibition rate was 47.03% for LC70 concentration after 48 h treatment. Knocking down the 49 kDa and PSST genes increased the sensitivity of T. cinnabarinus to compound ZINC00042996. Mortality of compound ZINC00042996 significantly increased to 29.49% and 16.47% in the mites fed with 49 kDa and PSST dsRNA compared with mites treated with DEPC-water. This study laid the foundation for the development of novel acaricides targeting mitochondrial complex Ι.
Collapse
Affiliation(s)
- Jinxiang Luo
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yunzhe Li
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yimeng Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Kejie Peng
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Zirong Du
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Wei Ding
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Shen S, Ding B, Yang M, Zhang J, Bai S, Ma S, Zhang L, Dong J, Dong L. Modification of Azo-Aminopyrimidines as Potent Multitarget Inhibitors of Insect Chitinolytic Enzymes O fChi-h and O fHex1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39569972 DOI: 10.1021/acs.jafc.4c06797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Multitarget inhibitors exhibit significant advantages in reducing the risk of drug resistance, enhancing therapeutic efficacy, and minimizing dosage, outperforming multicomponent combination drugs. On the basis of glycoside hydrolase family 18 (GH18) chitinases and GH20 β-N-acetylhexosaminidase using the same substrate-assisted catalytic mechanism and similar substrate binding modes, a series of novel azo-aminopyrimidine compounds have been designed and synthesized as multitarget inhibitors targeting chitinolytic enzymes OfChi-h and OfHex1. Compounds AAP4 (OfChi-h, Ki = 29.3 nM; OfHex1, Ki = 4.9 μM) and AAP16 (OfChi-h, Ki = 32.4 nM; OfHex1, Ki = 7.2 μM) were identified to be potent multitarget inhibitors of these enzymes, which were predicted to occupy the -1 subsite and engage in H-binding interactions with catalytic residues. AAP4 also displayed significant insecticidal activity against lepidopteran pests Ostrinia furnacalis through leaf dipping and pot experiments. In addition, the safety of AAP4 to corn and the natural enemy Trichogramma ostriniae was comprehensively evaluated. This present work indicates that azo-aminopyrimidines, as multitarget inhibitors against chitinolytic enzymes, can be further developed as safe and efficient pest control and management agents.
Collapse
Affiliation(s)
- Shengqiang Shen
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Baokang Ding
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Meiling Yang
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Jiahao Zhang
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Shenmeng Bai
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Shujie Ma
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China
| | - Lihui Zhang
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China
| | - Jingao Dong
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China
| | - Lili Dong
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
3
|
Qian H, Hu Y, Wang Z, Zhou Y, Tan X, Feng X, Yu K, Wu W, Zhang J. In-Depth Structural Simplification of Celangulin V: Design, Synthesis, and Biological Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15142-15150. [PMID: 38926152 DOI: 10.1021/acs.jafc.4c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Celangulin V is a novel botanical insecticide with significant bioactivity and a unique molecular target, but its complex polyol ester structure hinders its broader application in agriculture. To discover new analogues of celangulin V with a simpler structure and enhanced biological activities, we initiated a research project aimed at simplifying its structure and assessing insecticidal efficacy. In this study, a series of novel 1-tetralone derivatives were designed via a structure-based rational design approach and synthesized by a facile method. The biological activities of the target compounds were determined against Mythimna separata (M. separata), Plutella xylostella, and Rhopalosiphum padi. The results revealed that most of the synthesized compounds exhibited superior activities compared to celangulin V. Remarkably, the insecticidal activity of compound 6.16 demonstrated 102-fold greater stomach toxicity than celangulin V against M. separata. In addition, certain compounds showed significant contact toxicity against M. separata, a finding not reported previously in the structural optimization studies of celangulin V. Molecular docking analysis illustrated that the binding pocket of compound 6.16 with the H subunit of V-ATPase was the same as celangulin V. This study presents novel insights into the structural optimization of botanical pesticides.
Collapse
Affiliation(s)
- Hao Qian
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Yingkun Hu
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Ziyu Wang
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Yu Zhou
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Xinru Tan
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Xunmeng Feng
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Keyin Yu
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Wenjun Wu
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, P. R. China
| | - Jiwen Zhang
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|
4
|
Li F, Zhao Z, Chen W, Liu R, Lu H, Dong Y, Yang Q, Zhang J. Design, Synthesis, and Biological Investigations of Novel Carbamoylguanidinyl Nitrobenzoxadiazoles against Chitinolytic Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18333-18344. [PMID: 37967522 DOI: 10.1021/acs.jafc.3c06157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Chitinase has been identified as an important target for insecticides. In this study, a series of novel chitinase inhibitors was designed and synthesized with nitrobenzoxadiazoles. Compound 8d, which contains the N-methylcarbamoylguanidinyl, exhibited high enzyme inhibitory activity and achieved nanomolar inhibition against OfChtI (IC50 = 12.3 nM). Delightfully, it was also found to possess significant inhibitory activity against OfHex1 (IC50 = 1.76 μM). The computational simulation results indicated that compound 8d interacted with OfChtI and OfHex1 in similar modes through hydrogen bonds and hydrophobic and π-π interactions. Insecticidal activity studies revealed that compound 8d showed high mortality against the Lepidoptera Plutella xylostella (mortality rate = 81%) at 200 mg/L. Toxicity studies indicated that compound 8d exhibited negligible toxicity to the natural enemy Trichogramma ostriniae. These results indicate that compound 8d may be a promising candidate for the development of environmentally friendly chitinase inhibitors. Moreover, this study provides a new angle for the design of innovative inhibitors of chitinolytic enzymes.
Collapse
Affiliation(s)
- Fang Li
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhixiang Zhao
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Ruiyuan Liu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Huizhe Lu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Yanhong Dong
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Jianjun Zhang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Paixão DB, Soares EGO, Silva CDG, Peglow TJ, Rampon DS, Schneider PH. CS 2/KOH System-Promoted Stereoselective Synthesis of ( E)-Alkenes from Diarylalkynes and a "Hidden" Zinin-Type Reduction of Nitroarenes into Arylamines. J Org Chem 2023. [PMID: 38010206 DOI: 10.1021/acs.joc.3c01949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
In this work, we present the CS2/KOH system as a practical and efficient reductive medium for obtaining (E)-alkenes from alkynes through a highly stereoselective semireduction reaction. This cost-effective system enabled successful semireduction reactions of diverse alkynes using water as a hydrogen source, yielding moderate to excellent yields. The versatility of this protocol is further demonstrated through the synthesis of relevant compounds such as pinosylvin and resveratrol precursors, along with the notable anticancer agent DMU-212. Furthermore, during the reaction scope investigation, we serendipitously disclosed that this reductive system was also able to promote a Zinin-type reaction to reduce nitroarenes into arylamines.
Collapse
Affiliation(s)
- Douglas B Paixão
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970 Porto Alegre, RS, Brazil
| | - Eduardo G O Soares
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970 Porto Alegre, RS, Brazil
| | - Caren D G Silva
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970 Porto Alegre, RS, Brazil
| | - Thiago J Peglow
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970 Porto Alegre, RS, Brazil
| | - Daniel S Rampon
- Laboratório de Polímeros e Catálise (LAPOCA), Departamento de Química, Universidade Federal do Paraná (UFPR), P.O. Box 19061, 81531-990 Curitiba, PR, Brazil
| | - Paulo H Schneider
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Kim Y, Li H, Choi J, Boo J, Jo H, Hyun JY, Shin I. Glycosidase-targeting small molecules for biological and therapeutic applications. Chem Soc Rev 2023; 52:7036-7070. [PMID: 37671645 DOI: 10.1039/d3cs00032j] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Glycosidases are ubiquitous enzymes that catalyze the hydrolysis of glycosidic linkages in oligosaccharides and glycoconjugates. These enzymes play a vital role in a wide variety of biological events, such as digestion of nutritional carbohydrates, lysosomal catabolism of glycoconjugates, and posttranslational modifications of glycoproteins. Abnormal glycosidase activities are associated with a variety of diseases, particularly cancer and lysosomal storage disorders. Owing to the physiological and pathological significance of glycosidases, the development of small molecules that target these enzymes is an active area in glycoscience and medicinal chemistry. Research efforts carried out thus far have led to the discovery of numerous glycosidase-targeting small molecules that have been utilized to elucidate biological processes as well as to develop effective chemotherapeutic agents. In this review, we describe the results of research studies reported since 2018, giving particular emphasis to the use of fluorescent probes for detection and imaging of glycosidases, activity-based probes for covalent labelling of these enzymes, glycosidase inhibitors, and glycosidase-activatable prodrugs.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Hui Li
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Joohee Choi
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Jihyeon Boo
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Hyemi Jo
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
7
|
Jiang X, Yang Q. Recent advances in glycoside hydrolase family 20 and 84 inhibitors: Structures, inhibitory mechanisms and biological activities. Bioorg Chem 2023; 142:106870. [PMID: 39492366 DOI: 10.1016/j.bioorg.2023.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 11/05/2024]
Abstract
Glycoside hydrolase family 20 (GH20) β-N-acetyl-d-hexosaminidase (Hex) catalyzes the cleavage of glycosidic linkages in glycans, glycolipids and glycoproteins, and is involved in glycoprotein modification, metabolism of glycoconjugate and the degradation of chitin in fungal cell walls and arthropod exoskeletons. GH84 O-β-N-acetyl-d-glucosaminidase (OGA), which is mechanistically similar related to GH20, participates in the O-GlcNAcylation modification, hydrolyzing the O-GlcNAc moiety from protein acceptors. Hex and OGA are of interest due to their potential for the treatment of disorder diseases and plant protection. Hex inhibitors act as molecular chaperones to treat lysosomal storage disease and as growth regulators to arrest insect molting. Inhibition of OGA is a promising therapeutic approach to treat tau pathology in neurodegenerative diseases such as Alzheimer's disease. However, since Hex and OGA exhibit similar active sites, there are challenges in designing highly selective inhibitors. The elucidation of the structural basis of the catalytic mechanism and substrate binding mode of Hex and OGA has provided core information for virtual screening and rational design of inhibitors. A large number of high-potency and selective inhibitors have been developed in the last five years. In this review, we focus on the recent advances in the structural modification, inhibitory activity, binding mechanisms and biological evaluation of Hex and OGA inhibitors, which will facilitate the development of new drugs and agrochemicals.
Collapse
Affiliation(s)
- Xi Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qing Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
8
|
Zhao Z, Chen W, Dong Y, Yang Q, Lu H, Zhang J. Discovery of Potent N-Methylcarbamoylguanidino Insect Growth Regulators Targeting OfChtI and OfChi-h. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12431-12439. [PMID: 37556680 DOI: 10.1021/acs.jafc.3c02448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Insect growth regulators (IGRs) are important insecticides that reduce the harm caused by insects to crops by controlling pest population growth. Chitinases are closely associated with insect growth and are among the most important glycoside hydrolases. Thus, Chitinase is an attractive target for the development of novel insecticides. In this study, we designed and synthesized a series of novel and highly potent insecticides targeting OfChtI and OfChi-h in insects. Enzymatic activity tests showed that most compounds exhibited a potent inhibitory activity against OfCh-h. Binding mode analysis revealed that the target compounds bound to the -1 active subsite of Chitinase through the key pharmacophore N-methylcarbamoylguanidino. Compounds 6e, 6g, 6j, and 6o significantly affected the growth and development of Plutella xylostella at 200 mg/L. Our study provides novel insights for the development of potent insecticide-targeted Chitinase combinations based on receptors and ligands.
Collapse
Affiliation(s)
- Zhixiang Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yanhong Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Huizhe Lu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jianjun Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
9
|
Zuo L, Huang S, He Y, Zhang L, Cheng G, Feng Y, Han Q, Ge L, Feng L. Design, Synthesis, and Bioassay for the Thiadiazole-Bridged Thioacetamide Compound as Cy-FBP/SBPase Inhibitors Based on Catalytic Mechanism Virtual Screening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11834-11846. [PMID: 37498729 DOI: 10.1021/acs.jafc.3c01913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase (Cy-FBP/SBPase) was an important regulatory enzyme in cyanobacterial photosynthesis and was a potential target enzyme for screening to obtain novel inhibitors against cyanobacterial blooms. In this study, we developed a novel pharmacophore screening model based on the catalytic mechanism and substrate structure of Cy-FBP/SBPase and screened 26 S series compounds with different structures and pharmacophore characteristics from the Specs database by computer-assisted drug screening. These compounds exhibited moderate inhibitory activity against Cy-FBP/SBPase, with 9 compounds inhibiting >50% at 100 μM. Among them, compound S5 showed excellent inhibitory activity against both Cy-FBP/SBPase and Synechocystis sp. PCC6803 (IC50 = 6.7 ± 0.7 μM and EC50 = 7.7 ± 1.4 μM). The binding mode of compound S5 to Cy-FBP/SBPase was predicted using the molecular docking theory and validated by sentinel mutation and enzyme activity analysis. Physiochemical, gene transcription level, and metabolomic analyses showed that compound S5 significantly reduced the quantum yield of photosystem II and the maximum electron transfer rate, downregulated transcript levels of related genes encoding the Calvin cycle and photosystem, reduced the photosynthetic efficiency of cyanobacteria, thus inhibited metabolic pathways, such as the Calvin cycle and tricarboxylic acid cycle, and eventually achieved an efficient algicide. In addition, compound S5 had a high safety profile for human-derived cells and zebrafish. In summary, the novel pharmacophore screening model obtained from the current work provides an effective solution to the cyanobacterial bloom problem.
Collapse
Affiliation(s)
- Lingzi Zuo
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| | - Shi Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| | - Yanlin He
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| | - Liexiong Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| | - Guonian Cheng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| | - Yu Feng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| | - Qiang Han
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| | - Li Ge
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| | - Lingling Feng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, People's Republic of China
- National Key Laboratory of Green Pesticide, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| |
Collapse
|
10
|
Liang P, Li J, Chen W, Li J, Yang Q, Zhang J. Application of Natural Bioresources to Sustainable Agriculture: A C-Glycoside Insecticide Based on N-Acetyl-glucosamine for Regulating Insect Molting of Ostrinia furnacalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5496-5506. [PMID: 37013678 DOI: 10.1021/acs.jafc.2c08760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In order to increase the application of natural bioresources in drug discovery and development, a study on N-acetyl-glucosamine (GlcNAc) derivatives of chitin as green pesticides was necessary. In this study, we designed and synthesized a series of novel C-glycoside naphthalimides using GlcNAc as a starting material. Compound 10l showed high inhibitory activity against OfHex1 (IC50 = 1.77 μM), with a nearly 30-fold increase in activity over our previously reported C-glycoside CAUZL-A (IC50 = 47.47 μM). By observing the morphology of the Ostrinia furnacalis, we found that the synthesized compounds significantly inhibited the molting process. In addition, we further explored the morphological changes of the inhibitor-treated O. furnacalis cuticle using scanning electron microscopy. This is the first study to validate the insecticidal mechanism of OfHex1 inhibitors at the microscale level. Several compounds also exhibited excellent larvicidal activity against Plutella xylostella. Moreover, the toxicity measurements and predictions indicated that the C-glycoside naphthalimides have little effect on the natural enemy Trichogramma ostriniae and rats. Together, our results highlight an approach for the design of green pesticides, taking advantage of natural bioresources to control pests in agriculture.
Collapse
Affiliation(s)
- Peibo Liang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Jingmin Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Jianyang Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 440307, P. R. China
| | - Jianjun Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
11
|
Zhao Z, Li F, Chen W, Yang Q, Lu H, Zhang J. Discovery of aromatic 2-(3-(methylcarbamoyl) guanidino)-N-aylacetamides as highly potent chitinase inhibitors. Bioorg Med Chem 2023; 80:117172. [PMID: 36709570 DOI: 10.1016/j.bmc.2023.117172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/25/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Chitinases are important glycoside hydrolases that are closely related to bacterial pathogenesis, fungal cell wall remodelling, and insect moulting. Consequently, chitinases have become attractive targets for therapeutic drugs and pesticides. In this study, we designed and synthesised a series of novel chitinase inhibitors based on the N-methylcarbamoylguanidinyl group of the natural product argifin. The most active compound 8h showed strong inhibitory activity against the group I chitinases HsChit1, SmChiB, and OfChi-h, with IC50 values of 0.19 µM, 4.2 nM, and 25 nM, respectively. Binding mode studies revealed that the compound 8h formed π-π stacking/hydrophobic interactions at +1 or +2 subsite of chitinases. In addition, a key hydrogen bond net was formed between the pharmacophore N-methylcarbamoylguanidinyl and key residues at the -1 subsite. Together, the findings of this study provide novel insights into the development of potent small-molecule chitinase inhibitors using a combination of planar structures and N-methylcarbamoylguanidinyl.
Collapse
Affiliation(s)
- Zhixiang Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Fang Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Huizhe Lu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jianjun Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China.
| |
Collapse
|
12
|
Zhao Z, Chen W, Wang S, Dong Y, Yang Q, Zhang J. Rational Design of N-Methylcarbamoylguanidinyl Derivatives as Highly Potent Dual-Target Chitin Hydrolase Inhibitors for Retarding Growth of Pest Insects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2817-2826. [PMID: 36735960 DOI: 10.1021/acs.jafc.2c07605] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chitin degradation is a vital process for the growth of insects. Chitin hydrolase OfChtI and β-N-acetylhexosaminidase OfHex1 are two key enzymes involved in hydrolyzing the chitin of insects' cuticles. Thus, they are considered promising targets for preventing and controlling agricultural pests. In this study, we designed and synthesized a series of compounds bearing N-methylcarbamoylguanidinyl and N-methoxycarbonylguanidinyl as dual-target inhibitors of OfChtI and OfHex1. The most potent dual-target inhibitor, compound 10d, exhibited half-maximal inhibitory concentration (IC50) values of 27.1 and 249.1 nM against OfChtI and OfHex1, respectively. Furthermore, the insecticidal activity studies showed that compounds 10a-c, 10k, and 10l bear significant effects on the growth and development of Plutella xylostella. This work provides a promising method for the development of novel chitin hydrolase inhibitors as potential pest control and management agents.
Collapse
Affiliation(s)
- Zhixiang Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing100193, People's Republic of China
| | - Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, People's Republic of China
| | - Simin Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing100193, People's Republic of China
| | - Yanhong Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing100193, People's Republic of China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, People's Republic of China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, People's Republic of China
| | - Jianjun Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing100193, People's Republic of China
| |
Collapse
|
13
|
Li H, Liu Z, Dong Y, Wang YX, Zhu XL. Design, Synthesis, and Fungicidal Evaluation of Novel N-Methoxy Pyrazole-4-Carboxamides as Potent Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2610-2615. [PMID: 36696251 DOI: 10.1021/acs.jafc.2c07031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Succinate dehydrogenase (SDH, EC 1.3.5.1, also known as complex II) has been recognized as one of the most promising targets of fungicides. Here, based on the binding mode of pydiflumetofen with SDH, the carbon-carbon double bond was introduced into the chemical of pydiflumetofen and then produced the target compounds 6a-6o. The enzymatic inhibitory activity and structure-activity relationship (SAR) study showed that the 2-position and 4-position in terminal benzene were positive to increasing activity. Furthermore, fungicidal activity results in greenhouses indicated that compound 6o showed good control effects against wheat powdery mildew (WPM), cucumber powdery mildew (CPM), and southern corn rust (SCR), showing its broad-spectrum property. Especially, compound 6o exhibited 95 and 75% control effects against CPM and SCR at 6.25 mg/L, respectively, which are better than pydiflumetofen (80% control effects against CPM and 15% against SCR), indicating its potency that is worthy of further development.
Collapse
Affiliation(s)
- Hua Li
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, Henan 455000, P.R. China
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Zheng Liu
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Ying Dong
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Yu-Xia Wang
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| |
Collapse
|
14
|
Wang YE, Yang D, Ma C, Hu S, Huo J, Chen L, Kang Z, Mao J, Zhang J. Design, Synthesis, and Herbicidal Activity of Naphthalimide-Aroyl Hybrids as Potent Transketolase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12819-12829. [PMID: 36173029 DOI: 10.1021/acs.jafc.2c04533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Transketolase (TK) was identified as a new target for the development of novel herbicides. In this study, a series of naphthalimide-aroyl hybrids were designed and prepared based on TK as a new target and tested for their herbicidal activities. In vitro bioassay showed that compounds 4c and 4w exhibited stronger inhibitory effects against Digitaria sanguinalis (DS) and Amaranthus retroflexus (AR) with the inhibition over 90% at 200 mg/L and around 80% at 100 mg/L. Also, compounds 4c and 4w exhibited excellent postemergence herbicidal activity against DS and AR with the inhibition around 90% at 90 g [active ingredient (ai)]/ha and 80% at 50 g (ai)/ha in the greenhouse, which was comparable with the activity of mesotrione. The fluorescent quenching experiments of At TK revealed the occurrence of electron transfer from compound 4w to At TK and the formation of a strong exciplex between them. Molecular docking analyses further showed that compounds 4w exhibited profound affinity with At TK through the interaction with the amino acids in the active site, which results in its strong inhibitory activities against TK. These findings demonstrated that compound 4w is potentially a lead candidate for novel herbicides targeting TK.
Collapse
Affiliation(s)
- Yan-En Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Dongchen Yang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Chujian Ma
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Shiqi Hu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Zhanhai Kang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| |
Collapse
|
15
|
Zhang D, Zhou N, Yang LJ, Yu ZL, Ma DJ, Wang DW, Li YH, Liu B, Wang BF, Xu H, Xi Z. Discovery of (5-(Benzylthio)-4-(3-(trifluoromethyl)phenyl)-4 H-1,2,4-triazol-3-yl) Methanols as Potent Phytoene Desaturase Inhibitors through Virtual Screening and Structure Optimization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10144-10157. [PMID: 35946897 DOI: 10.1021/acs.jafc.2c02981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phytoene desaturase (PDS) is not only an important enzyme in the biosynthesis of carotenoids but also a promising target for herbicide discovery. However, in recent years, no expected PDS inhibitors with new scaffolds have been reported. Hence, a solution for developing PDS inhibitors is to search for new compounds with novel chemotypes based on the PDS protein structure. In this work, we integrated structure-based virtual screening, structure-guided optimization, and biological evaluation to discover some PDS inhibitors with novel chemotypes. It is noteworthy that the highly potent compound 1b, 1-(4-chlorophenyl)-2-((5-(hydroxymethyl)-4-(3-(trifluoromethyl)phenyl)-4H-1,2,4-triazol-3-yl)thio)ethan-1-one, exhibited a broader spectrum of post-emergence herbicidal activity at 375-750 g/ha against six kinds of weeds than the commercial PDS inhibitor diflufenican. Surface plasmon resonance (SPR) assay showed that the affinity of our compound 1b (KD = 65.9 μM) to PDS is slightly weaker but at the same level as diflufenican (KD = 38.3 μM). Meanwhile, determination of the phytoene content and PDS mRNA quantification suggested that 1b could induce PDS mRNA reduction and phytoene accumulation. Moreover, 1b also caused the increase of reactive oxygen species (ROS) and the change of ROS-associated enzyme activity in albino leaves. Hence, all these results indicated the feasibility of PDS protein structure-based virtual screen and structure optimization to search for highly potent PDS inhibitors with novel chemotypes for weed control.
Collapse
Affiliation(s)
- Di Zhang
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Nuo Zhou
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Li-Jun Yang
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Lei Yu
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - De-Jun Ma
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Da-Wei Wang
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yong-Hong Li
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Bin Liu
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Bai-Fan Wang
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Han Xu
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhen Xi
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
16
|
Zhang X, Yang Z, Xu H, Liu Y, Yang X, Sun T, Lu X, Shi F, Yang Q, Chen W, Duan H, Ling Y. Synthesis, Antifungal Activity, and 3D-QASR of Novel 1,2,3,4-Tetrahydroquinoline Derivatives Containing a Pyrimidine Ether Scaffold as Chitin Synthase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9262-9275. [PMID: 35862625 DOI: 10.1021/acs.jafc.2c01348] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The introduction of active groups of natural products into the framework of pesticide molecules is an effective approach for discovering active lead compounds, and thus has been widely used in the development of new agrochemicals. In this work, a novel series of 1,2,3,4-tetrahydroquinoline derivatives containing a pyrimidine ether scaffold were designed and synthesized by the active substructure splicing method. The new compounds showed good antifungal activities against several fungi. Especially, compound 4fh displayed excellent in vitro activity against Valsa mali and Sclerotinia sclerotiorum with EC50 values of 0.71 and 2.47 μg/mL, respectively. 4fh had slightly stronger inhibitory activity (68.08% at 50 μM) against chitin synthase (CHS) than that of polyoxin D (63.84% at 50 μM) and exhibited obvious curative and protective effects on S. sclerotiorum in vivo. Thus, 4fh can be considered as a new candidate fungicide as a chitin synthase inhibitor. An accurate and reliable three-dimensional quantitative structure-activity relationship (3D-QSAR) model presented a useful direction for the further excogitation of more highly active fungicides. Molecular docking revealed that the conventional hydrogen bond mainly affected the binding affinity of 4fh with chitin synthase. The present results will provide a guidance to discover potential CHS-based fungicides for plant disease control in agriculture.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhaokai Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Huan Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yuansheng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Tengda Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xingxing Lu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Fasheng Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yun Ling
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
The Role of Chitooligosaccharidolytic β- N-Acetylglucosamindase in the Molting and Wing Development of the Silkworm Bombyx mori. Int J Mol Sci 2022; 23:ijms23073850. [PMID: 35409210 PMCID: PMC8998872 DOI: 10.3390/ijms23073850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 02/01/2023] Open
Abstract
The insect glycoside hydrolase family 20 β-N-acetylhexosaminidases (HEXs) are key enzymes involved in chitin degradation. In this study, nine HEX genes in Bombyx mori were identified by genome-wide analysis. Bioinformatic analysis based on the transcriptome database indicated that each gene had a distinct expression pattern. qRT-PCR was performed to detect the expression pattern of the chitooligosaccharidolytic β-N-acetylglucosaminidase (BmChiNAG). BmChiNAG was highly expressed in chitin-rich tissues, such as the epidermis. In the wing disc and epidermis, BmChiNAG has the highest expression level during the wandering stage. CRISPR/Cas9-mediated BmChiNAG deletion was used to study the function. In the BmChiNAG-knockout line, 39.2% of female heterozygotes had small and curly wings. The ultrastructure of a cross-section showed that the lack of BmChiNAG affected the stratification of the wing membrane and the formation of the correct wing vein structure. The molting process of the homozygotes was severely hindered during the larva to pupa transition. Epidermal sections showed that the endocuticle of the pupa was not degraded in the mutant. These results indicate that BmChiNAG is involved in chitin catabolism and plays an important role in the molting and wing development of the silkworm, which highlights the potential of BmChiNAG as a pest control target.
Collapse
|
18
|
Wang YE, Yang D, Dai L, Huo J, Chen L, Kang Z, Mao J, Zhang J. Design, Synthesis, Herbicidal Activity, and Molecular Docking Study of 2-Thioether-5-(Thienyl/Pyridyl)-1,3,4-Oxadiazoles as Potent Transketolase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2510-2519. [PMID: 35175764 DOI: 10.1021/acs.jafc.1c06897] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transketolase (TK) has been regarded as a new target for the development of novel herbicides. In this study, a series of 2-thioether-5-(thienyl/pyridyl)-1,3,4-oxadiazoles were designed and synthesized based on TK as the new target. The preliminary bioassay results indicated that compounds 4l and 4m displayed the best herbicidal activities against Amaranthus retroflexus (AR) and Digitaria sanguinalis (DS), with the inhibition exceeding 90% at 100-200 mg/L in vitro. Moreover, they also displayed higher postemergence herbicidal activities (90% control) against AR and DS than all of the positive controls at 45-90 g [active ingredient (ai)]/ha in a greenhouse. Notably, compounds 4l and 4m showed a broad spectrum of weed control at 90 g ai/ha. More significantly, compound 4l exhibited good crop selectivity against maize at 90 g ai/ha. Both fluorescent binding experiments and molecular docking analyses indicated that compounds 4l and 4m exhibited strong TK inhibitory activities with superior binding affinities than the others. Preliminary mechanism studies suggested that they might exert their TK inhibitory effects by occupying the active cavity of At TK and forming more strong interactions with amino acids in the active site. Taken together, these results suggested that compound 4l was a potential herbicide candidate for weed control in maize fields targeting TK.
Collapse
Affiliation(s)
- Yan-En Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Dongchen Yang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Longtao Dai
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Zhanhai Kang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| |
Collapse
|
19
|
Primary Mode of Action of the Novel Sulfonamide Fungicide against Botrytis cinerea and Field Control Effect on Tomato Gray Mold. Int J Mol Sci 2022; 23:ijms23031526. [PMID: 35163447 PMCID: PMC8836143 DOI: 10.3390/ijms23031526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Botrytis cinerea is considered an important plant pathogen and is responsible for significant crop yield losses. With the frequent application of commercial fungicides, B. cinerea has developed resistance to many frequently used fungicides. Therefore, it is necessary to develop new kinds of fungicides with high activity and new modes of action to solve the increasingly serious problem of resistance. During our screening of fungicide candidates, one novel sulfonamide compound, N-(2-trifluoromethyl-4-chlorphenyl)-2-oxocyclohexyl sulfonamide (L13), has been found to exhibit good fungicidal activity against B. cinerea. In this work, the mode of action of L13 against B. cinerea and the field control effect on tomato gray mold was studied. L13 had good control against B. cinerea resistant to carbendazim, diethofencarb, and iprodione commercial fungicides in the pot culture experiments. SEM and TEM observations revealed that L13 could cause obvious morphological and cytological changes to B. cinerea, including excessive branching, irregular ramification or abnormal configuration, and the decomposition of cell wall and vacuole. L13 induced more significant electrolyte leakage from hyphae than procymidone as a positive control. L13 had only a minor effect on the oxygen consumption of intact mycelia, with 2.15% inhibition at 50 μg/mL. In two locations over 2 years, the field control effect of L13 against tomato gray mold reached 83% at a rate of 450 g ai ha−1, better than the commercial fungicide of iprodione. Moreover, toxicological tests demonstrated the low toxicological effect of L13. This research seeks to provide technical support and theoretical guidance for L13 to become a real commercial fungicide.
Collapse
|