1
|
Kolahdoozan M, Jahanian-Najafabadi A. Lasso peptides: A focus on therapeutic index. World J Microbiol Biotechnol 2025; 41:151. [PMID: 40289244 DOI: 10.1007/s11274-025-04374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025]
Abstract
Lasso peptides, a significant group of ribosomally synthesized and post-translationally modified peptides (RiPPs), have emerged as potential therapeutic agents owing to their unique structural features and diverse biological activities. These peptides are characterized by an isopeptide-bonded macrolactam ring and a tail threaded through the ring, forming a distinctive lasso structure that provides remarkable stability and functionality, leading to significant therapeutic potential for antimicrobial, antiviral, anticancer, and anti-inflammatory applications. This review highlights the structural diversity and therapeutic applications of lasso peptides, emphasizing their potential as next-generation therapeutics. Additionally, while their mechanisms of action and innovative therapeutic prospects are explored, the challenges and limitations associated with their use are also discussed.
Collapse
Affiliation(s)
- Melika Kolahdoozan
- Bioinformatics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Hwang HJ, Nam Y, Jang C, Kim EL, Jang ES, Lee YJ, Lee SR. Anticancer Ribosomally Synthesized and Post-Translationally Modified Peptides from Plants: Structures, Therapeutic Potential, and Future Directions. Curr Issues Mol Biol 2024; 47:6. [PMID: 39852121 PMCID: PMC11764418 DOI: 10.3390/cimb47010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Cancer remains a significant medical challenge, necessitating the discovery of novel therapeutic agents. Ribosomally synthesized and post-translationally modified peptides (RiPPs) from plants have emerged as a promising source of anticancer compounds, offering unique structural diversity and potent biological activity. This review identifies and discusses cytotoxic RiPPs across various plant families, focusing on their absolute chemical structures and reported cytotoxic activities against cancer cell lines. Notably, plant-derived RiPPs such as rubipodanin A and mallotumides A-C demonstrated low nanomolar IC50 values against multiple cancer cell types, highlighting their therapeutic potential. By integrating traditional ethnobotanical knowledge with modern genomic and bioinformatic approaches, this study underscores the importance of plant RiPPs as a resource for developing innovative cancer treatments. These findings pave the way for further exploration of plant RiPPs, emphasizing their role in addressing the ongoing challenges in oncology and enhancing the repertoire of effective anticancer therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Seoung Rak Lee
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
3
|
Al Musaimi O. Lasso peptides realm: Insights and applications. Peptides 2024; 182:171317. [PMID: 39489300 DOI: 10.1016/j.peptides.2024.171317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Lasso peptides exhibit a range of bioactivities, including antiviral effects, inhibition of the glucagon receptor, blockade of the endothelin type B receptor, inhibition of myosin light chain kinase, and modulation of the atrial natriuretic factor, as well as notable antimicrobial properties. Intriguingly, lasso peptides exhibit remarkable proteolytic and thermal stability, addressing one of the key challenges that traditional peptides often face. The challenge in producing those valuable peptides remains the main hurdle in the way of producing larger quantities or even modifying them with more potent analogues. Genome mining and heterologous expression approaches have greatly facilitated the production of lasso peptides, moving beyond mere isolation techniques. This advancement not only allows for larger quantities but also enables the creation of additional analogues with improved stability and potency. This review aims to explore the unique bioactivities and stability of lasso peptides, along with recent advancements in genome mining and heterologous expression that address production challenges and open pathways for engineering potent analogues.
Collapse
Affiliation(s)
- Othman Al Musaimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne UK NE1 7RU, UK; Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
4
|
Li Y, Zhang J, Wei K, Zhou D, Wang Z, Zeng Z, Han Y, Cao W. Multi-Lasso Peptide-Based Synergistic Nanocomposite: A High-Stability, Broad-Spectrum Antimicrobial Agent with Potential for Combined Antibacterial Therapy. ACS NANO 2024; 18:31435-31450. [PMID: 39475538 DOI: 10.1021/acsnano.4c11443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Lasso peptides, natural biological microcins composed of small molecules, have demonstrated efficient bactericidal activity. However, a single lasso peptide is characterized by a narrow and targeted bactericidal spectrum. In this study, a chitosan (CN) derivative-based polymer nanomaterial incorporating three lasso peptides (MccY, MccJ25, and Klebsidin) was designed and synthesized to broaden its antimicrobial spectrum. To enhance resistance to acid and alkali conditions, arginine was appended to the terminus of conjugates, resulting in Chitosan-Lasso-Peptides-Arg (CN-LPs-Arg), and the nanomaterial biocompatibility and bactericidal activity were characterized. Chemical stability test results demonstrate that CN-LPs-Arg effectively buffered the acid-base effect of the compound. Notably, CN-LPs-Arg extended the antimicrobial spectrum of Gram-negative and Gram-positive strains including Klebsiella, Salmonella, and Staphylococcus (MIC = 0.01-1.0 μM). CN-LPs-Arg exerts its destructive effects on bacteria via a series of mechanisms; it adheres to and then penetrates the membrane, causes rupture, and leads to bacterial death. Transcriptomic data revealed that CN-LPs-Arg produced a distinct inhibitory effect on ribosomal protein subunits synthesis pathways and membrane metabolic inhibition. Furthermore, CN-LPs-Arg was nontoxic to cells and exhibited excellent biocompatibility. CN-LPs-Arg reduced bacterial burden in organs and the levels of inflammatory factors IL-6, IL-8, and TNF-α in tissues of mice with acute bacterial infections. Furthermore, it promoted the recovery of Klebsiella-infected C57BL/6 mice, demonstrating a favorable therapeutic effect in vivo. The multilasso peptide-based synergistic nanocomposite of CN-LPs-Arg exhibited high stability as a broad-spectrum antimicrobial agent with potential for combined antibacterial therapy and utilization in the fields of food, biomedicine, and public health.
Collapse
Affiliation(s)
- Yu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jinyu Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Ke Wei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Di Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Zepeng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Zhiwei Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yu Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, Guangzhou 510642, Guangdong, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou 510642, Guangdong, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, Guangdong, China
| |
Collapse
|
5
|
Barrett SE, Mitchell DA. Advances in lasso peptide discovery, biosynthesis, and function. Trends Genet 2024; 40:950-968. [PMID: 39218755 PMCID: PMC11537843 DOI: 10.1016/j.tig.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Lasso peptides are a large and sequence-diverse class of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products characterized by their slip knot-like shape. These unique, highly stable peptides are produced by bacteria for various purposes. Their stability and sequence diversity make them a potentially useful scaffold for biomedically relevant folded peptides. However, many questions remain about lasso peptide biosynthesis, ecological function, and diversification potential for biomedical and agricultural applications. This review discusses new insights and open questions about lasso peptide biosynthesis and biological function. The role that genome mining has played in the development of new methodologies for discovering and diversifying lasso peptides is also discussed.
Collapse
Affiliation(s)
- Susanna E Barrett
- Department of Chemistry at the University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology at University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Douglas A Mitchell
- Department of Chemistry at the University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology at University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
6
|
Li Y, Li W, Zhou D, Zeng Z, Han Y, Chen Q, Wang Z, Wang G, Feng S, Cao W. Microcin Y utilizes its stable structure and biological activity to regulate the metabolism of intestinal probiotics and effectively clear gut Salmonella. Int J Biol Macromol 2024; 274:133290. [PMID: 38908631 DOI: 10.1016/j.ijbiomac.2024.133290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
MccY is a novel, structurally stable microcin with antibacterial activity against Enterobacteriaceae. However, the bioavailability of orally administrated MccY is unknown. This study evaluated the effects of MccY as a antimicrobial on pre-digestion in vitro and its intake, digestion and gut metabolism in vivo. The result of pre-digestion results that MccY maintained its biological activity and was resistant to decomposition. The study established a safe threshold of 4.46-9.92 mg/kg for the MccY dosage-body weight relationship in BALB/c mice. Mice fed with MccY demonstrated improved body weight and intestinal barrier function, accompanied with increased IgM immunogenicity and decreased levels of TNF-α, IL-6, and IL-10 in the intestine. MccY significantly facilitates the growth and activity of probiotics including Lactobacillus, Prevotella, and Bacteroides, and leading to the production of SCFAs and MCFAs during bacterial interactions. Furthermore, MccY effectively protects against the inflammatory response caused by Salmonella Typhimurium infection and effectively clears the Salmonella bacteria from the gut. In conclusion, MccY is seen as a promising new therapeutic target drug for enhancing the intestinal microbe-barrier axis and preventing enteritis.
Collapse
Affiliation(s)
- Yu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenjing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Di Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhiwei Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yu Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qinxi Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zepeng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guyao Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, Guangzhou, China; Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China.
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, Guangzhou, China; Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China.
| |
Collapse
|
7
|
Pfeiffer IPM, Schröder MP, Mordhorst S. Opportunities and challenges of RiPP-based therapeutics. Nat Prod Rep 2024; 41:990-1019. [PMID: 38411278 DOI: 10.1039/d3np00057e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Covering: up to 2024Ribosomally synthesised and post-translationally modified peptides (RiPPs) comprise a substantial group of peptide natural products exhibiting noteworthy bioactivities ranging from antiinfective to anticancer and analgesic effects. Furthermore, RiPP biosynthetic pathways represent promising production routes for complex peptide drugs, and the RiPP technology is well-suited for peptide engineering to produce derivatives with specific functions. Thus, RiPP natural products possess features that render them potentially ideal candidates for drug discovery and development. Nonetheless, only a small number of RiPP-derived compounds have successfully reached the market thus far. This review initially outlines the therapeutic opportunities that RiPP-based compounds can offer, whilst subsequently discussing the limitations that require resolution in order to fully exploit the potential of RiPPs towards the development of innovative drugs.
Collapse
Affiliation(s)
- Isabel P-M Pfeiffer
- University of Tübingen, Pharmaceutical Institute, Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Maria-Paula Schröder
- University of Tübingen, Pharmaceutical Institute, Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Silja Mordhorst
- University of Tübingen, Pharmaceutical Institute, Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
8
|
Zhang G, Feng S, Qin M, Sun J, Liu Y, Luo C, Lin M, Xu S, Liao M, Fan H, Liang Z. Influence of PepF peptidase and sporulation on microcin J25 production in Bacillus subtilis. Microbiol Spectr 2024; 12:e0374823. [PMID: 38780256 PMCID: PMC11218540 DOI: 10.1128/spectrum.03748-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
The lasso peptide microcin J25 (MccJ25) possesses strong antibacterial properties and is considered a potential effective component of bacterial disease treatment drugs and safe food preservatives. Although MccJ25 can be heterologously expressed in Bacillus subtilis as we have previously reported, its regulation and accumulation are yet to be understood. Here, we investigated the expression level and stability of MccJ25 in B. subtilis strains with disruption in peptidase genes pepA, pepF, and pepT. Oligoendopeptidase F (PepF) was found to be involved in reduction of the production of MccJ25 by degradation of its precursor peptide. In the pepF mutant, the MccJ25 reached a concentration of 1.68 µM after a cultivation time exceeding 60 hours, while the wild-type strain exhibited a concentration of only 0.14 µM. Moreover, the production of MccJ25 in B. subtilis downregulated the genes associated with sporulation, and this may contribute to its accumulation. Finally, this study provides a strategy to improve the stability and production of MccJ25 in B. subtilis. IMPORTANCE MccJ25 displays significant antibacterial activity, a well-defined mode of action, exceptional safety, and remarkable stability. Hence, it presents itself as a compelling candidate for an optimal antibacterial or anti-endotoxin medication. The successful establishment of exogenous production of MccJ25 in Bacillus subtilis provides a strategy for reducing its production cost and diversifying its utilization. In this study, we have provided evidence indicating that both peptidase PepF and sporulation are significant factors that limit the expression of MccJ25 in B. subtilis. The ΔpepF and ΔsigF mutants of B. subtilis express MccJ25 with higher production yield and enhanced stability. To sum up, this study developed several better engineered strains of B. subtilis, which greatly reduced the consumption of MccJ25 during the nutrient depletion stage of the host strain, improved its production, and elucidated factors that may be involved in reducing MccJ25 accumulation in B. subtilis.
Collapse
Affiliation(s)
- Guangwen Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
| | - Miaomiao Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Juan Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yutong Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Changqi Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Min Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Siqi Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
| | - Zhaoping Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Zeng P, Wang H, Zhang P, Leung SSY. Unearthing naturally-occurring cyclic antibacterial peptides and their structural optimization strategies. Biotechnol Adv 2024; 73:108371. [PMID: 38704105 DOI: 10.1016/j.biotechadv.2024.108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/08/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Natural products with antibacterial activity are highly desired globally to combat against multidrug-resistant (MDR) bacteria. Antibacterial peptide (ABP), especially cyclic ABP (CABP), is one of the abundant classes. Most of them were isolated from microbes, demonstrating excellent bactericidal effects. With the improved proteolytic stability, CABPs are normally considered to have better druggability than linear peptides. However, most clinically-used CABP-based antibiotics, such as colistin, also face the challenges of drug resistance soon after they reached the market, urgently requiring the development of next-generation succedaneums. We present here a detail review on the novel naturally-occurring CABPs discovered in the past decade and some of them are under clinical trials, exhibiting anticipated application potential. According to their chemical structures, they were broadly classified into five groups, including (i) lactam/lactone-based CABPs, (ii) cyclic lipopeptides, (iii) glycopeptides, (iv) cyclic sulfur-rich peptides and (v) multiple-modified CABPs. Their chemical structures, antibacterial spectrums and proposed mechanisms are discussed. Moreover, engineered analogs of these novel CABPs are also summarized to preliminarily analyze their structure-activity relationship. This review aims to provide a global perspective on research and development of novel CABPs to highlight the effectiveness of derivatives design in identifying promising antibacterial agents. Further research efforts in this area are believed to play important roles in fighting against the multidrug-resistance crisis.
Collapse
Affiliation(s)
- Ping Zeng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Honglan Wang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Pengfei Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sharon Shui Yee Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
10
|
Schiefelbein K, Lang J, Schuster M, Grigglestone CE, Striga R, Bigler L, Schuman MC, Zerbe O, Li Y, Hartrampf N. Merging Flow Synthesis and Enzymatic Maturation to Expand the Chemical Space of Lasso Peptides. J Am Chem Soc 2024; 146:17261-17269. [PMID: 38759637 PMCID: PMC11212047 DOI: 10.1021/jacs.4c03898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
Many peptidic natural products, such as lasso peptides, cyclic peptides, and cyclotides, are conformationally constrained and show biological stability, making them attractive scaffolds for drug development. Although many peptides can be synthesized and modified through chemical methods, knot-like lasso peptides such as microcin J25 (MccJ25) and their analogues remain elusive. As the chemical space of MccJ25 analogues accessible through purely biological methods is also limited, we proposed a hybrid approach: flow-based chemical synthesis of non-natural precursor peptides, followed by in vitro transformation with recombinant maturation enzymes, to yield a more diverse array of lasso peptides. Herein, we established the rapid, flow-based synthesis of chemically modified MccJ25 precursor peptides (57 amino acids). Heterologous expression of enzymes McjB and McjC was extensively optimized to improve yields and facilitate the synthesis of multiple analogues of MccJ25, including the incorporation of non-canonical tyrosine and histidine derivatives into the lasso scaffold. Finally, using our chemoenzymatic strategy, we produced a biologically active analogue containing three d-amino acids in the loop region and incorporated backbone N-methylations. Our method provides rapid access to chemically modified lasso peptides that could be used to investigate structure-activity relationships, epitope grafting, and the improvement of therapeutic properties.
Collapse
Affiliation(s)
- Kevin Schiefelbein
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jakob Lang
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department
of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matthias Schuster
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Claire E. Grigglestone
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Robin Striga
- Laboratory
Molecules of Communication and Adaptation of Microorganisms (MCAM).
UMR7245, CNRS-Muséum National d’Histoire
Naturelle (MNHN), Alliance Sorbonne Université, 57 rue Cuvier, 75005 Paris, France
| | - Laurent Bigler
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Meredith C. Schuman
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department
of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Oliver Zerbe
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Yanyan Li
- Laboratory
Molecules of Communication and Adaptation of Microorganisms (MCAM).
UMR7245, CNRS-Muséum National d’Histoire
Naturelle (MNHN), Alliance Sorbonne Université, 57 rue Cuvier, 75005 Paris, France
| | - Nina Hartrampf
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
11
|
Li W, Zeng Z, Zhou D, Wang G, Wang Z, Li Y, Han Y, Qin M, Luo C, Feng S, Cao W. Effect of oral administration of microcin Y on growth performance, intestinal barrier function and gut microbiota of chicks challenged with Salmonella Pullorum. Vet Res 2024; 55:66. [PMID: 38778424 PMCID: PMC11112776 DOI: 10.1186/s13567-024-01321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
The lasso peptide microcin Y (MccY) effectively inhibits various serotypes of Salmonella in vitro, but the antibacterial effect against S. Pullorum in poultry is still unclear. This study was the first to evaluate the safety and anti-S. Pullorum infection of MccY in specific pathogen-free (SPF) chicks. The safety test showed that the body weight, IgA and IgM levels of serum, and cecal microbiota structure of 3 groups of chicks orally administrated with different doses of MccY (5 mg/kg, 10 mg/kg, 20 mg/kg) for 14 days were not significantly different from those of the control group. Then, the chicks were randomized into 3 groups for the experiment of anti-S. Pullorum infection: (I) negative control group (NC), (II) S. Pullorum-challenged group (SP, 5 × 108 CFU/bird), (III) MccY-treated group (MccY, 20 mg/kg). The results indicated that compared to the SP group, treatment of MccY increased body weight and average daily gain (P < 0.05), reduced S. Pullorum burden in feces, liver, and cecum (P < 0.05), enhanced the thymus, and decreased the spleen and liver index (P < 0.05). Additionally, MccY increased the jejunal villus height, lowered the jejunal and ileal crypt depth (P < 0.05), and upregulated the expression of IL-4, IL-10, ZO-1 in the jejunum and ileum, as well as CLDN-1 in the jejunum (P < 0.05) compared to the SP group. Furthermore, MccY increased probiotic flora (Barnesiella, etc.), while decreasing (P < 0.05) the relative abundance of pathogenic flora (Escherichia and Salmonella, etc.) compared to the SP group.
Collapse
Affiliation(s)
- Wenjing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhiwei Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Di Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guyao Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zepeng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yu Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Miaomiao Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Changqi Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, China.
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
12
|
Carson DV, Juarez RJ, Do T, Yang Z, James Link A. Antimicrobial Lasso Peptide Cloacaenodin Utilizes a Unique TonB-Dependent Transporter to Access Susceptible Bacteria. ACS Chem Biol 2024; 19:981-991. [PMID: 38527226 PMCID: PMC11031277 DOI: 10.1021/acschembio.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The development of new antimicrobial agents effective against Gram-negative bacteria remains a major challenge in drug discovery. The lasso peptide cloacaenodin has potent antimicrobial activity against multiple strains in the Enterobacter genus, one of the ESKAPE pathogens. Here, we show that cloacaenodin uses a previously uncharacterized TonB-dependent transporter, which we name CloU, to cross the outer membrane (OM) of susceptible bacteria. Inner membrane transport is mediated by the protein SbmA. CloU is distinct from the known OM transporters (FhuA and PupB) utilized by other antimicrobial lasso peptides and thus offers important insight into the spectrum of activity of cloacaenodin. Using knowledge of the transport pathway to predict other cloacaenodin-susceptible strains, we demonstrate the activity of cloacaenodin against clinical isolates of Enterobacter and of a Kluyvera strain. Further, we use molecular dynamics simulations and mutagenesis of CloU to explain the variation in cloacaenodin susceptibility observed across different strains of Enterobacter. This work expands the currently limited understanding of lasso peptide uptake and advances the potential of cloacaenodin as an antibiotic.
Collapse
Affiliation(s)
- Drew V. Carson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Reecan J. Juarez
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Truc Do
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Zhongyue Yang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - A. James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
13
|
Baquero F, Beis K, Craik DJ, Li Y, Link AJ, Rebuffat S, Salomón R, Severinov K, Zirah S, Hegemann JD. The pearl jubilee of microcin J25: thirty years of research on an exceptional lasso peptide. Nat Prod Rep 2024; 41:469-511. [PMID: 38164764 DOI: 10.1039/d3np00046j] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Covering: 1992 up to 2023Since their discovery, lasso peptides went from peculiarities to be recognized as a major family of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products that were shown to be spread throughout the bacterial kingdom. Microcin J25 was first described in 1992, making it one of the earliest known lasso peptides. No other lasso peptide has since then been studied to such an extent as microcin J25, yet, previous review articles merely skimmed over all the research done on this exceptional lasso peptide. Therefore, to commemorate the 30th anniversary of its first report, we give a comprehensive overview of all literature related to microcin J25. This review article spans the early work towards the discovery of microcin J25, its biosynthetic gene cluster, and the elucidation of its three-dimensional, threaded lasso structure. Furthermore, the current knowledge about the biosynthesis of microcin J25 and lasso peptides in general is summarized and a detailed overview is given on the biological activities associated with microcin J25, including means of self-immunity, uptake into target bacteria, inhibition of the Gram-negative RNA polymerase, and the effects of microcin J25 on mitochondria. The in vitro and in vivo models used to study the potential utility of microcin J25 in a (veterinary) medicine context are discussed and the efforts that went into employing the microcin J25 scaffold in bioengineering contexts are summed up.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
- Network Center for Research in Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire OX11 0FA, UK
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, 4072 Brisbane, Queensland, Australia
| | - Yanyan Li
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - A James Link
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sylvie Rebuffat
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Raúl Salomón
- Instituto de Química Biológica "Dr Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucumán, Argentina
| | - Konstantin Severinov
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Séverine Zirah
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany.
- Department of Pharmacy, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
14
|
Li Y, Li W, Zeng Z, Han Y, Chen Q, Dong X, Wang Z, Feng S, Cao W. Lasso peptide MccY alleviates non-typhoidal salmonellae-induced mouse gut inflammation via regulation of intestinal barrier function and gut microbiota. Microbiol Spectr 2023; 11:e0178423. [PMID: 37819128 PMCID: PMC10714986 DOI: 10.1128/spectrum.01784-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/28/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Diseases caused by Enterobacteriaceae multidrug-resistant strains have become increasingly difficult to manage. It is necessary to verify the new antibacterial drug MccY effect on non-typhoid Salmonella infection in mice since it is regarded as a promising microcin. The results demonstrated that MccY has a potential therapeutic application value in the protection against Salmonella-induced intestinal damage and alleviating related intestinal dysbiosis and metabolic disorders. MccY could be a promising candidate as an antimicrobial or anti-inflammatory agent for treating infectious diseases.
Collapse
Affiliation(s)
- Yu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenjing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhiwei Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yu Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qinxi Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinyi Dong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zepeng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
| |
Collapse
|
15
|
Carson DV, Zhang Y, So L, Cheung-Lee WL, Cartagena AJ, Darst SA, Link AJ. Discovery, Characterization, and Bioactivity of the Achromonodins: Lasso Peptides Encoded by Achromobacter. JOURNAL OF NATURAL PRODUCTS 2023; 86:2448-2456. [PMID: 37870195 PMCID: PMC10949989 DOI: 10.1021/acs.jnatprod.3c00536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Through genome mining efforts, two lasso peptide biosynthetic gene clusters (BGCs) within two different species of Achromobacter, a genus that contains pathogenic organisms that can infect patients with cystic fibrosis, were discovered. Using gene-refactored BGCs in E. coli, these lasso peptides, which were named achromonodin-1 and achromonodin-2, were heterologously expressed. Achromonodin-1 is naturally encoded by certain isolates from the sputum of patients with cystic fibrosis. The NMR structure of achromonodin-1 was determined, demonstrating that it is a threaded lasso peptide with a large loop and short tail structure, reminiscent of previously characterized lasso peptides that inhibit RNA polymerase (RNAP). Achromonodin-1 inhibits RNAP in vitro and has potent, focused activity toward Achromobacter pulmonis, another isolate from the sputum of a cystic fibrosis patient. These efforts expand the repertoire of antimicrobial lasso peptides and provide insights into how Achromobacter isolates from certain ecological niches interact with each other.
Collapse
Affiliation(s)
- Drew V. Carson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Yi Zhang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Larry So
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Wai Ling Cheung-Lee
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Alexis Jaramillo Cartagena
- Laboratory of Molecular Biophysics and Tri-Institutional Training Program in Chemical Biology, Rockefeller University, New York, NY 10065, United States
| | - Seth A. Darst
- Laboratory of Molecular Biophysics and Tri-Institutional Training Program in Chemical Biology, Rockefeller University, New York, NY 10065, United States
| | - A. James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
16
|
Zhang G, Lin M, Qin M, Xie Q, Liang M, Jiang J, Dai H, Xu S, Feng S, Liao M. Establishing Heterologous Production of Microcins J25 and Y in Bacillus subtilis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5600-5613. [PMID: 36995900 DOI: 10.1021/acs.jafc.3c00675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Microcin J25 (MccJ25) and microcin Y (MccY) are lasso peptides and considered potential alternatives to antibiotics and harmful preservatives. The combination of these two microcins can provide a wide antimicrobial spectrum against food-borne Salmonella. Currently, MccJ25 and MccY are produced using Escherichia coli expression systems; however, the entire production process is accompanied by negative effects from endotoxins. In this study, we identified Bacillus subtilis as a suitable host for MccJ25 and MccY production. High-level production of microcins was achieved by promoter optimization, host strain selection, and recombinant expression. The engineered strains produced maximum yields of 2.827 μM MccJ25 and 1.481 μM MccY. This is the first study to demonstrate the expression of MccJ25 and MccY in B. subtilis, and it offers a few engineered strains that are without antibiotic resistance markers, inducer-free, sporulation-deficient, and free of the negative effects of endotoxins for antibacterial therapy and food preservation.
Collapse
Affiliation(s)
- Guangwen Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Min Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Miaomiao Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qianmei Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Mingzhi Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Jinfei Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Huilin Dai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Siqi Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, P. R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, P. R. China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou 510642, P. R. China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, P. R. China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, P. R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, P. R. China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou 510642, P. R. China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, P. R. China
| |
Collapse
|
17
|
Resistance Mechanism and Physiological Effects of Microcin Y in Salmonella enterica subsp. enterica Serovar Typhimurium. Microbiol Spectr 2022; 10:e0185922. [PMID: 36453909 PMCID: PMC9769762 DOI: 10.1128/spectrum.01859-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Salmonella bacteria pose a significant threat to animal husbandry and human health due to their virulence and multidrug resistance. The lasso peptide MccY is a recently discovered antimicrobial peptide that acts against various serotypes of Salmonella. In this study, we further explore the resistance mechanism and activity of MccY. Mutants of Ton system genes, including tonB, exbB, and exbD, in Salmonella enterica subsp. enterica serovar Typhimurium were constructed, and the MICs to MccY exhibited significant increases in these deletion mutants compared to the MIC of the parent strain. Subsequently, MccY resistance was quantitatively analyzed, and these mutants also showed greatly reduced rates of killing, even with a high concentration of MccY. In addition, a minimal medium with low iron environment enhanced the sensitivity of these mutants to MccY. Measurements of a series of physiological indicators, including iron utilization, biofilm formation, and motility, demonstrated that MccY may decrease the virulence of S. Typhimurium. Transcriptomic analysis showed that iron utilization, biofilm formation, flagellar assembly, and virulence-related genes were downregulated to varying degrees when S. Typhimurium was treated with MccY. In conclusion, deletion of Ton system genes resulted in resistance to MccY and the susceptibility of these mutants to MccY was increased and differed under a low-iron condition. This lasso peptide can alter multiple physiological properties of S. Typhimurium. Our study will contribute to improve the knowledge and understanding of the mechanism of MccY resistance in Salmonella strains. IMPORTANCE The resistance of Salmonella to traditional antibiotics remains a serious challenge. Novel anti-Salmonella drugs are urgently needed to address the looming crisis. The newly identified antimicrobial peptide MccY shows broad prospects for development and application because of its obvious antagonistic effect on various serotypes of Salmonella. However, our previous study showed that the peptide could confer resistance to Salmonella by disrupting the receptor gene fhuA. In this study, we further explored the potential resistance mechanism of MccY and demonstrated the importance of the Salmonella Ton complex for MccY transport. Disruption in Ton system genes resulted in S. Typhimurium resistance to this peptide, and MccY could alter multiple bacterial physiological properties. In summary, this study further explored the resistance mechanism and antibacterial effect of MccY in S. Typhimurium and provided a scientific basis for its development and application.
Collapse
|
18
|
Striving for sustainable biosynthesis: discovery, diversification, and production of antimicrobial drugs in Escherichia coli. Biochem Soc Trans 2022; 50:1315-1328. [PMID: 36196987 DOI: 10.1042/bst20220218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
New antimicrobials need to be discovered to fight the advance of multidrug-resistant pathogens. A promising approach is the screening for antimicrobial agents naturally produced by living organisms. As an alternative to studying the native producer, it is possible to use genetically tractable microbes as heterologous hosts to aid the discovery process, facilitate product diversification through genetic engineering, and ultimately enable environmentally friendly production. In this mini-review, we summarize the literature from 2017 to 2022 on the application of Escherichia coli and E. coli-based platforms as versatile and powerful systems for the discovery, characterization, and sustainable production of antimicrobials. We highlight recent developments in high-throughput screening methods and genetic engineering approaches that build on the strengths of E. coli as an expression host and that led to the production of antimicrobial compounds. In the last section, we briefly discuss new techniques that have not been applied to discover or engineer antimicrobials yet, but that may be useful for this application in the future.
Collapse
|
19
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
20
|
Do T, Thokkadam A, Leach R, Link AJ. Phenotype-Guided Comparative Genomics Identifies the Complete Transport Pathway of the Antimicrobial Lasso Peptide Ubonodin in Burkholderia. ACS Chem Biol 2022; 17:2332-2343. [PMID: 35802499 PMCID: PMC9454059 DOI: 10.1021/acschembio.2c00420] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New antibiotics are needed as bacterial infections continue to be a leading cause of death, but efforts to develop compounds with promising antibacterial activity are hindered by a poor understanding of─and limited strategies for elucidating─their modes of action. We recently discovered a novel lasso peptide, ubonodin, that is active against opportunistic human lung pathogens from the Burkholderia cepacia complex (Bcc). Ubonodin inhibits RNA polymerase, but only select strains were susceptible, indicating that having a conserved cellular target does not guarantee activity. Given the cytoplasmic target, we hypothesized that cellular uptake of ubonodin determines susceptibility. Although Bcc strains harbor numerous nutrient uptake systems, these organisms lack close homologues of the single known lasso peptide membrane receptor, FhuA. Thus, a straightforward homology-driven approach failed to uncover the identity of the ubonodin transporter(s). Here, we used phenotype-guided comparative genomics to identify genes uniquely associated with ubonodin-susceptible Bcc strains, leading to the identification of PupB as the ubonodin outer membrane (OM) receptor in Burkholderia. The loss of PupB renders B. cepacia resistant to ubonodin, whereas expressing PupB sensitizes a resistant strain. We also examine how a conserved iron-regulated transcriptional pathway controls PupB to further tune ubonodin susceptibility. PupB is only the second lasso peptide OM receptor to be uncovered and the first outside of enterobacteria. Finally, we elucidate the full transport pathway for ubonodin by identifying its inner membrane receptor YddA in Burkholderia. Our work provides a complete picture of the mode of action of ubonodin and establishes a general framework for deciphering the transport pathways of other natural products with cytoplasmic targets.
Collapse
Affiliation(s)
- Truc Do
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Alina Thokkadam
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Robert Leach
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, United States
| | - A. James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
21
|
Johnston CW, Badran AH. Natural and engineered precision antibiotics in the context of resistance. Curr Opin Chem Biol 2022; 69:102160. [PMID: 35660248 DOI: 10.1016/j.cbpa.2022.102160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
Abstract
Antibiotics are essential weapons in our fight against infectious disease, yet the consequences of broad-spectrum antibiotic use on microbiome stability and pathogen resistance are prompting investigations into more selective alternatives. Echoing the advent of precision medicine in oncology, precision antibiotics with focused activities are emerging as a means of addressing infections without damaging microbiomes or incentivizing resistance. Historically, antibiotic design principles have been gleaned from Nature, and reinvestigation of overlooked antibacterials is now providing scaffolds and targets for the design of pathogen-specific drugs. In this perspective, we summarize the biosynthetic and antibacterial mechanisms used to access these activities, and discuss how such strategies may be co-opted through engineering approaches to afford precision antibiotics.
Collapse
Affiliation(s)
- Chad W Johnston
- Department of Pharmacology & Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Ahmed H Badran
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
22
|
Parker JK, Davies BW. Microcins reveal natural mechanisms of bacterial manipulation to inform therapeutic development. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001175. [PMID: 35438625 PMCID: PMC10233263 DOI: 10.1099/mic.0.001175] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/17/2022] [Indexed: 12/20/2022]
Abstract
Microcins are an understudied and poorly characterized class of antimicrobial peptides. Despite the existence of only 15 examples, all identified from the Enterobacteriaceae, microcins display diversity in sequence, structure, target cell uptake, cytotoxic mechanism of action and target specificity. Collectively, these features describe some of the unique means nature has contrived for molecules to cross the 'impermeable' barrier of the Gram-negative bacterial outer membrane and inflict cytotoxic effects. Microcins appear to be widely dispersed among different species and in different environments, where they function in regulating microbial communities in diverse ways, including through competition. Growing evidence suggests that microcins may be adapted for therapeutic uses such as antimicrobial drugs, microbiome modulators or facilitators of peptide uptake into cells. Advancing our biological, ecological and biochemical understanding of the roles of microcins in bacterial interactions, and learning how to regulate and modify microcin activity, is essential to enable such therapeutic applications.
Collapse
Affiliation(s)
| | - Bryan William Davies
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|