1
|
Tu S, Wang J, Yang P, He Y, Gong Z, Zhong W. Enhanced chlorogenic acid production from glucose via systematic metabolic engineering of Saccharomyces cerevisiae. Synth Syst Biotechnol 2025; 10:707-718. [PMID: 40248482 PMCID: PMC12002710 DOI: 10.1016/j.synbio.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/15/2025] [Accepted: 03/05/2025] [Indexed: 04/19/2025] Open
Abstract
Chlorogenic acid (CGA) is a valuable phenolic acid with various pharmaceutical functions. In our previous study, de novo synthesis of CGA in Saccharomyces cerevisiae was achieved. However, its yield required improvement before large scale production. In this study, systematic metabolic engineering strategy was used to reconstruct chassis cell S. cerevisiae YC0707 to enhance its CGA yield from glucose. To balance the supply of phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P), ZWF1 (encoding glucose-6-phosphate dehydrogenase) and GND1 (encoding 6-phosphogluconate dehydrogenase) were overexpressed by strong promoter P TEF1 swapping, thereby strengthening the pentose phosphate pathway. The mutant of phosphofructokinase (PFK2 S718D ) was further introduced to weaken the glycolytic pathway. Then, the p-coumaric acid synthesis capacity was enhanced by employing tyrosine ammonia lyase from Rhodotorula glutinis (RgTAL), ΔHAM1, and ΔYJL028W. Fusion expression of AtC4H (cinnamate-4-hydroxylase) and At4CL1 (4-coumarate CoA ligase 1), together with CsHQT (hydroxycinnamoyl CoA quinate transferase) and AtC3'H (p-coumaroyl shikimate 3-hydroxylase), improved biosynthetic flux to CGA. Subsequently, the microenvironment of P450 enzymes was improved by overexpressing INO2 (a transcription factor for lipid biosynthesis) and removal of heme oxygenase gene HMX1. Furthermore, screening potential transporters to facilitate CGA accumulation. Finally, we optimized the fermentation conditions. Using these strategies, CGA titers increased from 234.8 mg/L to 837.2 mg/L in shake flasks and reached 1.62 g/L in a 5-L bioreactor, representing the highest report in S. cerevisiae and providing new insights for CGA production.
Collapse
Affiliation(s)
- Shuai Tu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junjie Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Pengming Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhixing Gong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
2
|
Jeung K, Kim M, Jang E, Shon YJ, Jung GY. Cell-free systems: A synthetic biology tool for rapid prototyping in metabolic engineering. Biotechnol Adv 2025; 79:108522. [PMID: 39863189 DOI: 10.1016/j.biotechadv.2025.108522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Microbial cell factories provide sustainable alternatives to petroleum-based chemical production using cost-effective substrates. A deep understanding of their metabolism is essential to harness their potential along with continuous efforts to improve productivity and yield. However, the construction and evaluation of numerous genetic variants are time-consuming and labor-intensive. Cell-free systems (CFSs) serve as powerful platforms for rapid prototyping of genetic circuits, metabolic pathways, and enzyme functionality. They offer numerous advantages, including minimizing unwanted metabolic interference, precise control of reaction conditions, reduced labor, and shorter Design-Build-Test-Learn cycles. Additionally, the introduction of in vitro compartmentalization strategies in CFSs enables ultra-high-throughput screening in physically separated spaces, which significantly enhances prototyping efficiency. This review highlights the latest examples of using CFS to overcome prototyping limitations in living cells with a focus on rapid prototyping, particularly regarding gene regulation, enzymes, and multienzymatic reactions in bacteria. Finally, this review evaluates CFSs as a versatile prototyping platform and discusses its future applications, emphasizing its potential for producing high-value chemicals through microbial biosynthesis.
Collapse
Affiliation(s)
- Kumyoung Jeung
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Minsun Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-Ro, Jung-Gu, Ulsan 44429, Republic of Korea
| | - Eunsoo Jang
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Yang Jun Shon
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gyoo Yeol Jung
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
3
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Wang BP, Yin X, Huang MY, Li TY, Long XF, Li Y, Niu FX. A Self-Assembling γPFD-SpyCatcher Hydrogel Scaffold for the Coimmobilization of SpyTag-Enzymes to Facilitate the Catalysis of Regulated Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19940-19947. [PMID: 39194331 DOI: 10.1021/acs.jafc.4c03403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
In this study, a γPFD-SpyCatcher hydrogel scaffold with the capacity for spontaneous assembly was established. With a maximum loading capacity of a 1:1 molar ratio with SpyTag-enzymes, the immobilized proteins can not only rapidly provide pure enzymes but also exhibit improved thermal and pH stability. The results of the transmission electron microscopic analysis and the traits they present indicated that SpyCatcher promotes the aggregation of γPFD and the formation of hydrogels. In the cell-free pyruvate synthesis system, the γPFD-SpyCatcher coimmobilized SpyTag-hexokinase (HK), SpyTag-phosphofructokinase (PFK) and SpyTag-pyruvate kinase (PK) were employed, and the production of pyruvate increased by 43, 78 and 47% respectively. In in vitro experiments, the oxidative deamination activity of glutamate dehydrogenase (GDH) coimmobilized with γPFD-SpyCatcher was 38% higher than that of purified enzymes. These findings indicate that the γPFD-SpyCatcher-based hydrogels play an important role in breaking the barrier of regulatory enzymes and will provide more strategies for the development of synthetic biology.
Collapse
Affiliation(s)
- Bei-Ping Wang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Xue Yin
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Ming-Yue Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Tian-Yan Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Xiu-Feng Long
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Ya Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Fu-Xing Niu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, China
| |
Collapse
|
5
|
Lee SJ, Kim DM. Cell-Free Synthesis: Expediting Biomanufacturing of Chemical and Biological Molecules. Molecules 2024; 29:1878. [PMID: 38675698 PMCID: PMC11054211 DOI: 10.3390/molecules29081878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The increasing demand for sustainable alternatives underscores the critical need for a shift away from traditional hydrocarbon-dependent processes. In this landscape, biomanufacturing emerges as a compelling solution, offering a pathway to produce essential chemical materials with significantly reduced environmental impacts. By utilizing engineered microorganisms and biomass as raw materials, biomanufacturing seeks to achieve a carbon-neutral footprint, effectively counteracting the carbon dioxide emissions associated with fossil fuel use. The efficiency and specificity of biocatalysts further contribute to lowering energy consumption and enhancing the sustainability of the production process. Within this context, cell-free synthesis emerges as a promising approach to accelerate the shift towards biomanufacturing. Operating with cellular machinery in a controlled environment, cell-free synthesis offers multiple advantages: it enables the rapid evaluation of biosynthetic pathways and optimization of the conditions for the synthesis of specific chemicals. It also holds potential as an on-demand platform for the production of personalized and specialized products. This review explores recent progress in cell-free synthesis, highlighting its potential to expedite the transformation of chemical processes into more sustainable biomanufacturing practices. We discuss how cell-free techniques not only accelerate the development of new bioproducts but also broaden the horizons for sustainable chemical production. Additionally, we address the challenges of scaling these technologies for commercial use and ensuring their affordability, which are critical for cell-free systems to meet the future demands of industries and fully realize their potential.
Collapse
Affiliation(s)
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-Ro, Daejeon 34134, Republic of Korea;
| |
Collapse
|
6
|
Ditzel A, Zhao F, Gao X, Phillips GN. Utilizing a cell-free protein synthesis platform for the biosynthesis of a natural product, caffeine. Synth Biol (Oxf) 2023; 8:ysad017. [PMID: 38149044 PMCID: PMC10750991 DOI: 10.1093/synbio/ysad017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 10/24/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023] Open
Abstract
Natural products are a valuable source of pharmaceuticals, providing a majority of the small-molecule drugs in use today. However, their production through organic synthesis or in heterologous hosts can be difficult and time-consuming. Therefore, to allow for easier screening and production of natural products, we demonstrated the use of a cell-free protein synthesis system to partially assemble natural products in vitro using S-Adenosyl Methionine (SAM)-dependent methyltransferase enzyme reactions. The tea caffeine synthase, TCS1, was utilized to synthesize caffeine within a cell-free protein synthesis system. Cell-free systems also provide the benefit of allowing the use of substrates that would normally be toxic in a cellular environment to synthesize novel products. However, TCS1 is unable to utilize a compound like S-adenosyl ethionine as a cofactor to create ethylated caffeine analogs. The automation and reduced metabolic engineering requirements of cell-free protein synthesis systems, in combination with other synthesis methods, may enable the more efficient generation of new compounds. Graphical Abstract.
Collapse
Affiliation(s)
| | - Fanglong Zhao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - George N Phillips
- Department of Biosciences, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| |
Collapse
|
7
|
Effendi SSW, Ng IS. Challenges and opportunities for engineered Escherichia coli as a pivotal chassis toward versatile tyrosine-derived chemicals production. Biotechnol Adv 2023; 69:108270. [PMID: 37852421 DOI: 10.1016/j.biotechadv.2023.108270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Growing concerns over limited fossil resources and associated environmental problems are motivating the development of sustainable processes for the production of high-volume fuels and high-value-added compounds. The shikimate pathway, an imperative pathway in most microorganisms, is branched with tyrosine as the rate-limiting step precursor of valuable aromatic substances. Such occurrence suggests the shikimate pathway as a promising route in developing microbial cell factories with multiple applications in the nutraceutical, pharmaceutical, and chemical industries. Therefore, an increasing number of studies have focused on this pathway to enable the biotechnological manufacture of pivotal and versatile aromatic products. With advances in genome databases and synthetic biology tools, genetically programmed Escherichia coli strains are gaining immense interest in the sustainable synthesis of chemicals. Engineered E. coli is expected to be the next bio-successor of fossil fuels and plants in commercial aromatics synthesis. This review summarizes successful and applicable genetic and metabolic engineering strategies to generate new chassis and engineer the iterative pathway of the tyrosine route in E. coli, thus addressing the opportunities and current challenges toward the realization of sustainable tyrosine-derived aromatics.
Collapse
Affiliation(s)
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
8
|
Wang L, Wang H, Chen J, Hu M, Shan X, Zhou J. Efficient Production of Chlorogenic Acid in Escherichia coli Via Modular Pathway and Cofactor Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15204-15212. [PMID: 37788431 DOI: 10.1021/acs.jafc.3c04419] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Chlorogenic acid is a natural phenolic compound widely used in the food and daily chemical industries. Compared to plant extraction, microbial cell factories provide a green and sustainable production method for the production of chlorogenic acid. However, complex metabolic flux distribution and potential byproducts limited the biosynthesis of chlorogenic acid in microorganisms. A de novo biosynthesis pathway for chlorogenic acid was constructed in Escherichia coli via modular engineering. Increasing the shikimate pathway flux greatly promoted chlorogenic acid production, and the influence of pyruvate metabolism on chlorogenic acid synthesis was also explored. The supply of cofactors for the key enzymes quinate/shikimate 5-dehydrogenase (YdiB) and 4-hydroxyphenylacetate 3-monooxygenase (HpaBC) was enhanced by a cofactor regeneration system. Furthermore, mutants of YdiB were verified for chlorogenic acid production in vivo. Chlorogenic acid browning occurred when the buffer pH of the buffer exceeded 6.0, but two-stage pH control achieved a chlorogenic acid titer of 2789.2 mg/L in a 5 L fermenter, the highest reported to date. This study provided a strategy for the efficient production of chlorogenic acid from simple carbon sources.
Collapse
Affiliation(s)
- Lian Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huijing Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianbin Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Minglong Hu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaoyu Shan
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Zhang R, Liu WQ, Ling S, Li J. Combining Cell-Free Expression and Multifactor Optimization for Enhanced Biosynthesis of Cinnamyl Alcohol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37216486 DOI: 10.1021/acs.jafc.3c02340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cell-free expression systems have emerged as a potent and promising platform for the biosynthesis of chemicals by reconstituting in vitro expressed enzymes. Here, we report cell-free biosynthesis of cinnamyl alcohol (cinOH) with enhanced productivity by using the Plackett-Burman experimental design for multifactor optimization. Initially, four enzymes were individually expressed in vitro and directly mixed to reconstitute a biosynthetic route for the synthesis of cinOH. Then, the Plackett-Burman experimental design was used to screen multiple reaction factors and found three crucial parameters (i.e., reaction temperature, reaction volume, and carboxylic acid reductase) for the cinOH production. With the optimum reaction conditions, approximately 300 μM of cinOH was synthesized after 10 h of cell-free biosynthesis. Extending the production time to 24 h also increased the production to a maximum yield of 807 μM, which is nearly 10 times higher than the initial yield without optimization. This study demonstrates that cell-free biosynthesis can be combined with other powerful optimization methodologies such as the Plackett-Burman experimental design for enhanced production of valuable chemicals.
Collapse
Affiliation(s)
- Ren Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
10
|
Cell-Free Escherichia coli Synthesis System Based on Crude Cell Extracts: Acquisition of Crude Extracts and Energy Regeneration. Processes (Basel) 2022. [DOI: 10.3390/pr10061122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cell-free synthetic biology is advancing with unprecedented control and design. The development of cell-free biosynthesis involves both pure enzyme and crude enzyme systems. The relatively cheap crude enzyme system is more suitable for the scientific research needs of ordinary laboratories. The key factor in giving full play to the advantages of the system is to obtain high-quality cell crude extract and its energy regeneration system, but there is no systematic report on the development history of these two aspects. Therefore, in this paper, the development history of the process of obtaining crude extract from cell-free biosynthesis was carried out based on Escherichia coli, which is widely used at present, and the energy regeneration system was briefly introduced. Finally, the challenges of current cell-free synthetic systems are discussed.
Collapse
|
11
|
Ji X, Liu WQ, Li J. Recent advances in applying cell-free systems for high-value and complex natural product biosynthesis. Curr Opin Microbiol 2022; 67:102142. [DOI: 10.1016/j.mib.2022.102142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/03/2022]
|
12
|
Lee HL, Song MK, Kim BG, Ahn JH. Synthesis of chlorogenic acid and p-coumaroyl shikimate by expressing shikimate gene modules in Escherichia coli. J Appl Microbiol 2021; 132:1166-1175. [PMID: 34469625 DOI: 10.1111/jam.15278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 11/26/2022]
Abstract
AIM Chlorogenic acid and p-coumaroyl shikimate are hydroxycinnamic acid derivatives. These compounds are nutraceutical supplements due to their biological activities including prevention of cardiovascular disease and cancers. These two compounds were synthesized in Escherichia coli through two-culture system using two mutants, which are biochemically interdependent. The aim of this work was to improve the titres of their production in a single E. coli mutant in which all necessary genes were introduced. This was done by testing various shikimate gene combinations to determine the optimal gene combination for the synthesis of chlorogenic acid and p-coumaroyl shikimate. METHODS AND RESULTS A series of gene modules harbouring shikimate pathway genes were constructs. Six gene module constructs for chlorogenic acid synthesis and eight constructs for p-coumaric acid synthesis were tested in order to find the best one. Chlorogenic acid synthesis showed highest with the gene module construct containing ydiB, aroB, aroGf , ppsA and tktA. Using the E. coli strain, 109.7 mg L-1 chlorogenic acid was synthesized. The best gene module construct for the p-coumaroyl shikimate synthesis contained aroD and aroGf . In addition, we used two E. coli deletion mutant strains (ΔaroK and ΔaroL) to increase the final titre. The E. coli ΔaroK mutant harbouring this gene module construct synthesized 713.4 mg L-1 of p-coumaroyl shikimate. CONCLUSION The chlorogenic acid synthesis using the current system was approximately 35.4% higher of the titre than titres obtained with an alternative method that depends on co-cultivation of two mutants. At the same time, production of p-coumaroyl shikimate increased 5.8 times. SIGNIFICANCE AND IMPACT OF THE STUDY The current study's findings indicate that our selection of the shikimate gene module contributed to increases in the levels of the substrates and could be applied to synthesize other compounds whose synthesis requires intermediates of the shikimate pathway.
Collapse
Affiliation(s)
- Hye Lim Lee
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Min Kyung Song
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Bong-Gyu Kim
- Department of Forest Resources, Gyeongsang National University, Gyeongsangman-do, Republic of Korea
| | - Joong-Hoon Ahn
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|