1
|
Reheim MAMA, Abdou MM, El-Gaby MSA, Al-Omari MH, Abu-Rayyan A, Al-Assy WH, Refat HM, Sarhan AAM, Hafiz ISA. Bioactivity of novel isoxazole-fused heterocycles: comprehensive antimicrobial, antioxidant activities, SwissADME predictions, molecular docking, and DFT analysis. Mol Divers 2025:10.1007/s11030-025-11180-z. [PMID: 40244372 DOI: 10.1007/s11030-025-11180-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/28/2025] [Indexed: 04/18/2025]
Abstract
Among the foremost goals for organic chemists is to discover novel approaches for the synthesis of a particular heterocyclic and its design. Our approach focused on the vital precursor 4-acetyl-3-phenylisoxazol-5(4H)-one 3, as this molecule has an endocyclic carbonyl function in position 5 adjacent to the substituted acetyl function at site 4. Therefore, compound 3 was a crucial component of many types of fused isoxazole. The investigators provide a straightforward synthesis of fused isoxazole from the following categories: pyrano[3,2-d]isoxazole 4 & 6, isochromeno[4,3-d]isoxazole 5, isoxazolo[4',5':5,6]pyrano[3,4-c]pyridine 7, thieno[3',4':4,5]pyrano [3,2-d]isoxazole 8, pyrazolo[4,3-d]isoxazole 10a,b and 11a,b, and isoxazolo[4,5-c]pyridazine derivatives 14a,b. The target compounds and their structures were supported by the results of 1H-NMR, IR and mass spectroscopy. Molecular docking studies highlighted strong binding affinities to bacterial enzymes crucial for cell wall synthesis, while DFT calculations provided deep insights into their electronic properties and stability. Additionally, the antioxidant potential of compounds 11a,b was assessed using DPPH and ABTS assays, showing impressive concentration-dependent activity. Addressing the critical issue of antibiotic resistance, especially due to β-lactamases, molecular docking affirmed the high binding propensity of these derivatives with essential β-lactamase proteins (PDB: 1CK3, 6MU9, and 6W2Z). These findings underscore the promise of isoxazoline derivatives as powerful antimicrobial and antioxidant agents, paving the way for further development in combating bacterial resistance and oxidative stress.
Collapse
Affiliation(s)
| | - Moaz M Abdou
- Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt.
| | - Mohamed S A El-Gaby
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | | | - Ahmed Abu-Rayyan
- Faculty of Science, Applied Science Private University, Amman, 11931, Jordan
| | - Waleed H Al-Assy
- Chemistry Department, Faculty of Science, New Valley University, El-Kharga, 72511, Egypt
| | - Hala M Refat
- Department of Chemistry, Faculty of Science, Arish University, Arish, 45511, Egypt
| | - Ahmed A M Sarhan
- Department of Chemistry, Faculty of Science, Arish University, Arish, 45511, Egypt
| | | |
Collapse
|
2
|
Ma X, Ma Z, Qi X, Zhang X, Liu X, Liu X, Zhang A, Yue G, Li G, Li J. Identification of a novel Src inhibitor K882 derived from quinazoline-based stilbenes with anti-NSCLC effect. Bioorg Chem 2025; 156:108185. [PMID: 39947800 DOI: 10.1016/j.bioorg.2025.108185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 03/28/2025]
Abstract
The growing concern about drug resistance to KRAS G12C inhibitors emphasizes the urgent need for effective therapies targeting NSCLC with KRAS G12C mutation. In this research, a series of quinazoline-based stilbene derivatives were designed, synthesized and assayed for cytotoxic activities against human KRAS G12C mutant NSCLC NCI-H358 cells. Among them, K882 (4e) exhibited remarkable inhibitory activities on tumor cell proliferation, migration and invasion, as well as tumor organoids growth in vitro. Subsequent study revealed that K882 arrested NCI-H358 cell cycle in G2/M phase and induced apoptosis. In a NCI-H358 xenograft tumor model, K882 showed potential tumor inhibition effect in vivo without causing obvious organ damage. Mechanistically, K882 bound to ATP binding hydrophobic pocket of Src and inhibited its downstream signaling pathways including Jak/Stat, PI3K/Akt and RAS/MAPK activation, thereby exerting its anti-tumor effect. These findings highlight the promising potential of K882 as a therapeutic targeting agent for the treatment of KRAS mutant NSCLC while also providing novel insights into targeted therapy strategies for this type of malignancy. Furthermore, the information of structure-activity relationship presents valuable molecular design blueprints for the development of novel and highly potent compounds targeting Src.
Collapse
MESH Headings
- Humans
- Quinazolines/pharmacology
- Quinazolines/chemistry
- Quinazolines/chemical synthesis
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Cell Proliferation/drug effects
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Structure-Activity Relationship
- Stilbenes/chemistry
- Stilbenes/pharmacology
- Stilbenes/chemical synthesis
- Animals
- Drug Screening Assays, Antitumor
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Molecular Structure
- src-Family Kinases/antagonists & inhibitors
- src-Family Kinases/metabolism
- Dose-Response Relationship, Drug
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/chemical synthesis
- Apoptosis/drug effects
- Mice
- Cell Line, Tumor
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/metabolism
- Mice, Nude
Collapse
Affiliation(s)
- Xiuwei Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003 China
| | - Zongchen Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003 China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003 China
| | - Xiaomin Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003 China
| | - Xiaochun Liu
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071 China
| | - Xiaoyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003 China
| | - Aotong Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003 China
| | - Gan Yue
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003 China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003 China.
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003 China.
| |
Collapse
|
3
|
Tian GM, Yi MY, Yan TS, Liu SS, Huang J, Li H, Bao XP. Design, synthesis, X-ray crystal structure, and antifungal evaluation of new acetohydrazide derivatives containing a 4-thioquinazoline moiety. PEST MANAGEMENT SCIENCE 2025; 81:1624-1637. [PMID: 39629599 DOI: 10.1002/ps.8566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND To find efficient agricultural fungicides, 29 new 4-thioquinazoline-containing acetohydrazide derivatives were prepared and tested for their fungicidal properties. RESULTS All of the target compounds were characterized by 1H and 13C nuclear magnetic resonance and high-resolution mass spectrometry techniques, and the molecular structure of compound A2 was verified by single-crystal X-ray diffraction measurement. The experimental results revealed that many compounds from this series had impressive inhibition efficacies in vitro against the tested fungi. For example, compound A25 was identified as the best fungicidal agent against Rhizoctonia solani with an EC50 (half-maximal effective concentration) value of 0.66 μg mL-1, superior to those of the commercial fungicides chlorothalonil, carbendazim and boscalid. Additionally, this compound displayed favorable protection and curative activities in vivo against rice sheath blight caused by R. solani. Antifungal mechanistic studies on compound A25 indicated that this compound exerted its strong anti-R. solani effects probably through an effective inhibition of fungal succinate dehydrogenase activity [half-maximal inhibitory concentration (IC50) = 4.88 μm] and the impairment of cell membrane integrity, based on the results from enzymatic bioassays, molecular docking studies, and scanning and transmission electron microscopy observations. CONCLUSION Acetohydrazide derivatives containing the 4-thioquinazoline moiety had the potential to be employed as lead compounds for developing more efficient agricultural fungicides in the near future. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guang-Min Tian
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Ming-Yan Yi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Tai-Sen Yan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Song-Song Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Jian Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Xiao-Ping Bao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Arzine A, Hadni H, Boujdi K, Chebbac K, Barghady N, Rhazi Y, Chalkha M, Nakkabi A, Chkirate K, Mague JT, Kawsar SMA, Al Houari G, M. Alanazi M, El Yazidi M. Efficient Synthesis, Structural Characterization, Antibacterial Assessment, ADME-Tox Analysis, Molecular Docking and Molecular Dynamics Simulations of New Functionalized Isoxazoles. Molecules 2024; 29:3366. [PMID: 39064944 PMCID: PMC11279828 DOI: 10.3390/molecules29143366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
This work describes the synthesis, characterization, and in vitro and in silico evaluation of the biological activity of new functionalized isoxazole derivatives. The structures of all new compounds were analyzed by IR and NMR spectroscopy. The structures of 4c and 4f were further confirmed by single crystal X-ray and their compositions unambiguously determined by mass spectrometry (MS). The antibacterial effect of the isoxazoles was assessed in vitro against Escherichia coli, Bacillus subtilis, and Staphylococcusaureus bacterial strains. Isoxazole 4a showed significant activity against E. coli and B. subtilis compared to the reference antibiotic drugs while 4d and 4f also exhibited some antibacterial effects. The molecular docking results indicate that the synthesized compounds exhibit strong interactions with the target proteins. Specifically, 4a displayed a better affinity for E. coli, S. aureus, and B. subtilis in comparison to the reference drugs. The molecular dynamics simulations performed on 4a strongly support the stability of the ligand-receptor complex when interacting with the active sites of proteins from E. coli, S. aureus, and B. subtilis. Lastly, the results of the Absorption, Distribution, Metabolism, Excretion and Toxicity Analysis (ADME-Tox) reveal that the molecules have promising pharmacokinetic properties, suggesting favorable druglike properties and potential therapeutic agents.
Collapse
Affiliation(s)
- Aziz Arzine
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| | - Hanine Hadni
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco;
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Malaysia
| | - Khalid Boujdi
- Faculty of Sciences and Technologies Mohammedia, University Hassan II, B.P. 146, Mohammedia 28800, Morocco;
| | - Khalid Chebbac
- Laboratory of Biotechnology Conservation and Valorisation of Natural Resources, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdallah University, Fez 30000, Morocco;
| | - Najoua Barghady
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| | - Yassine Rhazi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| | - Mohammed Chalkha
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
- Laboratory of Materials Engineering for the Environment and Natural Ressources, Faculty of Sciences and Techniques, University of Moulay Ismail of Meknès, B.P 509, Boutalamine, Errachidia 52000, Morocco
| | - Asmae Nakkabi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
- Laboratory of Materials Engineering for the Environment and Natural Ressources, Faculty of Sciences and Techniques, University of Moulay Ismail of Meknès, B.P 509, Boutalamine, Errachidia 52000, Morocco
| | - Karim Chkirate
- Laboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10010, Morocco;
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA;
| | - Sarkar M. A. Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Ghali Al Houari
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohamed El Yazidi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| |
Collapse
|
5
|
Ma Z, Han X, Jiang C, Liu K, Li G. Design, synthesis, and cytotoxic activity of pyridine-based stilbenes. Nat Prod Res 2024; 38:1961-1966. [PMID: 37384584 DOI: 10.1080/14786419.2023.2227991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/17/2023] [Accepted: 06/18/2023] [Indexed: 07/01/2023]
Abstract
In the present study, three series of 35 pyridine-based stilbenes include 10 new compounds prepared by Horner-Wadsworth-Emmons (HWE) reaction were assayed for cytotoxic activities toward two tumoral cell lines (K562 and MDA-MB-231) and one non-tumoral cell line (L-02). The bioassay results indicated that hybrid stilbenes formed at the C-3 position of pyridine displayed stronger antiproliferative activities against K562 cells and C-4 pyridine-based stilbenes showed broad-spectrum cytotoxic effects. Among them, C-3 pyridine-based stilbene PS2g bearing 2,6-dimethoxy possessed extremely potent antiproliferative activity with IC50 values 1.46 µM against K562 cells, along with excellent selectivity towards normal L-02 cells. In summary, the present study contributes to the development of natural stilbene-based derivatives as antitumor agents and PS2g may serve as a promising lead for the treatment of chronic myeloid leukemia (CML) worthy further investigation.
Collapse
Affiliation(s)
- Zongchen Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao Han
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Can Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Kun Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
6
|
Niu X, Wang Z, Wang C, Wang H. Dibenzylideneacetone Overcomes Botrytis cinerea Infection in Cherry Tomatoes by Inhibiting Chitinase Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19422-19433. [PMID: 37915214 DOI: 10.1021/acs.jafc.3c05695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Chitinase, a crucial component of the fungal cell wall and septa, plays an important role in fungal germination by hydrolyzing chitin to provide carbon and energy for fungal growth and reproduction. In this study, we initially screened dibenzylideneacetone (DBA), a small molecule with inhibitory activity against Botrytis cinerea Chitinase, exhibiting an IC50 of 13.10 μg/mL. By constructing a three-dimensional (3D) model of the B. cinerea Chitinase and utilizing computational biology approaches, we found DBA bound to the active site pocket and formed strong π-π interactions and hydrophobic interactions with Chitinase, indicative of its competitive inhibitory mode. Site-directed mutagenesis also revealed that TRP-382, TRP-135, and ALA-215 were key amino acid residues involved in DBA binding. Subsequent antifungal assays showed that DBA had an MIC of 32 μg/mL against B. cinerea and EC50 values of 16.29 and 14.64 μg/mL in inhibiting mycelial growth and spore germination, respectively. Importantly, in vivo experiments demonstrated that DBA treatment significantly extended the shelf life of cherry tomatoes by 2-fold. Therefore, DBA represents a promising antifungal agent for fruit preservation applications.
Collapse
Affiliation(s)
- Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Ziyou Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Chenyang Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
7
|
Wang L, Fan W, Cui L, Yang N, Zhang X, Yu S, Li Y, Wang B. Synthesis and Biological Activity Evaluation of Novel Chalcone Analogues Containing a Methylxanthine Moiety and Their N-Acyl Pyrazoline Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19343-19356. [PMID: 38047436 DOI: 10.1021/acs.jafc.3c05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
On the basis of the structures of natural methylxanthines and chalcone, a series of novel chalcone analogues containing a methylxanthine moiety, Ia-Ig, and their N-acyl pyrazoline derivatives IIa-IIz and IIaa-IIaf were synthesized and identified through melting points, 1H NMR, 13C NMR, and HRMS. The single crystal of compound IId was obtained, which further illustrated the structural characteristics of the methylxanthine-acylpyrazoline compounds. The biological tests showed that some of them displayed favorable insecticidal activities toward Plutella xylostella L. and were superior to the natural methylxanthine compound caffeine while being comparable with the insecticide triflumuron (e.g., compound Ic: LC50 = 16.8508 mg/L, IIf: LC50 = 1.5721 mg/L, against P. xylostella). Of these compounds, Ic, IIf, and IIu could serve as novel insecticidal leading structures for further study. Some of the compounds showed good fungicidal activities (e.g., compound Ig: EC50 = 14.74 μg/mL, against Rhizoctonia cerealis; IIf: EC50 = 7.06 μg/mL, against Physalospora piricola; IIac: EC50 = 5.37 and 8.19 μg/mL, against Phytophthora capsici and Sclerotinia sclerotiorum, respectively); Ic, Ig, IIa, IIf, IIr, IIs, IIv, IIac, and IIaf could be novel fungicidal leading compounds for further exploration. Furthermore, most of the tested compounds exhibited apparent herbicidal activities against Brassica campestris at a concentration of 100 μg/mL; among others, compound IIa was the best one both toward Brassica campestris and Echinochloa crusgalli and deserves further investigation. The structure-activity relationships of these compounds were also summarized and discussed in detail. The contrast experiment results of compounds C-1 and C-2 showed a positive effect on the biological activity enhancement from the combination of the methylxanthine moiety with the N-dichloroacetyl phenylpyrazoline skeleton. In addition, two 3D-QSAR models with predictive capability were constructed based on the insecticidal and fungicidal activities to afford deep insight into the bioactivity profiles of these compounds. This research provides useful guidance and reference for the discovery and development of novel xanthine natural product-based pesticides.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wenqi Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Li Cui
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Na Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shujing Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yonghong Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Baolei Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Ke S, Gao Z, Zhang Z, Liu F, Wen S, Wang Y, Huang D. Discovery of Novel Carboxamide Derivatives Containing Biphenyl Pharmacophore as Potential Fungicidal Agents Used for Resistance Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14505-14516. [PMID: 37754847 DOI: 10.1021/acs.jafc.3c04307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Natural products are one of the main sources of drug and agrochemicals discovery. Biphenyls skeleton are ubiquitous structures in many classes of natural products, which indicate extensive biological activities. So, in order to investigate the potential applications for natural biphenyl derivatives, a series of novel carboxamide derivatives with diverse substituent patterns were designed and synthesized based on active pharmacophore from natural biphenyl lignans, and their in vitro antifungal activities against several typical plant pathogens belonging to oomycetes, ascomycete, deuteromycetes, and basidiomycetes were fully investigated. The highly potential compounds were further tested in vivo assay against Botrytis cinerea Pers. of cucumber to demonstrate a practical application for controlling common plant diseases, which indicated four compounds could effectively control the resistant strains of carbendazim, rutamycin, and pyrazolidide. The potential modes of action for compound B12 against B. cinerea were also explored using molecular docking, microscopic technology, and label-free quantitative proteomics analysis. The results show that compound B12 may be a potential novel fungicidal agent used for gray mold resistance control, which can influence the protein synthesis of B. cinerea. These findings can provide a certain theoretical basis for the development of novel biphenyl derivatives as potential green antifungal agents.
Collapse
Affiliation(s)
- Shaoyong Ke
- Key Lab of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zilin Gao
- Key Lab of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhigang Zhang
- Key Lab of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fang Liu
- Key Lab of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shaohua Wen
- Key Lab of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yueying Wang
- Key Lab of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Daye Huang
- Key Lab of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
9
|
Wang T, Wang Q, Zhou Y, Shi Y, Gao H. The Effect of Terbinafine and Its Ionic Salts on Certain Fungal Plant Pathogens. Molecules 2023; 28:4722. [PMID: 37375277 DOI: 10.3390/molecules28124722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Terbinafine, an inhibitor of squalene epoxidase in ergosterol biosynthesis, is chiefly utilized as an antifungal medication with potential uses in pesticide applications. This study explores the fungicidal efficacy of terbinafine against prevalent plant pathogens and confirms its effectiveness. To augment its water solubility, five ionic salts of terbinafine were synthesized by pairing them with organic acids. Among these salts, TIS 5 delivered the most impressive results, amplifying the water solubility of terbinafine by three orders of magnitude and lessening its surface tension to facilitate better dispersion during spraying. The in vivo experiments on cherry tomatoes showed that TIS 5 had a superior therapeutic activity compared to its parent compound and two commonly used broad-spectrum fungicides, pyraclostrobin and carbendazim. The results highlight the potential of terbinafine and its ionic salts, particularly TIS 5, for use as fungicides in agriculture due to their synergistic effects with furan-2-carboxylate.
Collapse
Affiliation(s)
- Tao Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Qiuxiao Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yifei Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yaolin Shi
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haixiang Gao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Li PJ, Yan Y, Wu N, Yang YH, An L, Tian GM, Bao XP. Design, synthesis, crystal structure, and antimicrobial activities of new quinazoline derivatives containing both the sulfonate ester and piperidinylamide moieties. PEST MANAGEMENT SCIENCE 2023. [PMID: 36924250 DOI: 10.1002/ps.7459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND To discover more efficient antimicrobial agents in agriculture, a series of new quinazoline derivatives bearing both sulfonate ester and piperidine-4-carboxamide moieties were synthesized and assessed for their antimicrobial effects. RESULTS All of the target compounds were fully characterized by proton (1 H) nuclear magnetic resonance (NMR), carbon-13 (13 C) NMR, and high-resolution mass spectroscopy (HRMS), and compound III-6 containing a 3-bromophenyl substituent was clearly confirmed via single-crystal X-ray diffraction analysis. The bioassay results indicated that some compounds displayed noticeable inhibitory effects in vitro against Xanthomonas oryzae pv. oryzicola (Xoc). Further measurements of median effective concentration (EC50 ) values showed that compound III-17 bearing a 4-methoxyphenyl group had the best anti-Xoc efficacy (EC50 = 12.4 μg mL-1 ), far better than the commercialized bismerthiazol (77.5 μg mL-1 ). Moreover, this compound also demonstrated good protection and curative activities in vivo against rice bacterial leaf streak caused by Xoc. CONCLUSION Compound III-17 had a good potential for further development as a new bactericide for controlling Xoc. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pei-Jia Li
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, People's Republic of China
| | - Ya Yan
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Nan Wu
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Ye-Hui Yang
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Lian An
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Guang-Min Tian
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Xiao-Ping Bao
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| |
Collapse
|
11
|
Rubina SR, Leka SI, Priya KS, Kumar RR, Murugesan S. One‐Pot Three‐Component Domino Synthesis of Isoxazolo[5,4‐
b
]pyrano[2,3‐
f
]quinolines: An Efficient Fluorescent Turn‐off Chemosensor for Picric Acid. ChemistrySelect 2022. [DOI: 10.1002/slct.202203902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Stephen Raja Rubina
- School of Chemistry Madurai Kamaraj University Madurai 625021 Tamil Nadu INDIA
| | | | | | - Raju Ranjith Kumar
- School of Chemistry Madurai Kamaraj University Madurai 625021 Tamil Nadu INDIA
| | | |
Collapse
|
12
|
A green protocol for the one-pot synthesis of 3,4-disubstituted isoxazole-5(4H)-ones using modified β-cyclodextrin as a catalyst. Sci Rep 2022; 12:19106. [PMID: 36352247 PMCID: PMC9646907 DOI: 10.1038/s41598-022-23814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
This manuscript reports an impressive and facile strategy for synthesizing isoxazole derivatives using immobilized Cu (I) in metformin-functionalized β-cyclodextrin as a catalyst. The architecture of this catalyst was characterized by different analytical techniques such as Fourier transform infrared spectroscopy, Thermogravimetric analysis, X-ray diffraction, Field emission scanning electron microscopy, and Energy-dispersive X-ray spectroscopy. The catalyst showed remarkable reusability even after 7 consecutive runs.
Collapse
|
13
|
Synthesis and Biological Activity of Waltherione F‐derived Diamide Derivatives Containing
4‐Quinolone
Group. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Baeva LA, Biktasheva LF, Fatykhov AA, Galimzyanova NF. Synthesis and Fungicidal Activity of 4-[(Alkylsulfanyl)methyl]-3,5-dimethylisoxazoles. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222070151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Insecticidal Triterpenes in Meliaceae: Plant Species, Molecules, and Activities: Part II ( Cipadessa, Melia). Int J Mol Sci 2022; 23:ijms23105329. [PMID: 35628141 PMCID: PMC9140753 DOI: 10.3390/ijms23105329] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
Abstract
Plant-originated triterpenes are important insecticidal molecules. Research on the insecticidal activity of molecules from Meliaceae plants has always been a hotspot due to the molecules from this family showing a variety of insecticidal activities with diverse mechanisms of action. In this paper, we discussed 116 triterpenoid molecules with insecticidal activity from 22 plant species of five genera (Cipadessa, Entandrophragma, Guarea, Khaya, and Melia) in Meliaceae. In these genera, the insecticidal activities of plants from Entandrophragma and Melia have attracted substantial research attention in recent years. Specifically, the insecticidal activities of plants from Melia have been systemically studied for several decades. In total, the 116 insecticidal chemicals consisted of 34 ring-intact limonoids, 31 ring-seco limonoids, 48 rearranged limonoids, and 3 tetracyclic triterpenes. Furthermore, the 34 ring-intact limonoids included 29 trichilin-class chemicals, 3 azadirone-class chemicals, and 1 cedrelone-class and 1 havanensin-class limonoid. The 31 ring-seco limonoids consisted of 16 C-seco group chemicals, 8 B,D-seco group chemicals, 4 A,B-seco group chemicals, and 3 D-seco group chemicals. Furthermore, among the 48 rearranged limonoids, 46 were 2,30-linkage group chemicals and 2 were 10,11-linkage group chemicals. Specifically, the 46 chemicals belonging to the 2,30-linkage group could be subdivided into 24 mexicanolide-class chemicals and 22 phragmalin-class chemicals. Additionally, the three tetracyclic triterpenes were three protolimonoids. To sum up, 80 chemicals isolated from 19 plant species exhibited antifeedant activity toward 14 insect species; 18 chemicals isolated from 17 plant species exhibited poisonous activity toward 10 insect species; 16 chemicals isolated from 11 plant species possessed growth-regulatory activity toward 8 insect species. In particular, toosendanin was the most effective antifeedant and insect growth-regulatory agent. The antifeedant activity of toosendanin was significant. Owing to its high effect, toosendanin has been commercially applied. Three other molecules, 1,3-dicinnamoyl-11-hydroxymeliacarpin, 1-cinnamoyl-3-methacryl-11-hydroxymeliacarpin, and 1-cinnamoyl-3-acetyl-11-hydroxymeliacarpin, isolated from Meliaazedarach, exhibited a highly poisonous effect on Spodoptera littoralis; thus, they deserve further attention.
Collapse
|
16
|
Wang Y, Mu Y, Hu X, Zhang C, Gao Y, Ma Z, Feng J, Liu X, Lei P. Indole/Tetrahydroquinoline as Renewable Natural Resource-Inspired Scaffolds in the Devising and Preparation of Potential Fungicide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4582-4590. [PMID: 35385275 DOI: 10.1021/acs.jafc.1c07879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a continuous effort toward developing novel and highly efficient agrochemicals for integrated management of crop pathogens, two series of oxime ester derivatives from indole and tetrahydroquinoline natural scaffolds were prepared. Guided by the preliminary inhibition rates against ubiquitous and representative fungi, the antifungal profile of the target compounds against Valsa mali was intensively and extensively studied. The tetrahydroquinoline-based derivatives 12a-12r exerted a promising inhibition effect, especially against V. mali. The remarkable compounds 12p (R = 4-OCF3) and 12r (R = 4-OBn) with EC50 values of 0.81 and 0.47 μg/mL, respectively, have a far more prominent activity than commercial fungicide trifloxystrobin. The biochemistry and physiology responses of V. mali after treatment with target compound 12p was examined, and the fruit body production, hyphae morphology, and organelles were profoundly affected. Moreover, the curative effects of compound 12p on apple detached branches and leaves were 57.69 and 64.84% at 100 μg/mL, respectively, which were even superior to that of trifloxystrobin. Meanwhile, the three-dimensional quantitative structure-activity relationship model [comparative molecular field analysis (CoMFA): q2 = 0.823, r2 = 0.924, F = 189.781, and standard error of estimation (SEE) = 0.138 and comparative molecular similarity index analysis (CoMSIA): q2 = 0.795, r2 = 0.904, F = 145.644, and SEE = 0.156] indicated that the antifungal activity of target compounds was facilitated by crucial structural factors, which would render inspiration for further design and discovery of novel fungicidal candidates.
Collapse
Affiliation(s)
- Yujia Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yali Mu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiatong Hu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Caixia Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juntao Feng
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xili Liu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Lei
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
17
|
Wang YE, Yang D, Dai L, Huo J, Chen L, Kang Z, Mao J, Zhang J. Design, Synthesis, Herbicidal Activity, and Molecular Docking Study of 2-Thioether-5-(Thienyl/Pyridyl)-1,3,4-Oxadiazoles as Potent Transketolase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2510-2519. [PMID: 35175764 DOI: 10.1021/acs.jafc.1c06897] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transketolase (TK) has been regarded as a new target for the development of novel herbicides. In this study, a series of 2-thioether-5-(thienyl/pyridyl)-1,3,4-oxadiazoles were designed and synthesized based on TK as the new target. The preliminary bioassay results indicated that compounds 4l and 4m displayed the best herbicidal activities against Amaranthus retroflexus (AR) and Digitaria sanguinalis (DS), with the inhibition exceeding 90% at 100-200 mg/L in vitro. Moreover, they also displayed higher postemergence herbicidal activities (90% control) against AR and DS than all of the positive controls at 45-90 g [active ingredient (ai)]/ha in a greenhouse. Notably, compounds 4l and 4m showed a broad spectrum of weed control at 90 g ai/ha. More significantly, compound 4l exhibited good crop selectivity against maize at 90 g ai/ha. Both fluorescent binding experiments and molecular docking analyses indicated that compounds 4l and 4m exhibited strong TK inhibitory activities with superior binding affinities than the others. Preliminary mechanism studies suggested that they might exert their TK inhibitory effects by occupying the active cavity of At TK and forming more strong interactions with amino acids in the active site. Taken together, these results suggested that compound 4l was a potential herbicide candidate for weed control in maize fields targeting TK.
Collapse
Affiliation(s)
- Yan-En Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Dongchen Yang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Longtao Dai
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Zhanhai Kang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| |
Collapse
|