1
|
Pal Mahadevan V, Galagovsky D, Knaden M, Hansson BS. Preference for and resistance to a toxic sulfur volatile opens up a unique niche in Drosophila busckii. Nat Commun 2025; 16:767. [PMID: 39824833 PMCID: PMC11742422 DOI: 10.1038/s41467-025-55971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
The ability to tolerate otherwise toxic compounds can open up unique niches in nature. Among drosophilid flies, few examples of such adaptations are known and those which are known are typically from highly host-specific species. Here we show that the human commensal species Drosophila busckii uses dimethyldisulfide (DMDS) as a key mediator in its host selection. Despite DMDS's neurotoxic properties, D. busckii has evolved tolerance towards high concentrations and uses the compound as an olfactory cue to pinpoint food and oviposition sites. This adaptability is likely linked to insensitivity of the enzyme complex cytochrome c oxidase (COX), which is a DMDS target in other insects. Our findings position D. busckii as a potential model for studying resistance to toxic gases affecting COX and offers insight into evolutionary adaptations within specific ecological contexts.
Collapse
Affiliation(s)
- Venkatesh Pal Mahadevan
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center next Generation Insect Chemical Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Diego Galagovsky
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center next Generation Insect Chemical Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany.
- Max Planck Center next Generation Insect Chemical Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
2
|
Schwartz M, Poirier N, Moreno J, Proskura A, Lelièvre M, Heydel JM, Neiers F. Microbial β C-S Lyases: Enzymes with Multifaceted Roles in Flavor Generation. Int J Mol Sci 2024; 25:6412. [PMID: 38928118 PMCID: PMC11203769 DOI: 10.3390/ijms25126412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
β C-S lyases (β-CSLs; EC 4.4.1.8) are enzymes catalyzing the dissociation of β carbon-sulfur bonds of cysteine S-conjugates to produce odorant metabolites with a free thiol group. These enzymes are increasingly studied for their role in flavor generation in a variety of food products, whether these processes occur directly in plants, by microbial β-CSLs during fermentation, or in the mouth under the action of the oral microbiota. Microbial β-CSLs react with sulfur aroma precursors present in beverages, vegetables, fruits, or aromatic herbs like hop but also potentially with some precursors formed through Maillard reactions in cooked foods such as meat or coffee. β-CSLs from microorganisms like yeasts and lactic acid bacteria have been studied for their role in the release of polyfunctional thiols in wine and beer during fermentation. In addition, β-CSLs from microorganisms of the human oral cavity were shown to metabolize similar precursors and to produce aroma in the mouth with an impact on retro-olfaction. This review summarizes the current knowledge on β-CSLs involved in flavor generation with a focus on enzymes from microbial species present either in the fermentative processes or in the oral cavity. This paper highlights the importance of this enzyme family in the food continuum, from production to consumption, and offers new perspectives concerning the utilization of β-CSLs as a flavor enhancer.
Collapse
Affiliation(s)
- Mathieu Schwartz
- Center for Taste and Feeding Behavior, CNRS, INRAE, Institut Agro, University of Burgundy, F-21000 Dijon, France (F.N.)
| | - Nicolas Poirier
- Center for Taste and Feeding Behavior, CNRS, INRAE, Institut Agro, University of Burgundy, F-21000 Dijon, France (F.N.)
| | - Jade Moreno
- Center for Taste and Feeding Behavior, CNRS, INRAE, Institut Agro, University of Burgundy, F-21000 Dijon, France (F.N.)
| | - Alena Proskura
- Center for Taste and Feeding Behavior, CNRS, INRAE, Institut Agro, University of Burgundy, F-21000 Dijon, France (F.N.)
- International Research Center “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, 191002 Saint-Petersburg, Russia
| | - Mélanie Lelièvre
- Center for Taste and Feeding Behavior, CNRS, INRAE, Institut Agro, University of Burgundy, F-21000 Dijon, France (F.N.)
| | - Jean-Marie Heydel
- Center for Taste and Feeding Behavior, CNRS, INRAE, Institut Agro, University of Burgundy, F-21000 Dijon, France (F.N.)
| | - Fabrice Neiers
- Center for Taste and Feeding Behavior, CNRS, INRAE, Institut Agro, University of Burgundy, F-21000 Dijon, France (F.N.)
| |
Collapse
|
3
|
Xi Y, Yu M, Li X, Zeng X, Li J. The coming future: The role of the oral-microbiota-brain axis in aroma release and perception. Compr Rev Food Sci Food Saf 2024; 23:e13303. [PMID: 38343293 DOI: 10.1111/1541-4337.13303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
The field of aroma release and perception during the oral process has been well studied. However, the traditional approaches have not fully explored the integration of oral biology, microbiology, and neurology to further understand aroma release and perception mechanisms. Herein, to address the existing challenges in this field, we introduce the oral-microbiota-brain axis (OMBA), an innovative framework that encapsulates the interactive relationships among saliva and the oral mucosa, the oral microbiota, and the brain in aroma release and perception. This review introduces the OMBA and highlights its role as a key interface facilitating the sensory experience of aroma. Based on a comprehensive literature survey, the specific roles of the oral mucosa, oral microbiota, saliva, and brain in the OMBA are discussed. This integrated approach reveals the importance of each component and the interconnected relationships within this axis in the overall process of aroma release and perception. Saliva and the oral mucosa play fundamental roles in aroma release and perception; the oral microbiota regulates aroma release and impacts olfactory perception; and the brain's intricate neural circuitry is central to the decoding and interpretation of aroma signals. The components of this axis are interdependent, and imbalances can disrupt aroma perception. The OMBA framework not only enhances our comprehension of aroma release and perception but also paves the way for innovative applications that could heighten sensory experiences.
Collapse
Affiliation(s)
- Yu Xi
- Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Meihong Yu
- Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Xuejie Li
- Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Xiangquan Zeng
- Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Jian Li
- Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
4
|
Martin LE, Gutierrez VA, Torregrossa AM. The role of saliva in taste and food intake. Physiol Behav 2023; 262:114109. [PMID: 36740133 PMCID: PMC10246345 DOI: 10.1016/j.physbeh.2023.114109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Saliva is well-described in oral food processing, but its role in taste responsiveness remains understudied. Taste stimuli must dissolve in saliva to reach their receptor targets. This allows the constituents of saliva the opportunity to interact with taste stimuli and their receptors at the most fundamental level. Yet, despite years of correlational data suggesting a role for salivary proteins in food preference, there were few experimental models to test the role of salivary proteins in taste-driven behaviors. Here we review our experimental contributions to the hypothesis that salivary proteins can alter taste function. We have developed a rodent model to test how diet alters salivary protein expression, and how salivary proteins alter diet acceptance and taste. We have found that salivary protein expression is modified by diet, and these diet-induced proteins can, in turn, increase the acceptance of a bitter diet. The change in acceptance is in part mediated by a change in taste signaling. Critically, we have documented increased detection threshold, decreased taste nerve signaling, and decreased oromotor responding to quinine when animals have increases in a subset of salivary proteins compared to control conditions.
Collapse
Affiliation(s)
- Laura E Martin
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, 97331, USA
| | | | - Ann-Marie Torregrossa
- Department of Psychology, State University of New York at Buffalo, Buffalo, New York, 14216, USA; University at Buffalo Center for Ingestive Behavior Research, Buffalo, New York, 14216, USA.
| |
Collapse
|
5
|
Marcinkowska MA, Jeleń HH. Role of Sulfur Compounds in Vegetable and Mushroom Aroma. Molecules 2022; 27:6116. [PMID: 36144849 PMCID: PMC9502545 DOI: 10.3390/molecules27186116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
At the base of the food pyramid is vegetables, which should be consumed most often of all food products, especially in raw and unprocessed form. Vegetables and mushrooms are rich sources of bioactive compounds that can fulfill various functions in plants, starting from protection against herbivores and being natural insecticides to pro-health functions in human nutrition. Many of these compounds contain sulfur in their structure. From the point of view of food producers, it is extremely important to know that some of them have flavor properties. Volatile sulfur compounds are often potent odorants, and in many vegetables, belonging mainly to Brassicaeae and Allium (Amaryllidaceae), sulfur compounds determine their specific flavor. Interestingly, some of the pathways that form volatile sulfur compounds in vegetables are also found in selected edible mushrooms. The most important odor-active organosulfur compounds can be divided into isothiocyanates, nitriles, epithionitriles, thiols, sulfides, and polysulfides, as well as others, such as sulfur containing carbonyl compounds and esters, R-L-cysteine sulfoxides, and finally heterocyclic sulfur compounds found in shiitake mushrooms or truffles. This review paper summarizes their precursors and biosynthesis, as well as their sensory properties and changes in selected technological processes.
Collapse
Affiliation(s)
| | - Henryk H. Jeleń
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| |
Collapse
|
6
|
Neiers F, Gourrat K, Canon F, Schwartz M. Metabolism of Cysteine Conjugates and Production of Flavor Sulfur Compounds by a Carbon-Sulfur Lyase from the Oral Anaerobe Fusobacterium nucleatum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9969-9979. [PMID: 35920882 DOI: 10.1021/acs.jafc.2c01727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flavor perception is a key factor in the acceptance or rejection of food. Aroma precursors such as cysteine conjugates are present in various plant-based foods and are metabolized into odorant thiols in the oral cavity. To date, the involved enzymes are unknown, despite previous studies pointing out the likely involvement of carbon-sulfur lyases (C-S lyases) from the oral microbiota. In this study, we show that saliva metabolizes allyl-cysteine into odorant thiol metabolites, with evidence suggesting that microbial pyridoxal phosphate-dependent C-S lyases are involved in the enzymatic process. A phylogenetic analysis of PatB C-S lyase sequences in four oral subspecies of Fusobacterium nucleatum was carried out and led to the identification of several putative targets. FnaPatB1 from F. nucleatum subspecies animalis, a putative C-S lyase, was characterized and showed high activity with a range of cysteine conjugates. Enzymatic and X-ray crystallographic data showed that FnaPatB1 metabolizes cysteine derivatives within a unique active site environment that enables the formation of flavor sulfur compounds. Using an enzymatic screen with a library of pure compounds, we identified several inhibitors able to reduce the C-S lyase activity of FnaPatB1 in vitro, which paves the way for controlling the release of odorant sulfur compounds from their cysteine precursors in the oral cavity.
Collapse
Affiliation(s)
- Fabrice Neiers
- Centre for Taste and Feeding Behavior (CSGA), INRAE, CNRS, University of Burgundy-Franche Comté, Institut Agro, F-21000 Dijon, France
| | - Karine Gourrat
- Centre for Taste and Feeding Behavior (CSGA), INRAE, CNRS, University of Burgundy-Franche Comté, Institut Agro, F-21000 Dijon, France
- PROBE Research Infrastructure, Chemosens Facility, F-21000 Dijon, France
| | - Francis Canon
- Centre for Taste and Feeding Behavior (CSGA), INRAE, CNRS, University of Burgundy-Franche Comté, Institut Agro, F-21000 Dijon, France
| | - Mathieu Schwartz
- Centre for Taste and Feeding Behavior (CSGA), INRAE, CNRS, University of Burgundy-Franche Comté, Institut Agro, F-21000 Dijon, France
| |
Collapse
|
7
|
Kornbausch N, Debong MW, Buettner A, Heydel JM, Loos H. Odorant Metabolism in Humans. Angew Chem Int Ed Engl 2022; 61:e202202866. [PMID: 35522818 PMCID: PMC9541901 DOI: 10.1002/anie.202202866] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 11/08/2022]
Abstract
Odorants are relatively small molecules which are easily taken up and distributed in the human body. Despite their relevance in everyday life, however, only a limited amount of evidence about their metabolism, pathways, and bioactivities in the human body exists. With this Review, we aim to encourage future interdisciplinary research on the function and mechanisms of the biotransformation of odorants, involving different disciplines such as nutrition, medicine, biochemistry, chemistry, and sensory sciences. Starting with a general overview of the different ways of odorant uptake and enzymes involved in the metabolism of odorants, a more precise description of biotransformation processes and their function in the oral cavity, the nose, the lower respiratory tract (LRT), and the gastrointestinal tract (GIT) is given together with an overview of the different routes of odorant excretion. Finally, perspectives for future research are discussed.
Collapse
Affiliation(s)
- Nicole Kornbausch
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry and Pharmacy, GERMANY
| | - Marcel W Debong
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry and Pharmacy, GERMANY
| | - Andrea Buettner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry and Pharmacy, GERMANY
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation: Centre des Sciences du Gout et de l'Alimentation, Flavour perception: from molecule to behavior, FRANCE
| | - Helene Loos
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry and Pharmacy, Henkestr. 9, 91054, Erlangen, GERMANY
| |
Collapse
|
8
|
Kornbausch N, Debong MW, Buettner A, Heydel JM, Loos H. Odorant Metabolism in Humans. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nicole Kornbausch
- Friedrich-Alexander-Universität Erlangen-Nürnberg Chemistry and Pharmacy GERMANY
| | - Marcel W. Debong
- Friedrich-Alexander-Universität Erlangen-Nürnberg Chemistry and Pharmacy GERMANY
| | - Andrea Buettner
- Friedrich-Alexander-Universität Erlangen-Nürnberg Chemistry and Pharmacy GERMANY
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation: Centre des Sciences du Gout et de l'Alimentation Flavour perception: from molecule to behavior FRANCE
| | - Helene Loos
- Friedrich-Alexander-Universität Erlangen-Nürnberg Chemistry and Pharmacy Henkestr. 9 91054 Erlangen GERMANY
| |
Collapse
|