1
|
Li H, Li X, Liu Y, Xing R, Zhang H, Jia W, Chen L, Li R, Yu Z, Tang Z. Algicidal activity and mechanism of novel Bacillamide a derivative against red tide algae Skeletonema costatum and Prorocentrum minimum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 210:106379. [PMID: 40262886 DOI: 10.1016/j.pestbp.2025.106379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/26/2025] [Accepted: 03/08/2025] [Indexed: 04/24/2025]
Abstract
Frequent red tide outbreaks pose a serious threat to biodiversity and the safety of aquatic ecosystems. Bacillamides showed algicidal activity against algae. However, the low natural concentrations and their structural complexity hinder development of these molecules. Inspired by the natrual algicide Bacillamide A, a series of thiourea derivatives were synthesized. Bacillamide A derivative (3B) showed excellent algicidal activity against S. costatum (EC50 = 0.52 μg/mL) and P. minimum (EC50 = 2.99 μg/mL), respectively. In addition, it has low toxicity to mammals and is less toxic than copper sulfate. 3B treatment resulted in loss of algal cell integrity. It also decreased the Chlorophyll a content and Fv/fm of algal cells, while increasing the levels of malondialdehyde content, superoxide dismutase, and reactive oxygen. 3B also induced expression of the photosynthetic genes, including psaB, psbB, as well as the antioxidant genes SOD2 and CAT. This study demonstrates that Bacillamide A derivatives could provide a safer alternative for red tide algal management.
Collapse
Affiliation(s)
- Huili Li
- College of Life Sciences, Yantai University, Yantai, Shandong Province 264005, PR China
| | - Xiaoxue Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong Province 264005, PR China
| | - Yi Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong Province 264005, PR China
| | - Ronglian Xing
- College of Life Sciences, Yantai University, Yantai, Shandong Province 264005, PR China
| | - Hongxia Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong Province 264005, PR China
| | - Wenguang Jia
- College of Life Sciences, Yantai University, Yantai, Shandong Province 264005, PR China
| | - Lihong Chen
- College of Life Sciences, Yantai University, Yantai, Shandong Province 264005, PR China
| | - Rui Li
- College of Life Sciences, Yantai University, Yantai, Shandong Province 264005, PR China
| | - Zhen Yu
- College of Life Sciences, Yantai University, Yantai, Shandong Province 264005, PR China
| | - Zhihong Tang
- College of Life Sciences, Yantai University, Yantai, Shandong Province 264005, PR China
| |
Collapse
|
2
|
Liu H, Jiang Y, Wang J, Song W, Chen Y, Li Y, Hu YH, He B, Yan W, Ye Y. Competitive Affinity-Based Protein Profiling Reveals Potential Antifungal Targets of 1,2,3-Triazole Hydrazide in Fusarium graminearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8798-8808. [PMID: 40172363 DOI: 10.1021/acs.jafc.4c12342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
In previous research, 1,2,3-triazole hydrazide NAU-6ad exhibited remarkable broad-spectrum antifungal activity. However, the specific targets of NAU-6ad remained unknown. Initially, we excluded three targets─succinate dehydrogenase, laccase, and ergosterol synthase─commonly associated with hydrazide derivatives mentioned in the literature. Subsequently, we developed two types of photoprobes: one incorporating diazirine (DA) and the other phenyl tetrazole (TZ), both featuring terminal alkynes for bioorthogonal reactions. Using these two sets of probes, a total of 52 potential targets were identified through competitive affinity-based proteome profiling. Notably, Ndufs6 and I1RC94 were consistently identified by both sets. The overexpression or knockout of Ndufs6, a subunit of complex I, led to significant changes in sensitivity to NAU-6ad in F. graminearum. Similarly, the knockout of other subunits of complex I, specifically Ndufs2, Ndufv1, and Ndufa9, altered the sensitivity of F. graminearum to NAU-6ad, indicating that NAU-6ad might act upon complex I. Further validation was provided by enzyme activity tests, ATP content assays, pyruvate addition assays, and molecular docking, collectively reinforcing the hypothesis that NAU-6ad might function as a complex I inhibitor.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Yu Jiang
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Jiahao Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Wei Song
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Yiliang Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, China
| | - Yu Li
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Yan-Hao Hu
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Bo He
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Wei Yan
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Yonghao Ye
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| |
Collapse
|
3
|
Li X, Li H, Shi L, Yin Z, Du Y, Zhang H, Wang X, Wang X, Xu K, Wang W, Xing R, Liu Y. Design, Synthesis, and Evaluation of Novel Thiazole-Containing Algicides Inspired by Bacillamide A. Mar Drugs 2024; 22:494. [PMID: 39590774 PMCID: PMC11595864 DOI: 10.3390/md22110494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
The pursuit of highly effective, low-toxicity, and eco-friendly algicides for controlling and eradicating harmful algal blooms (HABs) is of paramount importance. The natural allelochemical bacillamide A has displayed impressive algicidal activity against harmful algae with favorable safety profiles. However, the poor synthetic efficiency and large dose requirements of bacillamide A limit its further application. In this paper, 17 thiazole-containing bacillamide derivatives (BDs) were designed and synthesized in three linear steps as potential algicides. Eight compounds (6a, 6c, 6j, 7b, 7c, 7d, 7e, and 7g) displayed potent inhibitory effects against Prorocentrum minimum, Skeletonema costatum, and Alexandrium pacificum, and they had similar or better activity than the positive control (CuSO4) and bacillamide A. Compound 6a exhibited the most potent algicidal activity against S. costatum (half-maximal effective concentration [EC50] = 0.11 μg/mL), being 23-fold more potent than bacillamide A, 28-fold more potent than CuSO4, and 39-fold more potent than Diuron. Compound 6j exhibited significant algicidal activity against the toxic dinoflagellates P. minimum (EC50 = 1.0 μg/mL) and A. pacificum (EC50 = 0.47 μg/mL), being 3-5-fold more potent than natural bacillamide A, Diuron, and CuSO4. Micrographs and SEM images revealed that 6j induced cell wall rupture and cellular content leakage. Biochemical and physiological studies indicated that 6j might partially disrupt the antioxidant and photosynthetic systems in algal cells, resulting in morphological changes, cell wall rupture, and inclusion leakage. Our work suggests that 6j has a distinct mode of action from CuSO4 and provides a promising candidate for the development of new algicides, worthy of further investigation.
Collapse
Affiliation(s)
- Xiaoxue Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (X.L.); (L.S.); (Z.Y.)
| | - Huili Li
- School of Life Sciences, Yantai University, Yantai 264005, China; (H.L.); (H.Z.); (X.W.); (X.W.); (K.X.)
| | - Lei Shi
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (X.L.); (L.S.); (Z.Y.)
| | - Zuguang Yin
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (X.L.); (L.S.); (Z.Y.)
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
| | - Hongxia Zhang
- School of Life Sciences, Yantai University, Yantai 264005, China; (H.L.); (H.Z.); (X.W.); (X.W.); (K.X.)
| | - Xin Wang
- School of Life Sciences, Yantai University, Yantai 264005, China; (H.L.); (H.Z.); (X.W.); (X.W.); (K.X.)
| | - Xinxin Wang
- School of Life Sciences, Yantai University, Yantai 264005, China; (H.L.); (H.Z.); (X.W.); (X.W.); (K.X.)
| | - Kexin Xu
- School of Life Sciences, Yantai University, Yantai 264005, China; (H.L.); (H.Z.); (X.W.); (X.W.); (K.X.)
| | - Weili Wang
- School of Chemistry and Material Science, Ludong University, 186 Hongqi Middle Road, Yantai 264025, China;
| | - Ronglian Xing
- School of Life Sciences, Yantai University, Yantai 264005, China; (H.L.); (H.Z.); (X.W.); (X.W.); (K.X.)
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (X.L.); (L.S.); (Z.Y.)
| |
Collapse
|
4
|
Wang W, Wang H, Zhang Z, Li W, Yin X, Long Y. Dual RNA sequencing during Trichoderma harzianum-Phytophthora capsici interaction reveals multiple biological processes involved in the inhibition and highlights the cell wall as a potential target. PEST MANAGEMENT SCIENCE 2024; 80:4533-4542. [PMID: 38742618 DOI: 10.1002/ps.8160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Phytophthora capsici is a destructive oomycete pathogen, causing huge economic losses for agricultural production. The genus Trichoderma represents one of the most extensively researched categories of biocontrol agents, encompassing a diverse array of effective strains. The commercial biocontrol agent Trichoderma harzianum strain T-22 exhibits pronounced biocontrol effects against many plant pathogens, but its activity against P. capsici is not known. RESULTS T. harzianum T-22 significantly inhibited the growth of P. capsici mycelia and the culture filtrate of T-22 induced lysis of P. capsici zoospores. Electron microscopic analyses indicated that T-22 significantly modulated the ultrastructural composition of P. capsici, with a severe impact on the cell wall integrity. Dual RNA sequencing revealed multiple biological processes involved in the inhibition during the interaction between these two microorganisms. In particular, a marked upregulation of genes was identified in T. harzianum that are implicated in cell wall degradation or disruption. Concurrently, the presence of T. harzianum appeared to potentiate the susceptibility of P. capsici to cell wall biosynthesis inhibitors such as mandipropamid and dimethomorph. Further investigations showed that mandipropamid and dimethomorph could strongly inhibit the growth and development of P. capsici but had no impact on T. harzianum even at high concentrations, demonstrating the feasibility of combining T. harzianum and these cell wall synthesis inhibitors to combat P. capsici. CONCLUSION These findings provided enhanced insights into the biocontrol mechanisms against P. capsici with T. harzianum and evidenced compatibility between specific biological and chemical control strategies. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weizhen Wang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, People's Republic of China
| | - Haidong Wang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, People's Republic of China
| | - Zhuzhu Zhang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, People's Republic of China
| | - Wenzhi Li
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, People's Republic of China
| | - Xianhui Yin
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, People's Republic of China
| | - Youhua Long
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, People's Republic of China
| |
Collapse
|
5
|
Li C, Fu Y, Li X, Zhang C, Liu P, Miao J, Liu X. Evaluation of SYP-34773's resistance risk and its impact on the activity of mitochondrial respiratory electron transport chain complex I in Phytophthora litchii. PEST MANAGEMENT SCIENCE 2024; 80:1877-1884. [PMID: 38041622 DOI: 10.1002/ps.7918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND SYP-34773 is a low-toxicity pyrimidine amine compound, which was synthesized by modifying the lead compound diflumetorim. Previous literature has shown that it can strongly inhibit the mycelial growth of several important plant pathogens, including Phytophthora litchii. However, the resistance risk of SYP-34773 has not been reported for P. litchii. RESULTS The mean effective concentration (EC50 ) value of SYP-34773 against the mycelial growth of 111 P. litchii isolates was 0.108 ± 0.008 μg mL-1 , which can be used as the baseline sensitivity for SYP-34773 resistance detection in the future. Six mutants were obtained from two parental strain through fungicide induction, whose resistance factors fell between 194- and 687-fold, with stability. Results regarding mycelial growth, sporangial production, sporangial germination, zoospore release, cystspore germination, and pathogenicity showed that the mutants' compound fitness index values were significantly lower than those of their parental isolate. Furthermore, there was no cross-resistance between SYP-34773 and diflumetorim in P. litchii. Significant inhibition of the mitochondrial complex I enzyme activity in two wild-type P. litchii isolates, but not in mutants, was observed upon treatment with SYP-34773. CONCLUSION The resistance risk of SYP-34773 in P. litchii is moderate, and resistance management strategies should be adopted in field use. SYP-34773 is a mitochondrial complex I inhibitor, and SYP-34773-resistant P. litchii isolates did not show cross-resistance against diflumetorim. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chengcheng Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yixin Fu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xinyue Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Can Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Pengfei Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jianqiang Miao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xili Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Sun S, Tang N, Han K, You J, Liu A, Wang Q, Xu Q. Antifungal Activity and Mechanism of 4-Propylphenol Against Fusarium graminearum, Agent of Wheat Scab, and Its Potential Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5258-5268. [PMID: 38430124 DOI: 10.1021/acs.jafc.3c09646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum, is a predominant disease of wheat. Due to the lack of disease-resistant germplasm, chemical control is an important means to control wheat scab. Volatile substances produced in near-isogenic wheat lines were detected after inoculation with F. graminearum, and 4-propylphenol, which appears in FHB-resistant lines, was identified. In vitro and in vivo antifungal activity tests demonstrate that 4-propylphenol effectively inhibits the mycelial growth of F. graminearum. Metabolomics analysis showed changes in glutathione metabolism, indicating that 4-propylphenol triggered reactive oxygen species (ROS) stress. This was consistent with the increasing ROS levels in Fusarium cells treated with 4-propylphenol. Further results demonstrated that excessive accumulation of ROS induced DNA and cell membrane damage in the mycelium. Moreover, 4-propylphenol showed different degrees of inhibition against other soil-borne pathogens (fungi and oomycetes). These findings illustrated that 4-propylphenol has broad spectrum and high antifungal activity and should be considered for use as an ecological fungicide.
Collapse
Affiliation(s)
- Shufang Sun
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Nawen Tang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Kun Han
- National Key Laboratory of Wheat Improvement, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Jiahui You
- Shandong Guocangjian Biotechnology Co., Ltd, Taian 271018, China
| | - Anru Liu
- National Key Laboratory of Wheat Improvement, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Qunqing Wang
- National Key Laboratory of Wheat Improvement, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Qian Xu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
7
|
He HW, Xu D, Wu KH, Lu ZY, Liu X, Xu G. Discovery of novel salicylaldehyde derivatives incorporating an α-methylene-γ-butyrolactone moiety as fungicidal agents. PEST MANAGEMENT SCIENCE 2023; 79:5015-5028. [PMID: 37544900 DOI: 10.1002/ps.7703] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Plant diseases caused by phytopathogenic fungi and oomycetes pose a serious threat to ensuring crop yield and quality. Finding novel fungicidal candidates based on natural products is one of the critical methods for developing effective and environmentally friendly pesticides. In this study, a series of salicylaldehyde derivatives containing an α-methylene-γ-butyrolactone moiety were designed, synthesized, and their fungicidal activities were evaluated. RESULTS The bioassay studies indicated that compound C3 displayed an excellent in vitro activity against Rhizoctonia solani with a half-maximal effective concentration (EC50 ) value of 0.65 μg/mL, higher than that of pyraclostrobin (EC50 = 1.44 μg/mL) and comparable to that of carbendazim (EC50 = 0.33 μg/mL). For Valsa mali and Phytophthora capsici, compound C3 also showed good fungicidal activities with EC50 values of 0.91 and 1.33 μg/mL, respectively. In addition, compound C3 exhibited promising protective in vivo activity against R. solani (84.1%) at 100 μg/mL, which was better than that of pyraclostrobin (78.4%). The pot experiment displayed that compound C3 had 74.8% protective efficacy against R. solani at 200 μg/mL, which was comparable to that of validamycin (78.2%). The antifungal mode of action research indicated that compound C3 could change the mycelial morphology and ultrastructure, increase cell membrane permeability, affect respiratory metabolism by binding to complex III, and inhibit the germination and formation of sclerotia, thereby effectively controlling the disease. CONCLUSION The present study provides support for the application of these salicylaldehyde derivatives as promising potential pesticides with remarkable and broad-spectrum fungicidal activities against phytopathogenic fungi and oomycetes in crop protection. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hong-Wei He
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Dan Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, China
| | - Ke-Huan Wu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zheng-Yi Lu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xili Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, China
| | - Gong Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, China
| |
Collapse
|
8
|
Wang W, Long Y. A review of biocontrol agents in controlling late blight of potatoes and tomatoes caused by Phytophthora infestans and the underlying mechanisms. PEST MANAGEMENT SCIENCE 2023; 79:4715-4725. [PMID: 37555293 DOI: 10.1002/ps.7706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
Phytophthora infestans causes late blight on potatoes and tomatoes, which has a significant economic impact on agriculture. The management of late blight has been largely dependent on the application of synthetic fungicides, which is not an ultimate solution for sustainable agriculture and environmental safety. Biocontrol strategies are expected to be alternative methods to the conventional chemicals in controlling plant diseases in the integrated pest management (IPM) programs. Well-studied biocontrol agents against Phytophthora infestans include fungi, oomycetes, bacteria, and compounds produced by these antagonists, in addition to certain bioactive metabolites produced by plants. Laboratory and glasshouse experiments suggest a potential for using biocontrol in practical late blight disease management. However, the transition of biocontrol to field applications is problematic for the moment, due to low and variable efficacies. In this review, we provide a comprehensive summary on these biocontrol strategies and the underlying corresponding mechanisms. To give a more intuitive understanding of the promising biocontrol agents against Phytophthora infestans in agricultural systems, we discuss the utilizations, modes of action and future potentials of these antagonists based on their taxonomic classifications. To achieve a goal of best possible results produced by biocontrol agents, it is suggested to work on field trials, strain modifications, formulations, regulations, and optimizations of application. Combined biocontrol agents having different modes of action or biological adaptation traits may be used to strengthen the biocontrol efficacy. More importantly, biological control agents should be applied in the coordination of other existing and forthcoming methods in the IPM programs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weizhen Wang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
| | - Youhua Long
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
9
|
Wang W, He L, Zhang Z, Li W, Chen J, Chen T, Long Y. Activity of the botanical compound thymol against kiwifruit rot caused by Fusarium tricinctum and the underlying mechanisms. PEST MANAGEMENT SCIENCE 2023; 79:2493-2502. [PMID: 36864770 DOI: 10.1002/ps.7431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Kiwifruit rot is an important disease caused by different fungal pathogens, which can lead to huge economic loss in the kiwifruit industry. The aims of this study were to discover an effective botanical compound that significantly inhibits the pathogens causing kiwifruit rot, evaluate its control efficacy against this disease, and reveal the underlying mechanisms. RESULTS A strain of Fusarium tricinctum (GF-1), isolated from diseased kiwifruit, could cause fruit rot in both Actinidia chinensis var. chinensis and Actinidia chinensis var. deliciosa. Different botanical chemicals were used for antifungal activity test against GF-1 and thymol was the most effective one with a 50% effective concentration (EC50 ) of 30.98 mg L-1 . The minimal inhibitory concentration (MIC) of thymol against GF-1 was 90 mg L-1 . Control efficacy of thymol against kiwifruit rot was evaluated and the results indicated that thymol could effectively decrease the occurrence and spread of kiwifruit rot. The mechanisms underlying the antifungal activity of thymol against F. tricinctum were investigated, and it showed that thymol could significantly damage the ultrastructure, destroy the plasma membrane integrity, and instantaneously increase energy metabolisms of F. tricinctum. Further investigations indicated that thymol could extend shelf life of kiwifruit by increasing their storability. CONCLUSION Thymol can effectively inhibit F. tricinctum that is one of the causal agents of kiwifruit rot. Multiple modes of action are involved in the antifungal activity. The results of this study indicate that thymol can be a promising botanical fungicide to control kiwifruit rot and provide useful references for thymol application in agriculture system. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weizhen Wang
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
| | - Linan He
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
| | - Zhuzhu Zhang
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
| | - Wenzhi Li
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
| | - Jia Chen
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
| | - Tingting Chen
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
| | - Youhua Long
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
10
|
Wang Z, Lv X, Wang R, He Z, Feng W, Liu W, Yang C, Wang Z, Ke Q, Tao K, Chen Q. Use of oxathiapiprolin for controlling soybean root rot caused by Phytophthora sojae: efficacy and mechanism of action. PEST MANAGEMENT SCIENCE 2023; 79:381-390. [PMID: 36168957 DOI: 10.1002/ps.7207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/07/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Oxathiapiprolin is a new isoxazoline fungicide developed by DuPont to control oomycete diseases. Although oxathiapiprolin has shown strong inhibitory activity against oomycete pathogens, little is known about its ability to control Phytophthora sojae. RESULTS Oxathiapiprolin showed high inhibitory activity against Phytophthora sojae, with 50% effective concentration (EC50 ) values ranging from 1.15 × 10-4 to 4.43 × 10-3 μg mL-1 . Oxathiapiprolin inhibited various stages of Phytophthora sojae development, including mycelial growth, sporangium formation, oospore production, and zoospore release. Electron microscopy studies revealed that oxathiapiprolin caused severe morphological and ultrastructural damage to Phytophthora sojae. Oxathiapiprolin affected the cell membrane and wall of Phytophthora sojae, making it more sensitive to osmotic and cell wall stress. Oxathiapiprolin exhibited translocation activity; it was absorbed by soybean roots and then translocated to the leaves. It was effective at reducing soybean Phytophthora root rot under glasshouse and field conditions. Both fungicide seed treatment and foliar spray significantly reduced disease incidence and yield losses compared with untreated controls in the field. CONCLUSION Oxathiapiprolin exhibits high inhibitory activity against Phytophthora sojae, and has multiple mechanisms of action including severe mycelial damage and modulation of osmotic and cell wall stress. These results indicate that oxathiapiprolin can be used at low concentrations for highly effective management of soybean Phytophthora root rot caused by Phytophthora sojae. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhixin Wang
- Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Xin Lv
- Institute of Quality Standards & Testing Technology, and Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Rongbo Wang
- Institute of Quality Standards & Testing Technology, and Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Zibin He
- Crop Division, Zhangzhou Institute of Agricultural Sciences, Zhangzhou, China
| | - Wanzhen Feng
- Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Wenjing Liu
- Institute of Quality Standards & Testing Technology, and Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Chenxiao Yang
- Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Zhengyang Wang
- Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Qihan Ke
- Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Kezhu Tao
- Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Qinghe Chen
- Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| |
Collapse
|
11
|
Advancement of Phenoxypyridine as an Active Scaffold for Pesticides. Molecules 2022; 27:molecules27206803. [PMID: 36296394 PMCID: PMC9610772 DOI: 10.3390/molecules27206803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Phenoxypyridine, the bioisostere of diaryl ethers, has been widely introduced into bioactive molecules as an active scaffold, which has different properties from diaryl ethers. In this paper, the bioactivities, structure-activity relationships, and mechanism of compounds containing phenoxypyridine were summarized, which may help to explore the lead compounds and discover novel pesticides with potential bioactivities.
Collapse
|
12
|
Zhou Y, Qin Y, Zhou H, Zhang T, Feng J, Xie D, Feng L, Peng H, He H, Cai M. Design, synthesis, high algicidal potency, and putative mode of action of new 2-cyclopropyl-4-aminopyrimidine hydrazones. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105098. [PMID: 35715037 DOI: 10.1016/j.pestbp.2022.105098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Control of cyanobacteria harmful algal blooms remains a global challenge. In the present study, a series of novel 2-cyclopropyl-4-aminopyrimidine hydrazones were designed and synthesized as potential algicides. Compounds 4a, 4b, 4h, 4j, 4k, 4l, and 4m showed potent inhibition against Synechocystis sp. PCC6803 (median effective concentration, EC50 = 1.1 to 1.7 μM) and Microcystis aeruginosa FACHB905 (EC50 = 1.2 to 2.0 μM), more potent than, or comparably with, copper sulfate (PCC6803, EC50 = 1.8 μM; FACHB905, EC50 = 2.2 μM) and prometryne (PCC6803, EC50 = 12.3 μM; FACHB905, EC50 = 7.2 μM). Compound 4k exhibited algicidal activity in an expanded culture system, and was less toxic than copper sulfate to zebrafish. Electron microscope analyses showed that 4k damaged cyanobacterial cells and decreased the number of thylakoid lamellae. Transcriptomic and qPCR analyses suggest that 4k interfered photosynthesis-related pathways. Treatment with 4k significantly decreased the maximum quantum yield of photosystem II and the photosynthetic electron transfer rate, and the resulting reactive oxygen species damaged thylakoid membranes and photosystem I. The results suggest that 4k is a potential lead for further development of effective and safe algicides.
Collapse
Affiliation(s)
- Yuan Zhou
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Yingying Qin
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Huan Zhou
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Tuotuo Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Jiangtao Feng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Dan Xie
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Lingling Feng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Hao Peng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Hongwu He
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Meng Cai
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| |
Collapse
|
13
|
Faoro F, Faccio A, Balestrini R. Contributions of Ultrastructural Studies to the Knowledge of Filamentous Fungi Biology and Fungi-Plant Interactions. FRONTIERS IN FUNGAL BIOLOGY 2022; 2:805739. [PMID: 37744126 PMCID: PMC10512230 DOI: 10.3389/ffunb.2021.805739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/14/2021] [Indexed: 09/26/2023]
Abstract
Since the first experiments in 1950s, transmission electron microscopy (TEM) observations of filamentous fungi have contributed extensively to understand their structure and to reveal the mechanisms of apical growth. Additionally, also in combination with the use of affinity techniques (such as the gold complexes), several aspects of plant-fungal interactions were elucidated. Nowadays, after the huge of information obtained from -omics techniques, TEM studies and ultrastructural observations offer the possibility to support these data, considering that the full comprehension of the mechanisms at the basis of fungal morphogenesis and the interaction with other organisms is closely related to a detailed knowledge of the structural features. Here, the contribution of these approaches on fungal biology is illustrated, focusing both on hyphae cell ultrastructure and infection structures of pathogenic and mycorrhizal fungi. Moreover, a concise appendix of methods conventionally used for the study of fungal ultrastructure is provided.
Collapse
Affiliation(s)
- Franco Faoro
- Dipartimento di Scienze Agrarie e Ambientali, Università di Milano, Milan, Italy
| | - Antonella Faccio
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Raffaella Balestrini
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| |
Collapse
|