1
|
Xu R, Lou Y, Gao Y, Shang S, Song Z, Huang K, Li L, Chen L, Li J. Integrating morphology, physiology, and computer simulation to reveal the toxicity mechanism of eco-friendly rosin-based pesticides. CHEMOSPHERE 2024; 369:143855. [PMID: 39615856 DOI: 10.1016/j.chemosphere.2024.143855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/05/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
To mitigate the impact of traditional chemical pesticides on environment, and achieve sustainable crop protection, 24 eco-friendly rosin-based sulfonamide derivatives were synthesized and developed. The in vitro activity assessment showed that compound 4X (Co. 4X) exhibited excellent fungicidal activity against V. mali (EC50 = 1.106 μg/mL), marginally surpassing the positive control carbendazim (EC50 = 1.353 μg/mL). In vivo investigations suggested that Co. 4X exhibited moderate efficacy in mitigating V. mali infection in both apple trees and apples. Physiological assessments revealed that Co. 4X induced severe ultrastructural damage to the mycelium, heightened cell membrane permeability, and inhibited SDH protein activity. Subsequent biosafety evaluations affirmed the environment-friendly of Co. 4X on Zebrafish (LC50(96h) = 25.176 μg/mL). Toxicological research revealed that Co. 4X caused damage to the cells of Zebrafish gills, liver, and intestines, resulting in impaired respiratory, detoxification, digestion, and absorption functions of Zebrafish. In summary, the findings of this study contribute to a deeper understanding of the toxicity mechanisms of novel pesticides, decreasing environmental risks caused by traditional chemical pesticides, and improving the effective management of novel pesticide applications.
Collapse
Affiliation(s)
- Renle Xu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuhang Lou
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Kerang Huang
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Luqi Li
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Lei Chen
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jian Li
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
2
|
Xu R, Kong Y, Lou Y, Wu J, Gao Y, Shang S, Song Z, Song J, Li J. Design, synthesis and biological activity evaluation of eco-friendly rosin-based fungicides for sustainable crop protection. PEST MANAGEMENT SCIENCE 2024; 80:5898-5908. [PMID: 39032014 DOI: 10.1002/ps.8323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Utilizing fungicides to protect crops from diseases is an effective method, and novel eco-friendly plant-derived fungicides with high efficiency and low toxicity are urgent requirements for sustainable crop protection. RESULT Two series of rosin-based fungicides (totally 35) were designed and synthesized. In vitro fungicidal activity revealed that Compound 6a (Co. 6a) effectively inhibited the growth of Valsa mali [median effective concentration (EC50) = 0.627 μg mL-1], and in vivo fungicidal activity suggested a significant protective efficacy of Co. 6a in protecting both apple branches (35.12% to 75.20%) and apples (75.86% to 90.82%). Quantum chemical calculations (via density functional theory) results indicated that the primary active site of Co. 6a lies in its amide structure. Mycelial morphology and physiology were investigated to elucidate the mode-of-action of Co. 6a, and suggested that Co. 6a produced significant cell membrane damage, accelerated electrolyte leakage, decreased succinate dehydrogenase (SDH) protein activity, and impaired physiological and biochemical functions, culminating in mycelial mortality. Molecular docking analysis revealed a robust binding energy (ΔE = -7.29 kcal mol-1) between Co. 6a and SDH. Subsequently, biosafety evaluations confirmed the environmentally-friendly nature of Co. 6a via the zebrafish model, yet toxicological results indicated that Co. 6a at median lethal concentration [LC50(96)] damaged the gills, liver and intestines of zebrafish. CONCLUSION The above research offers a theoretical foundation for exploiting eco-friendly rosin-based fungicidal candidates in sustainable crop protection. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Renle Xu
- College of Forestry, Northwest A&F University, Yangling, People's Republic of China
| | - Yue Kong
- College of Forestry, Northwest A&F University, Yangling, People's Republic of China
| | - Yuhang Lou
- College of Forestry, Northwest A&F University, Yangling, People's Republic of China
| | - Jiaying Wu
- College of Forestry, Northwest A&F University, Yangling, People's Republic of China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, People's Republic of China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, People's Republic of China
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, Michigan, 48502, USA
| | - Jian Li
- College of Forestry, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
3
|
Cheng X, Song Y, Gong J, Wang F, Wang D, Chang X, Lv X. Design, Synthesis, and Antifungal Evaluation of Novel Pyrazole-5-sulfonamide Derivatives for Plant Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22045-22053. [PMID: 39321320 DOI: 10.1021/acs.jafc.4c05050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
To develop further novel environmentally friendly antifungal agents with high efficacy, a series of pyrazole-5-sulfonamide derivatives were designed and synthesized by using the active molecules synthesized in previous works as lead compounds. Their antifungal activities were evaluated in vitro against ten highly destructive plant pathogenic fungi. The bioassay results indicated that more than half of the target compounds displayed potent antifungal activities (inhibition rate ≥85%) against Valsa mali and Sclerotinia sclerotiorum at 20 mg/L. Among them, compound C22 exhibited significant broad-spectrum antifungal activities against V. mali, S. sclerotiorum, Rhizoctonia solani, Botrytis cinerea, and Trichoderma viride, with EC50 values of 0.45, 0.49, 3.06, 0.57, and 1.43 mg/L, respectively. Moreover, compounds C21 and C22 exhibited remarkable protective effects on apple Valsa canker similar to tebuconazole (89.5%) at 50 mg/L. Preliminary antifungal mechanism investigations demonstrated that compound C22 may have inhibited V. mali mycelial growth by inducing oxidative damage to the mycelium and compromising the integrity of the cell membrane. Meanwhile, compounds C21 and C22 exhibited no obvious toxicity to worker bees (Apis mellifera ligustica). Taken together, these pyrazole-5-sulfonamide derivatives, particularly compound C22, possess huge potential to be developed as novel environmentally friendly fungicides with high efficacy.
Collapse
Affiliation(s)
- Xiang Cheng
- College of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yaping Song
- College of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Jiexiu Gong
- College of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Fanglei Wang
- College of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Dandan Wang
- College of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xihao Chang
- College of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xianhai Lv
- College of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230051, China
| |
Collapse
|
4
|
Yang X, Jiang S, Zhang M, Li T, Jin Z, Wu X, Chi YR. Discovery of novel piperidine-containing thymol derivatives as potent antifungal agents for crop protection. PEST MANAGEMENT SCIENCE 2024; 80:4906-4914. [PMID: 38817109 DOI: 10.1002/ps.8203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Plant fungal diseases pose a significant threat to crop production. The extensive use of chemical pesticides has led to growing environmental safety risks and pesticide resistance of various plant pathogens. Therefore, it is an urgent task to explore novel eco-friendly fungicidal agents with high efficacy to combat fungal infection. RESULTS In this study, we rationally designed a series of novel thymol derivatives by incorporation of the sulfonamide moiety and evaluated their biological activities against plant pathogenic fungi. The bioassay results underscored the remarkable in vitro antifungal activity of compounds 5m and 5t against Phytophthora capsici (P. capsici), with EC50 values of 8.420 and 8.414 μg/mL, respectively. Their efficacies were superior to that of widely used commercial fungicides azoxystrobin (AZO, 20.649 μg/mL) and cabendazim (CAB, 251.625 μg/mL). Furthermore, compound 5v exhibited excellent in vitro antifungal activity against Sclerotinia sclerotiorum (S. sclerotiorum), with an EC50 value of 12.829 μg/mL, significantly outperforming AZO (63.629 μg/mL). In vivo bioassays demonstrated the impactful activity of compound 5v against S. sclerotiorum, achieving over 98% curative and protective efficacies at the concentration of 200 μg/mL. Further mechanistic investigations unveiled that compound 5v induced mycelial shrinkage and collapse in S. sclerotiorum, resulting in organelle damage and the accumulation of antioxidant enzyme activity. CONCLUSION The significant antifungal efficacy of the prepared thymol derivatives shall encourage further exploration of compound 5v as a promising candidate to develop novel fungicides for crop protection. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoqun Yang
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Shichun Jiang
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Meng Zhang
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Tingting Li
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhichao Jin
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xingxing Wu
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yonggui Robin Chi
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
5
|
El Mahmoudi A, Fegrouche R, Tachallait H, Lumaret JP, Arshad S, Karrouchi K, Bougrin K. Green synthesis, characterization, and biochemical impacts of new bioactive isoxazoline-sulfonamides as potential insecticidal agents against the Sphodroxia maroccana Ley. PEST MANAGEMENT SCIENCE 2023; 79:4847-4857. [PMID: 37500586 DOI: 10.1002/ps.7686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Sphodroxia maroccana Ley is a pest of cork oak crops that damages the roots of seedlings and can severely impair cork oak regeneration. Since the banning of carbosulfan and chlorpyriphos, which were widely used against the larvae of Sphodroxia maroccana because of their harmful impact on the environment, until now there has been no pesticide against these pests. Therefore, it is particularly urgent to develop highly effective insecticidal molecules with novel scaffolds. Isoxazolines are a class of insecticides that act on γ-aminobutyric acid (GABA)-gated chloride channel allosteric modulators. In this work, a green synthesis of novel 3,5-disubstituted isoxazoline-sulfonamide derivatives was achieved in water via ultrasound-assisted four-component reactions, and their insecticidal activities against fourth-instar larvae of S. maroccana were evaluated. RESULTS Most of the tested compounds showed insecticidal activity compared to fluralaner as positive control and commercially available insecticide. Especially, the isoxazoline-secondary sulfonamides containing halogens (Br and Cl) on the phenyl group attached to the isoxazoline, 6g (LC50 = 0.31 mg/mL), 6j (LC50 = 0.38 mg/mL), 6k (LC50 = 0.18 mg/mL), 6L (LC50 = 0.49 mg/mL), 6m (LC50 = 0.24 mg/mL), 6q (LC50 = 0.46 mg/mL), exhibited much higher larvicidal activity than fluralaner (LC50 = 0.99 mg/mL). CONCLUSION Novel isoxazolines containing sulfonamide moieties were designed, synthesized and confirmed by two single-crystal structures of 4e and 6q. Their bioassay results showed significant larvicidal activity with significant morphological changes in vivo. These results will lay the foundation for the further discovery and development of isoxazoline-sulfonamide derivatives as novel crop protection larvicides of cork oak. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ayoub El Mahmoudi
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Agdal, Morocco
| | - Rachida Fegrouche
- Laboratory of Biodiversity, Ecology, and Genome (BioEcoGen), Faculty of Sciences, B.P. 1014, Biotechnologies Végétale et Microbienne, Biodiversité et Environnement (Biobio) Research Center, Mohammed V University in Rabat, Agdal, Morocco
| | - Hamza Tachallait
- Chemical & Biochemical Sciences Green-Process Engineering (CBS) Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Jean-Pierre Lumaret
- Zoogeography Laboratory, University Paul-Valéry Montpellier 3, Montpellier, France
| | - Suhana Arshad
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, Penang, Malaysia
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Agdal, Morocco
| | - Khalid Bougrin
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Agdal, Morocco
- Chemical & Biochemical Sciences Green-Process Engineering (CBS) Mohammed VI Polytechnic University, Benguerir, Morocco
| |
Collapse
|
6
|
Du S, Hu X. Comprehensive Overview of Diamide Derivatives Acting as Ryanodine Receptor Activators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3620-3638. [PMID: 36791236 DOI: 10.1021/acs.jafc.2c08414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The world's hunger is continuously rising due to conflicts, climate change, pandemics (such as the recent COVID-19), and crop pests and diseases. It is widely accepted that zero hunger is impossible without using agrochemicals to control crop pests and diseases. Diamide insecticides are one of the widely used green insecticides developed in recent years and play important roles in controlling lepidopteran pests. Currently, eight diamine insecticides have been commercialized, which target the insect ryanodine receptors. This review summarizes the development and optimization processes of diamide derivatives acting as ryanodine receptor activators. The review also discusses pest resistance to diamide derivatives and possible solutions to overcome the limitations posed by the resistance. Thus, with reference to structural biology, this study provides an impetus for designing and developing diamide insecticides with improved insecticidal activities.
Collapse
Affiliation(s)
- Shaoqing Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xueping Hu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
7
|
Xu K, Song Z, Liu J, Yang L, Sun G, Lei L, Huang S, Gao F, Chen L, Zhou X. Compositions analysis and insecticidal activity of Aconitum polycarpum Chang ex W.T.Wang petroleum ether fractions and essential oils. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115989. [PMID: 36509259 DOI: 10.1016/j.jep.2022.115989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Aconitum genus plants as a natural pesticide for insecticide and rodent control has been recorded in Chinese folk. However, the insecticide effect, mechanism, and active composition of Aconitum polycarpum Chang ex W.T.Wang have not been studied further. AIM OF THE STUDY This study was designed to analyze the chemical composition, evaluate contact toxicity of petroleum ether extracts (PEEs) and essential oils (EOs) of A. polycarpum, and further explore their possible insecticidal mechanism. MATERIALS AND METHODS The roots of A. polycarpum were extracted with 90% methanol, and then extracted with petroleum ether to obtain PEEs; the EOs was extracted by distillation. The chemical compositions of PEEs and EOs were analyzed by GC-MS. Contact toxicity was evaluated by the immersion method. Exploring insecticidal mechanisms through in vitro enzyme inhibitory activity. RESULTS 12 compounds were identified from PEEs by GC-MS, mainly including aliphatic (94.8%), the main compositions were Octadecadienol (ODO) (aliphatic, 53.2%) and L-Ascorbyl dipalmitate (LADP) (aliphatic, 36.1%). 24 compounds were identified in EOs. About 44.6% of the identified components were terpenoids and their derivatives, and the rest were mainly aliphatic (34.7%) and phenols (3.0%). The main chemical components were L (-)-Borneol (LB) (terpenoid, 28.3%), LADP (aliphatic, 19.1%), and Isoborneol (terpenoid, 9.1%). The contact toxicity indicated that the PEEs showed great contact toxicity against Spodoptera exigua (LC50 = 126.2 mg/L). Meanwhile, LADP (LC50 = 128.1 mg/L) and ODO (LC50 = 121.3 mg/L) was similar to that of Cyhalothrin (LC50 = 124.2 mg/L) in contact toxicity. In addition, we found that LADP and ODO exhibited excellent inhibitory activity against CarE (IC50 = 58.0, 56.1 mg/L, respectively) by measuring in vitro enzyme inhibitory activity, which was superior than Cyhalothrin (IC50 = 68.1 mg/L). CONCLUSIONS The chemical compositions and contact toxicity of EOs and PEEs of A. polycarpum were analyzed and evaluated, and their insecticidal mechanisms were preliminarily discussed for the first time. It proved PEEs of A. polycarpum and its main components (LADP and ODO) exhibited excellent contact toxicity against S. exigua, and CarE was identified as a potential target for contact toxicity. This study indicated that the insecticidal activity of petroleum ether extracts from A. polycarpum is quite promising, and provides a practical and scientific basis for the development and application of botanical pesticides.
Collapse
Affiliation(s)
- Ke Xu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China.
| | - Ziyu Song
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China.
| | - Junqi Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China.
| | - Liu Yang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China.
| | - Guoqing Sun
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China.
| | - Lijie Lei
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China.
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China.
| | - Feng Gao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China.
| | - Lin Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China.
| | - Xianli Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China; Affiliated Hospital of Southwest Jiaotong University & the Third People Hospital of Chengdu, Chengdu 610031, Sichuan, PR China.
| |
Collapse
|
8
|
Liu J, Shi Y, Tian Z, Li F, Hao Z, Wen W, Zhang L, Wang Y, Li Y, Fan Z. Bioactivity-Guided Synthesis Accelerates the Discovery of Evodiamine Derivatives as Potent Insecticide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5197-5206. [PMID: 35435667 DOI: 10.1021/acs.jafc.1c08297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pests threaten worldwide food security by decreasing crop yields and damaging their quality. Natural product-based molecular design and structural optimization have been one of the most effective ways to innovate pesticides for integrated insect management. To continue our previous studies on the discovery of insecticidal lead, a series of evodiamine derivatives were designed, synthesized, and evaluated for their insecticidal activities. The bioassay results demonstrated that compounds Ian and Iao exhibited 90 and 80% insecticidal activities against Mythimna separata at 2.5 mg/L, respectively, which were superior to evodiamine (10% at 10 mg/L), matrine (45% at 600 mg/L), and rotenone (30% at 200 mg/L). Compounds Ian-Iap showed 90% insecticidal activities against Plutella xylostella at 1.0 mg/L, far more potent than those of evodiamine, matrine, and rotenone. Compound Ian displayed 60% insecticidal activity against Helicoverpa armigera at 5.0 mg/L, while evodiamine, matrine, and rotenone showed very poor activities. The study on the insecticidal mechanism of action by a calcium imaging experiment indicated that the insect ryanodine receptors (RyRs) could be the potential target of Ian. Furthermore, the molecular docking indicated that Ian anchored in the binding site of the RyR of P. xylostella. The above results manifested the potential of evodiamine derivatives as potent insecticide candidates.
Collapse
Affiliation(s)
- Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, P. R. China
| | - Yabing Shi
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, P. R. China
| | - Zhicheng Tian
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, P. R. China
| | - Fengyun Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P. R. China
| | - Zesheng Hao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Wen Wen
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, P. R. China
| | - Li Zhang
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, P. R. China
| | - Yuanhong Wang
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, P. R. China
| | - Yuxin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
9
|
Zhang X, Xu H, Su H, Yang X, Sun T, Lu X, Shi F, Duan H, Liu X, Ling Y. Design, Synthesis, and Biological Activity of Novel Fungicides Containing a 1,2,3,4-Tetrahydroquinoline Scaffold and Acting as Laccase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1776-1787. [PMID: 35128930 DOI: 10.1021/acs.jafc.1c06595] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Laccase is a novel target for fungicides. We previously developed a new fungicide, 4-chlorocinnamaldehyde thiosemicarbazide (PMDD-5Y), as a laccase inhibitor. The introduction of active groups of natural products into the framework of a pesticide molecular structure is an effective method for discovering active lead compounds, and it has applications in the discovery of new pesticides. In this work, PMDD-5Y was selected as a lead compound, and we designed and synthesized a series of novel sulfonyl hydrazide derivatives containing the natural product scaffold 1,2,3,4-tetrahydroquinoline. The new compounds had antifungal activities against several fungi, especially Valsa mali and Sclerotinia sclerotiorum. One compound (4bl) displayed very good in vitro activity against S. sclerotiorum and V. mali, with EC50 values of 3.32 and 2.78 μg/mL, respectively. The results of an enzyme activity assay showed that 4bh had the best inhibitory activity against laccase, with an EC50 value of 14.85 μg/mL. This was more active than the lead compound PMDD-5Y and the positive control cysteine. Using a molecular docking method, we studied the binding mode of the title compounds with laccase. The structural features of these new laccase inhibitors as fungicides will advance research and impact the field of discovering more potent fungicides to control diseases in agriculture.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Huan Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Huifei Su
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xinling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Tengda Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xingxing Lu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Fasheng Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712110, China
| | - Yun Ling
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Seyed Hashtroudi, M, Fathi V, Balalaie S. Applications of DABSO as an SO2 Gas Surrogate in Organic Synthesis. Org Biomol Chem 2022; 20:2149-2163. [DOI: 10.1039/d1ob02199k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,4-Diazabicyclo[2.2.2]octane bis(sulfur dioxide), DABCO.SO2, or DABSO, a bench-stable colorless solid, is industrially produced by the reaction of DABCO with the condensed and bubbled sulfur dioxide gas at low temperatures. However,...
Collapse
|