1
|
Cui T, Ge L, Zhao M, Luo L, Long X. Amide Modification of Glycolipid Biosurfactants as Promising Biocompatible Antibacterial Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6302-6314. [PMID: 38483152 DOI: 10.1021/acs.jafc.3c08765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Discovering new antibacterial agents is crucial to addressing the increasing risk of bacterial infections induced by antimicrobial resistance in food and agricultural industries. Here, biocompatible acidic-type sophorolipids (ASLs) and glucolipids (GLs) prepared via chemical modification of natural sophorolipids from fermentation were functionalized via amide modification for use as potential antibacterial agents. It was found that the arginine methyl ester derivative of GLs (GLs-d-Arg-OMe) showed excellent antibacterial activity, killing more than 99.99% of Escherichia coli at 200 mg/L. The sterilization dosage of the GLs against Bacillus subtilis, Bacillus cereus, and Staphylococcus aureus was 16-64 mg/L, in contrast to 32-64 mg/L for the fungus Candida albicans. In particular, GLs-d-Arg-OMe showed the best biocompatibility with a therapeutic index of up to 18. It was shown that amide modification of glycolipids can effectively improve antibacterial activity while maintaining biocompatibility, which can be exploited for the development of novel antibiotics in food and agricultural fields.
Collapse
Affiliation(s)
- Tianyou Cui
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, P. R. China
| | - Lianpeng Ge
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, P. R. China
| | - Mengqian Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, P. R. China
| | - Li Luo
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, P. R. China
| | - Xuwei Long
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, P. R. China
| |
Collapse
|
2
|
Pala M, Castelein MG, Dewaele C, Roelants SLKW, Soetaert WK, Stevens CV. Tuning the antimicrobial activity of microbial glycolipid biosurfactants through chemical modification. Front Bioeng Biotechnol 2024; 12:1347185. [PMID: 38419728 PMCID: PMC10900251 DOI: 10.3389/fbioe.2024.1347185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Sophorolipids, glycolipid biosurfactants derived from microorganisms such as Starmerella bombicola, possess distinctive surface-active and bioactive properties, holding potential applications in cosmetics, pharmaceuticals and bioremediation. However, the limited structural variability in wild-type sophorolipids restricts their properties and applications. To address this, metabolic engineering efforts have allowed to create a portfolio of molecules. In this study, we went one step further by chemically modifying microbially produced sophorosides, produced by an engineered S. bombicola. Twenty-four new sophoroside derivatives were synthesized, including sophoroside amines with varying alkyl chain lengths (ethyl to octadecyl) on the nitrogen atom and their corresponding quaternary ammonium salts. Additionally, six different microbially produced glycolipid biosurfactants were hydrogenated to achieve fully saturated lipid tails. These derivatives, along with microbially produced glycolipids and three benchmark biosurfactants (di-rhamnolipids, alkyl polyglucosides, cocamidopropyl betaine), were assessed for antimicrobial activity against bacteria (Bacillus subtilis, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Pseudomonas aeruginosa) and yeast (Candida albicans). Results indicated that microbially produced glycolipids, such as bola sophorosides, acidic sophorolipids and acidic glucolipids exhibit selective antimicrobial activity against the test organisms. Conversely, lactonic sophorolipids, sophoroside amines and quaternary ammonium salts display a broad antimicrobial activity. N-octyl, N-dodecyl and N-octadecyl derivatives exhibit the lowest minimal inhibitory concentrations, ranging from 0.014 to 20.0 mg mL-1. This study demonstrates the potential synergy of thoughtful biotechnology and targeted chemistry to precisely tailor glycolipid biosurfactants to meet specific requirements across applications.
Collapse
Affiliation(s)
- Melike Pala
- SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Martijn G. Castelein
- Department of Biotechnology, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Camille Dewaele
- Department of Biotechnology, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sophie L. K. W. Roelants
- Department of Biotechnology, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Bio Base Europe Pilot Plant (BBEPP), Ghent, Belgium
| | - Wim K. Soetaert
- Department of Biotechnology, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Bio Base Europe Pilot Plant (BBEPP), Ghent, Belgium
| | - Christian V. Stevens
- SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Zhang L, Wu J, Shen Z, Hongtao Z, Xiaobei Z. Arginine-carboxylated pullulan, a potential antibacterial material for food packaging. BIOMATERIALS ADVANCES 2023; 154:213584. [PMID: 37639855 DOI: 10.1016/j.bioadv.2023.213584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/23/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Pullulan possesses excellent film-forming properties and oxygen isolation capabilities. However, it exhibits limited antibacterial properties and poor water resistance, thereby hindering its application in the field of food preservation. In this study, we synthesized D-arginine-succinic anhydride-pullulan (Arg-SA-Pul) by carboxylating pullulan and subsequently grafting it with D-arginine. The antimicrobial test demonstrated that Arg-SA-Pul exhibited comparable antibacterial activity against Escherichia coli and Staphylococcus aureus. Using Arg-SA-Pul as the primary material and glycerol as the plasticizer, we fabricated an antibacterial film via the tape casting method. The film's light transmittance, water solubility, and water vapor permeability were evaluated. Compared to the natural pullulan film, the Arg-SA-Pul film exhibited lower vapor permeability. Additionally, we conducted preservation tests on cherries by coating them with the Arg-SA-Pul film. The results demonstrated that the Arg-SA-Pul film exhibited a significant preservation effect on cherries and effectively delayed their ripening and senescence. In the future, the Arg-SA-Pul film could be employed as a bacteriostatic preservation material to extend the shelf life of fruits.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Ziyun Shen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhang Hongtao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhan Xiaobei
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Roberge CL, Miceli RT, Murphy LR, Kingsley DM, Gross RA, Corr DT. Sophorolipid Candidates Demonstrate Cytotoxic Efficacy against 2D and 3D Breast Cancer Models. JOURNAL OF NATURAL PRODUCTS 2023; 86:1159-1170. [PMID: 37104545 PMCID: PMC10760934 DOI: 10.1021/acs.jnatprod.2c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Sophorolipids are biosurfactants derived from the nonpathogenic yeasts such as Starmerella bombicola with potential efficacy in anticancer applications. Simple and cost-effective synthesis of these drugs makes them a promising alternative to traditional chemotherapeutics, pending their success in preliminary drug-screening. Drug-screening typically utilizes 2D cell monolayers due to their simplicity and ease of high-throughput assessment. However, 2D assays fail to capture the complexity and 3D context of the tumor microenvironment and have consequently been implicated in the high percentage of drugs investigated in vitro that later fail in clinical trials. Herein, we screened two sophorolipid candidates and a clinically-used chemotherapeutic, doxorubicin, on in vitro breast cancer models ranging from 2D monolayers to 3D spheroids, employing optical coherence tomography to confirm these morphologies. We calculated corresponding IC50 values for these drugs and found one of the sophorolipids to have comparable toxicities to the chemotherapeutic control. Our findings show increased drug resistance associated with model dimensionality, such that all drugs tested showed that 3D spheroids exhibited higher IC50 values than their 2D counterparts. These findings demonstrate promising preliminary data to support the use of sophorolipids as a more affordable alternative to traditional clinical interventions and demonstrate the importance of 3D tumor models in assessing drug response.
Collapse
Affiliation(s)
- Cassandra L Roberge
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Rebecca T Miceli
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Lillian R Murphy
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - David M Kingsley
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Richard A Gross
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
5
|
Jörgensen AM, Wibel R, Bernkop-Schnürch A. Biodegradable Cationic and Ionizable Cationic Lipids: A Roadmap for Safer Pharmaceutical Excipients. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206968. [PMID: 36610004 DOI: 10.1002/smll.202206968] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Cationic and ionizable cationic lipids are broadly applied as auxiliary agents, but their use is associated with adverse effects. If these excipients are rapidly degraded to endogenously occurring metabolites such as amino acids and fatty acids, their toxic potential can be minimized. So far, synthesized and evaluated biodegradable cationic and ionizable cationic lipids already showed promising results in terms of functionality and safety. Within this review, an overview about the different types of such biodegradable lipids, the available building blocks, their synthesis and cleavage by endogenous enzymes is provided. Moreover, the relationship between the structure of the lipids and their toxicity is described. Their application in drug delivery systems is critically discussed and placed in context with the lead compounds used in mRNA vaccines. Moreover, their use as preservatives is reviewed, guidance for their design is provided, and an outlook on future developments is given.
Collapse
Affiliation(s)
- Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| | - Richard Wibel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| |
Collapse
|
6
|
Cui T, Tang Y, Zhao M, Hu Y, Jin M, Long X. Preparing Biosurfactant Glucolipids from Crude Sophorolipids via Chemical Modifications and Their Potential Application in the Food Industry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2964-2974. [PMID: 36723399 DOI: 10.1021/acs.jafc.2c06066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This investigation developed a novel strategy for efficiently preparing glucolipids (GLs) by chemically modifying crude sophorolipids. Running this strategy, crude sophorolipids were effectively transformed into GLs through deglycosylation and de-esterification, with a yield of 54.1%. The acquired GLs were then purified via stepwise extractions, and 66.2% of GLs with 95% purity was recovered. GLs are more hydrophobic and present a stronger surface activity than acidic sophorolipids (ASLs). More importantly, these GLs displayed a superior antimicrobial activity to that of ASLs against the tested Gram-positive food pathogens, with a minimum inhibitory concentration of 32-64 mg/L, except against E. coli . This activity of GLs is pH-dependent and especially more powerful under acidic conditions. The mechanism involved is possibly associated with the more efficient adsorption of GLs, as demonstrated by the hydrophobicity of the cell membrane. These GLs could be used as antimicrobial agents for food preservation and health in the food industry.
Collapse
Affiliation(s)
- Tianyou Cui
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, PR China
| | - Yujing Tang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, PR China
| | - Mengqian Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, PR China
| | - Yang Hu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, PR China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, PR China
| | - Xuwei Long
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, PR China
| |
Collapse
|
7
|
Mude H, Maroju PA, Balapure A, Ganesan R, Ray Dutta J. Water-soluble caffeic acid-dopamine acid-base complex exhibits enhanced bactericidal, antioxidant, and anticancer properties. Food Chem 2021; 374:131830. [PMID: 34906806 DOI: 10.1016/j.foodchem.2021.131830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022]
Abstract
Despite the highly potent biological characteristics, the poor water-solubility of caffeic acid (CA) limits its applications in various domains. Here, we present a facile approach, wherein CA has been treated with dopamine hydrochloride (Dopa.HCl) to obtain a water-soluble acid-base complex, which does not possess any covalent bond between the individual components and thus retains their nativity. Simple mixing of CA and Dopa.HCl did not provide water solubility to CA, but the complex became readily soluble in water when the mineral acid was scavenged using sodium bicarbonate. The obtained CA-Dopa complex had been characterized using FT-IR, 1H NMR, 13C NMR, 2D 1H-1H NOESY NMR, XPS, and DSC techniques. The complex was found to exhibit excellent bactericidal, antibiofilm, antioxidant, and anticancer properties in the physiologically relevant pH range of 5.5 to 7.5. The results have revealed the high potential of the simple acid-base complex of CA in diverse domains.
Collapse
Affiliation(s)
- Hemanjali Mude
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India
| | - Pranay Amruth Maroju
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India
| | - Aniket Balapure
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India
| | - Ramakrishnan Ganesan
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India.
| | - Jayati Ray Dutta
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India.
| |
Collapse
|