1
|
Takata T, Inoue S, Kunii K, Masauji T, Moriya J, Motoo Y, Miyazawa K. Advanced Glycation End-Product-Modified Heat Shock Protein 90 May Be Associated with Urinary Stones. Diseases 2025; 13:7. [PMID: 39851471 PMCID: PMC11764404 DOI: 10.3390/diseases13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/18/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Urinary stones (urolithiasis) have been categorized as kidney stones (renal calculus), ureteric stones (ureteral calculus and ureterolith), bladder stones (bladder calculus), and urethral stones (urethral calculus); however, the mechanisms underlying their promotion and related injuries in glomerular and tubular cells remain unclear. Although lifestyle-related diseases (LSRDs) such as hyperglycemia, type 2 diabetic mellitus, non-alcoholic fatty liver disease/non-alcoholic steatohepatitis, and cardiovascular disease are risk factors for urolithiasis, the underlying mechanisms remain unclear. Recently, heat shock protein 90 (HSP90) on the membrane of HK-2 human proximal tubular epithelium cells has been associated with the adhesion of urinary stones and cytotoxicity. Further, HSP90 in human pancreatic and breast cells can be modified by various advanced glycation end-products (AGEs), thus affecting their function. Hypothesis 1: We hypothesized that HSP90s on/in human proximal tubular epithelium cells can be modified by various types of AGEs, and that they may affect their functions and it may be a key to reveal that LSRDs are associated with urolithiasis. Hypothesis 2: We considered the possibility that Japanese traditional medicines for urolithiasis may inhibit AGE generation. Of Choreito and Urocalun (the extract of Quercus salicina Blume/Quercus stenophylla Makino) used in the clinic, Choreito is a Kampo medicine, while Urocalun is a characteristic Japanese traditional medicine. As Urocalun contains quercetin, hesperidin, and p-hydroxy cinnamic acid, which can inhibit AGE generation, we hypothesized that Urocalun may inhibit the generation of AGE-modified HSP90s in human proximal tubular epithelium cells.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan;
| | - Shinya Inoue
- Department of Urology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan or (S.I.); (K.K.)
- Inoue Iin Clinic, Kusatsu 525-0034, Shiga, Japan
| | - Kenshiro Kunii
- Department of Urology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan or (S.I.); (K.K.)
| | - Togen Masauji
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan;
| | - Junji Moriya
- Department of General Internal Medicine, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan;
- General Medical Center, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan
| | - Yoshiharu Motoo
- Department of Internal Medicine, Fukui Saiseikai Hospital, Wadanaka 918-8503, Fukui, Japan;
| | - Katsuhito Miyazawa
- Department of Urology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan or (S.I.); (K.K.)
| |
Collapse
|
2
|
Hassel B, Sørnes K, Elsais A, Cordero PR, Frøland AS, Rise F. Glyceraldehyde metabolism in mouse brain and the entry of blood-borne glyceraldehyde into the brain. J Neurochem 2024; 168:2868-2879. [PMID: 38922704 DOI: 10.1111/jnc.16158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
D-Glyceraldehyde, a reactive aldehyde metabolite of fructose and glucose, is neurotoxic in vitro by forming advanced glycation end products (AGEs) with neuronal proteins. In Alzheimer's disease brains, glyceraldehyde-containing AGEs have been detected intracellularly and in extracellular plaques. However, little information exists on how the brain handles D-glyceraldehyde metabolically or if glyceraldehyde crosses the blood-brain barrier from the circulation into the brain. We injected [U-13C]-D-glyceraldehyde intravenously into awake mice and analyzed extracts of serum and brain by 13C nuclear magnetic resonance spectroscopy. 13C-Labeling of brain lactate and glutamate indicated passage of D-glyceraldehyde from blood to brain and glycolytic and oxidative D-glyceraldehyde metabolism in brain cells. 13C-Labeling of serum glucose and lactate through hepatic metabolism of [U-13C]-D-glyceraldehyde could not explain the formation of 13C-labeled lactate and glutamate in the brain. Cerebral glyceraldehyde dehydrogenase and reductase activities, leading to the formation of D-glycerate and glycerol, respectively, were 0.27-0.28 nmol/mg/min; triokinase, which phosphorylates D-glyceraldehyde to D-glyceraldehyde-3-phosphate, has been demonstrated previously at low levels. Thus, D-glyceraldehyde metabolism toward glycolysis could proceed both through D-glycerate, glycerol, and D-glyceraldehyde-3-phosphate. The aldehyde group of D-glyceraldehyde was overwhelmingly hydrated into a diol in aqueous solution, but the diol dehydration rate greatly exceeded glyceraldehyde metabolism and did not restrict it. We conclude that (1) D-glyceraldehyde crosses the blood-brain barrier, and so blood-borne glyceraldehyde could contribute to AGE formation in the brain, (2) glyceraldehyde is taken up and metabolized by brain cells. Metabolism thus constitutes a detoxification mechanism for this reactive aldehyde, a mechanism that may be compromised in disease states.
Collapse
Affiliation(s)
- Bjørnar Hassel
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway
- Norwegian Defence Research Establishment (FFI), Kjeller, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Ahmed Elsais
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | | | - Anne Sofie Frøland
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway
- Department of Chemistry, University of Oslo, Norway
| | - Frode Rise
- Department of Chemistry, University of Oslo, Norway
| |
Collapse
|
3
|
Shimamura Y, Wada Y, Tashiro M, Honda H, Masuda S. A comparison of the exposure system of glycidol-related chemicals on the formation of glycidol-hemoglobin adducts. Food Sci Nutr 2024; 12:471-480. [PMID: 38268888 PMCID: PMC10804089 DOI: 10.1002/fsn3.3770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 01/26/2024] Open
Abstract
Glycidol fatty acid esters that are present in foods are degraded in vivo to the animal carcinogen glycidol, which binds to the N-terminal valine of hemoglobin (Hb) to form N-(2,3-dihydroxypropyl)valine (diHOPrVal) adducts. The existence of other chemicals that are converted to glycidol is unknown. To determine the effect of different exposure conditions on the formation of diHOPrVal adducts, several glycidol-related chemicals (3-monochloropropane-1,2-diol; 3-MCPD, epichlorohydrin, glyceraldehyde, acrylic acid, and 1,2-propanediol) were evaluated using in vitro and in vivo (single/repeated dose) methods. In vitro, the reaction of 3-MCPD or epichlorohydrin with human Hb produced 17% and 0.7% of diHOPrVal, as compared to equimolar glycidol, respectively. Following a single administration of glycidol-related compounds to ICR mice, diHOPrVal formation was observed only in the epichlorohydrin-treated group after day 5 of exposure. After 14 days of repeated dosing, the amounts of diHOPrVal produced by epichlorohydrin and 3-MCPD in vivo were <1% of diHOPrVal produced by an equal molar concentration of glycidol. Furthermore, glyceraldehyde group produced 0.2% of diHOPrVal at the same molar concentration of glycidol equivalents, in which diHOPrVal formation could not be confirmed by the in vitro assay. The results indicate the usefulness of diHOPrVal as an exposure marker for glycidol; however, the contribution of its formation in vivo by exposure to various chemicals will be necessary to validate and interpret the results.
Collapse
Affiliation(s)
- Yuko Shimamura
- School of Food and Nutritional SciencesUniversity of ShizuokaShizuokaJapan
| | - Yuri Wada
- School of Food and Nutritional SciencesUniversity of ShizuokaShizuokaJapan
| | - Moeka Tashiro
- School of Food and Nutritional SciencesUniversity of ShizuokaShizuokaJapan
| | - Hiroshi Honda
- R&D Safety Science Research, Kao CorporationTochigiJapan
| | - Shuichi Masuda
- School of Food and Nutritional SciencesUniversity of ShizuokaShizuokaJapan
| |
Collapse
|