1
|
Yadav K, Udagawa T, Kubota Y, Inuzuka T, Krishnamoorthy G, Funabiki K. Fluorescence Emissive Fluorinated Pyrimido[5,4- h]quinazolines: Synthesis, Structure, and Photophysical and Halochromic Properties. J Org Chem 2025; 90:6789-6803. [PMID: 40364527 DOI: 10.1021/acs.joc.5c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Planar tricyclic aromatics and azaheteroaromatics are of significant interest to organic chemists in the field of materials science owing to their excellent photoconductivity, electroluminescence and fluorescence properties enabled by their rigid extended π-conjugation. Furthermore, tricyclic azaheteroaromatics are effective ligands for organometallic catalysis and a prominent drug discovery framework. Herein, we present the first one-step synthesis of a less-accessible tricyclic fluorophore comprising a 5,6-difluoro-2,9-diarylpyrimido[5,4-h]quinazoline core entailing the regiospecific tandem condensation of tetrafluoroterephthalonitrile and derivatives of benzamidine hydrochloride in the presence of potassium carbonate or cesium carbonate under mild conditions. Single-crystal X-ray diffractometry studies confirmed the structure of the 5,6-difluoro-2,9-diarylpyrimido[5,4-h]quinazolines, and various interactions such as π-π stacking. Spectroscopic measurements, including ultraviolet-visible (UV-vis) and fluorescence spectroscopy, of the synthesized pyrimido[5,4-h]quinazolines revealed that they have excellent fluorescence properties both in the solution and solid states, displaying red-shifted maximum fluorescence wavelengths in the solid state compared to those in the solution state. Density functional theory (DFT) calculations and electrochemical analyses revealed that the introduction of an electron-withdrawing group, such as a halogen, stabilized the energy levels. Thermogravimetric (TG) analysis indicated high decomposition temperatures for 5,6-difluoro-2,9-diarylpyrimido[5,4-h]quinazolines, confirming their favorable thermal stability. Finally, the halochromism of 5,6-difluoro-2,9-diarylpyrimido[5,4-h]quinazolines arising from the protonation of the amino group and/or pyrimidine backbone is described.
Collapse
Affiliation(s)
- Kirti Yadav
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Guwahati, Assam 781039, India
| | - Taro Udagawa
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Yasuhiro Kubota
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Toshiyasu Inuzuka
- Division of Instrumental Analysis, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Govindarajan Krishnamoorthy
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Guwahati, Assam 781039, India
| | - Kazumasa Funabiki
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
2
|
Mei LN, Wang ZJ, Duan Y, Shen JS, Ye HB, Zhu YY, Luo XD. 4-Hydroxyboesenbergin B of Alpinia japonica protected gastrointestinal tract by inhibiting vancomycin-resistant enterococcus and balancing intestinal microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119737. [PMID: 40179999 DOI: 10.1016/j.jep.2025.119737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alpinia japonica, a traditional herb utilized in Miao medicine in southwestern China, has been employed to alleviate symptoms such as stomachache, diarrhea, and abdominal pain, some of these symptoms may be associated with bacterial infections of the gastrointestinal tract. AIM OF THE STUDY To explore antimicrobial compounds related to traditional uses of A. japonica and its potential pathway in vitro and in vivo. MATERIALS AND METHODS Bioactive components of A. japonica were isolated by bioguide separation method. The antibacterial bioactivity of 4-hydroxyboesenbergin B (4-HB) was evaluated by time-kill curve and drug resistance induction. The pathway of 4-HB against VRE was investigated through network pharmacological analysis and validated by in vitro experiments and RT-qPCR assays. Moreover, a mouse gastrointestinal tract model was established to validate the antibacterial bioactivity of 4-HB in vivo. RESULTS 4-HB from A. japonica inhibited VRE (MIC = 16 μg/mL), rapidly killed the bacteria within 4 h at the 4 MIC concentration and exhibited low susceptibility to drug resistance. 4-HB specifically targeted VRE biofilms by down-regulating the expression of AtlA, SgrA, GelE, and Ace. As a result, 4-HB diminished the adhesion and aggregation ability of VRE, reduced the extracellular matrix content, disrupted biofilm structure and morphology, thereby reducing VRE resistance and virulence. Additionally, 4-HB significantly reduced VRE colonization, enhanced intestinal microbiota diversity, and promoted the restoration of intestinal microbiota balance in vivo. Notably, 4-HB enhanced the abundance of beneficial bacteria genera, such as Lactobacillus and Limosilactobacillus. CONCLUSIONS 4-HB has a significant ability to destroy VRE biofilms and balance intestinal microbiota, which might be responsible for the traditional use of A. japonica partly.
Collapse
Affiliation(s)
- Li-Na Mei
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Zhao-Jie Wang
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Yu Duan
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Jia-Shan Shen
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Hong-Bo Ye
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Yan-Yan Zhu
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming, 650201, China.
| |
Collapse
|
3
|
Wang S, Wang Y, Yao Y, Li W, Hu Z, Li D, Sun R. Integrated Management of Bacterial Wilt and Root-Knot Nematode Diseases in Pepper: Discovery of Phenazine-1-Carboxamide from Pseudomonas aeruginosa W-126. Int J Mol Sci 2025; 26:3335. [PMID: 40244233 PMCID: PMC11989537 DOI: 10.3390/ijms26073335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Ralstonia solanacearum is an important pathogen causing bacterial wilt in pepper (Capsicum annuum L.). The concurrent infection of R. solanacearum and root-knot nematodes (Meloidogyne spp.) exacerbates the severity of bacterial wilt in pepper. Utilizing plant endophytic bacteria to control these mixed diseases is a viable strategy. Waltheria indica L. (Sterculiaceae) is a traditional medicine plant. A total of 209 endophytic bacteria were isolated from W. indica, and Pseudomonas aeruginosa W-126 showed an efficient antagonistic effect against R. solanacearum. Based on active compound tracking principles, a compound was isolated through silica gel column chromatography and preparative HPLC combined with TLC analysis. It was identified as phenazine-1-carboxamide (PCN) by spectral techniques (ESI-MS, 1H-NMR, 13C-NMR). PCN displayed excellent inhibitory activity against R. solanacearum, with an EC50 of 64.16 μg/mL in vitro. In addition, it showed certain nematocide activity, with an LC50 value of 118.63 μg/mL at 72 h. PCN also showed certain inhibitory activity against five other phytopathogenic bacteria. The structure-activity relationship indicated that the phenazine skeleton and acylamide groups were the key pharmacophores for the activity of phenazine-related compounds against R. solanacearum. PCN controlled the complex diseases of R. solanacearum and M. incognita in a pot experiment, with respective 51.41 and 39.80% inhibitory rates. The exploration of secondary metabolites of biocontrol bacteria can provide reference for the development of novel and efficient pesticides.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ranfeng Sun
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (S.W.)
| |
Collapse
|
4
|
Chin ML, Zhang H, Au CK, Luk WL, Cai Z, Chan W. Aristolochic Acids and Aristoloxazines Are Widespread in the Soil of Aristolochiaceae Herb Cultivation Fields. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22563-22570. [PMID: 39663883 DOI: 10.1021/acs.est.4c09559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The cancer risk associated with aristolochic acid (AA) exposure through the consumption of AA-containing herbal medicine has received tremendous attention in the past decades. However, environmental exposure routes from the associated medicinal herb cultivation fields have received little attention. We reveal through liquid chromatography-tandem mass spectrometry analysis of over 400 soil samples collected from three different Aristolochiaceae herb cultivation fields that AAs, which are nephrotoxic and carcinogenic, and aristoloxazines (AXs), a family of recently identified neurotoxic and genotoxic AA analogues, are widespread pollutants in these areas. In particular, aristoloxazine C was detected for the first time in the environment and was found in 318 out of 320 soil samples, at concentrations as high as 2.8 mg/kg, from an Asarum heterotropoides cultivation field. We show that in fact AXs are ecotoxic, inhibiting plant growth and significantly reducing the soil microorganism population. With the extensive cultivation of Aristolochiaceae herbs in order to meet their market demand, we believe our study points to an important environmental hazard that may place food crops and non-AA/AX-producing medicinal herbs at risk of AA/AX contamination. While previous research focused primarily on the health risks associated with exposure to AAs, this study uncovers environmental exposure as a new human exposure pathway that warrants the attention of both the general public and regulatory agencies.
Collapse
Affiliation(s)
- Man-Lung Chin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Haoyu Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Chun-Kit Au
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Wing-Laam Luk
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Zongwei Cai
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon 999077, Hong Kong SAR, China
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| |
Collapse
|
5
|
Liu H, Gu W, Lu Y, Ding L, Guo Y, Zou G, Wu W, Zheng D, Liu C, Wang C, Cao Y, Li J. Exploration of Phage-Agrochemical Interaction Based on a Novel Potent Phage LPRS20-Targeting Ralstonia solanacearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28005-28018. [PMID: 39360931 DOI: 10.1021/acs.jafc.4c03799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Phage therapy has the potential to alleviate plant bacterial wilt. However, the knowledge gap concerning the phage-agrochemical interaction impedes the broader application of phages in agriculture. This study characterized a phage isolate and investigated its interactions with agrochemicals. A novel species within the Ampunavirus genus was proposed, serving phage LPRS20 as a type phage with a broad lytic range and significant antibacterial activity against Ralstonia solanacearum strains infecting tobacco, chili, or tomato. Sensory evaluation of the morphology of tobacco leaves suggested that phage application resulted in negligible harm to plants. Investigations into phage-agrochemical interactions revealed synergisms when LPRS20 was delivered 4 h before thiodiazole-copper as well as LPRS20 in combination with low-concentration berberine. Overall, our findings reveal that phage LPRS20 represents a novel, effective, and eco-friendly biocontrol agent against tobacco bacterial wilt in vivo and in vitro and contributes to the potential integration of phages and agrochemicals for controlling soil-borne pathogens.
Collapse
Affiliation(s)
- Huai Liu
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, College of Life Science and Technology, College of Veterinary Medicine, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjie Gu
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yusheng Lu
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Lili Ding
- Agricultural Science and Technology Research Center of Chaozhou, Chaozhou 521000, China
| | - Yating Guo
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, College of Life Science and Technology, College of Veterinary Medicine, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Geng Zou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, College of Life Science and Technology, College of Veterinary Medicine, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Weiqing Wu
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Diyuan Zheng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, College of Life Science and Technology, College of Veterinary Medicine, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Chong Liu
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chenyang Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yangrong Cao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, College of Life Science and Technology, College of Veterinary Medicine, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinquan Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, College of Life Science and Technology, College of Veterinary Medicine, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomes Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
6
|
Ellward GL, Binda ME, Dzurny DI, Bucher MJ, Dees WR, Czyż DM. A Screen of Traditional Chinese Medicinal Plant Extracts Reveals 17 Species with Antimicrobial Properties. Antibiotics (Basel) 2024; 13:1220. [PMID: 39766610 PMCID: PMC11726858 DOI: 10.3390/antibiotics13121220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/04/2025] Open
Abstract
Background/Objectives: Antimicrobial resistance (AMR) is a growing threat that undermines the effectiveness of global healthcare. The Centers for Disease Control and Prevention and the World Health Organization have identified numerous microbial organisms, particularly members of the ESKAPEE pathogens, as critical threats to global health and economic security. Many clinical isolates of these pathogens have become completely resistant to current antibiotics, making treatment nearly impossible. Herbal remedies, such as those found in Traditional Chinese Medicine (TCM), have been practiced for thousands of years and successfully used to treat a wide range of ailments, including infectious diseases. Surprisingly, despite this extensive knowledge of folk medicine, no plant-derived antibacterial drugs are currently approved for clinical use. As such, the objective of this study is to evaluate the antimicrobial properties of extracts derived from TCM plants. Methods: This study explores a comprehensive library comprising 664 extracts from 132 distinct TCM plant species for antimicrobial properties against gram-negative (Escherichia coli) and gram-positive (Micrococcus luteus) bacteria using liquid and solid in vitro assays. Results: Intriguingly, our results reveal 17 plant species with potent antimicrobial properties effective primarily against gram-positive organisms, including Streptococcus aureus and epidermidis. A literature search revealed that nearly 100 purified compounds from the identified TCM plants were previously isolated and confirmed for their antimicrobial properties, collectively inhibiting 45 different bacterial species. Conclusions: Our results indicate that phytobiotics from the identified plants could serve as potential candidates for novel antimicrobials.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel M. Czyż
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA; (G.L.E.); (D.I.D.)
| |
Collapse
|
7
|
Rao W, Wu J, Fang Z, Chen Z, Wu J, Fang X. Antibacterial mechanism of metabolites of Lactobacillus plantarum against Pseudomonas lundensis and their application in dry-aged beef preservation. Food Chem 2024; 460:140463. [PMID: 39047473 DOI: 10.1016/j.foodchem.2024.140463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
In this study, the antibacterial mechanism of metabolites of Lactobacillus plantarum SCB2505 (MLp SCB2505) against Pseudomonas lundensis (P. lundensis) SCB2605 was investigated, along with evaluation of their preservative effects on dry-aged beef. The results demonstrated the effective inhibition of MLp SCB2505 on the growth and biofilm synthesis of P. lundensis. The treatment with MLp SCB2505 led to the compromised membrane integrity, as evidenced by reduced intracellular ATP content, increased extracellular AKPase, K+ and protein content, as well as disrupted cell morphology. Further metabolomics analysis revealed that MLp SCB2505 interfered amino acid metabolism, nucleotide metabolism, cofactor and vitamin metabolism, lipid metabolism and respiratory chain in P. lundensis, ultimately leading to the interrupted life activities and even death of the bacteria. Besides, MLp SCB2505 could effectively inhibit the growth of Pseudomonas in dry-aged beef and delay spoilage. These findings propose the potential application of MLp SCB2505 as an antibacterial agent in meat products.
Collapse
Affiliation(s)
- Wei Rao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jinchong Wu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Ziying Fang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhaomin Chen
- Weyran Food Biotechnology (Shenzhen) Co., LTD., Shenzhen 518048, China
| | - Jianfeng Wu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Roy CP, Karmakar S, Dash J. Synthesis of Phenanthrenes and 1-Hydroxyphenanthrenes via Aromatization-Assisted Ring-Closing Metathesis: toward Polynuclear Aromatic Hydrocarbons. J Org Chem 2024; 89:10511-10523. [PMID: 39007427 DOI: 10.1021/acs.joc.4c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
This study presents an efficient synthetic strategy for phenanthrenes and 1-hydroxyphenanthrenes through aromatization-assisted ring-closing metathesis (RCM). It involves vinylation of 1-bromo-2-naphthaldehyde derivatives, Barbier allylation, and subsequent one-pot RCM/dehydration of the diene precursors to yield phenanthrene derivatives. Further, the corresponding keto analogues of diene precursors produce 1-hydroxyphenanthrenes through RCM and aromatization-driven keto-enol tautomerism. This pathway enables rapid access to a diverse array of functionalized phenanthrenes and 1-hydroxyphenanthrenes, including synthetically challenging derivatives containing both -OH and -OMe groups via the sequential construction of the terminal phenanthrene ring.
Collapse
Affiliation(s)
- Charles Patriot Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Shilpi Karmakar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
9
|
Xu T, Yan X, Kang A, Yang L, Li X, Tian Y, Yang R, Qin S, Guo Y. Development of Membrane-Targeting Fluorescent 2-Phenyl-1 H-phenanthro[9,10- d]imidazole-Antimicrobial Peptide Mimic Conjugates against Methicillin-Resistant Staphylococcus aureus. J Med Chem 2024; 67:9302-9317. [PMID: 38491982 DOI: 10.1021/acs.jmedchem.4c00436] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
The escalation of multidrug-resistant bacterial infections, especially infections caused by methicillin-resistant Staphylococcus aureus (MRSA), underscores the urgent need for novel antimicrobial drugs. Here, we synthesized a series of amphiphilic 2-phenyl-1H-phenanthro[9,10-d]imidazole-antimicrobial peptide (AMP) mimic conjugates (III1-30). Among them, compound III13 exhibited excellent antibacterial activity against G+ bacteria and clinical MRSA isolates (MIC = 0.5-2 μg/mL), high membrane selectivity, and low toxicity. Additionally, compared with traditional clinical antibiotics, III13 demonstrated rapid bactericidal efficacy and was less susceptible to causing bacterial resistance. Mechanistic studies revealed that III13 targets phosphatidylglycerol (PG) on bacterial membranes to disrupt membrane integrity, leading to an increase in intracellular ROS and leakage of proteins and DNA, ultimately causing bacterial cell death. Furthermore, III13 possessed good fluorescence properties with potential for further dynamic monitoring of the antimicrobial process. Notably, III13 showed better in vivo efficacy against MRSA compared to vancomycin, suggesting its potential as a promising candidate for anti-MRSA medication.
Collapse
Affiliation(s)
- Ting Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Xiaoting Yan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ayue Kang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Longhua Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Xinhui Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Yue Tian
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ruige Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
10
|
Ren X, Zhou J, Liu T, Zhong C, Wang Y, Yan H, Feng J. Antibacterial activity and action mechanism of curcusionol from Carex siderosticta Hance against Ralstonia nicotianae. PEST MANAGEMENT SCIENCE 2023; 79:4607-4616. [PMID: 37436717 DOI: 10.1002/ps.7661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Tobacco bacterial wilt is a typical soil-borne disease caused by Ralstonia nicotianae, which causes huge losses in tobacco production every year. The crude extract of Carex siderosticta Hance was shown to have antibacterial activity against R. nicotianae during our search, and the natural antibacterial components were sought after using bioassay-guided fractionation of the compounds. RESULT Ethanol extract of Carex siderosticta Hance with the minimum inhibitory concentration (MIC) value of 100 μg/mL against R. nicotianae in vitro. The potential of these compounds as antibactericides against R. nicotianae were assessed. Curcusionol (1), showed the highest antibacterial activity against R. nicotianae with MIC value of 12.5 μg/mL in vitro. In the protective effect tests, the control effect of curcusionol (1) was 92.31 and 72.60%, respectively, after application of 7 and 14 days, at a concentration of 1500 μg/mL, being comparable to that of streptomycin sulfate at a concentration of 500 μg/mL, confirming that curcusionol (1) showed the potential for the development of new antibacterial drugs. RNA-sequencing, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis confirmed that curcusionol mainly destroys R. nicotianae cell membrane structure and affects quorum sensing (QS) to inhibit pathogenic bacteria. CONCLUSION This study revealed that the antibacterial activity of Carex siderosticta Hance makes it a botanical bactericide against R. nicotianae, while curcusionol as lead structures for antibacterial development is obvious by its potent antibacterial activity. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xingyu Ren
- College of Plant Protection, Northwest A&F University, Xianyang, China
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Xianyang, China
| | - Juan Zhou
- College of Plant Protection, Northwest A&F University, Xianyang, China
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Xianyang, China
| | - Ting Liu
- College of Plant Protection, Northwest A&F University, Xianyang, China
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Xianyang, China
| | - Chenquan Zhong
- College of Plant Protection, Northwest A&F University, Xianyang, China
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Xianyang, China
| | - Yong Wang
- College of Plant Protection, Northwest A&F University, Xianyang, China
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Xianyang, China
| | - He Yan
- College of Plant Protection, Northwest A&F University, Xianyang, China
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Xianyang, China
| | - Juntao Feng
- College of Plant Protection, Northwest A&F University, Xianyang, China
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Xianyang, China
| |
Collapse
|
11
|
Chen XM, Lu W, Zhang ZH, Wang PP, Zhang XJ, Xiao CJ, Zhang Q, Gao JM, Li CH. Discovery of diversified cassane diterpenoids as potent antibacterial agents from Caesaplinia pulcherrima and their mechanisms. PEST MANAGEMENT SCIENCE 2023; 79:2539-2555. [PMID: 36864521 DOI: 10.1002/ps.7430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Natural products play a significant role in the development of novel bactericide candidates. Caesalpinia pulcherrima, a traditional medicine, had anti-inflammatory, antimicrobial, and antifeedant activities, therefore the previous bioassay results of C. pulcherrima implied that its main active ingredients may have potential to be used as botanical bactericides. RESULTS Bio-guided isolation of C. pulcherrima was conducted to obtain 11 novel cassane diterpenoids (capulchemins A-K) and 10 known sesquiterpenes. Their structures were established by extensive spectroscopic methods and single-crystal X-ray diffraction analyses. Capulchemins A-F possess a rare aromatic C ring, while capulchemin K with a 15,16-degradative carbon skeleton represents a rare group of cassane diterpenes. Capulchemin A exhibited remarkable antibacterial activity against four phytopathogenic bacteria, particularly against Pseudomonas syringae pv. actinidae and Bacillus cereus, with minimal inhibitory concentration values of 3.13 μM. Meanwhile, capulchemin A showed significant control effect on kiwifruit canker in vivo. Further investigation of its mechanism of antibacterial activity revealed that compound 1 was closely related to destroy cell membrane to cause cell death. Additionally, some of those cassane diterpenoids showed potential antifeedant against Mythimna separate walker and Plutella xylostella. Consequently, capulchemin A could have the potential to be used as a template for the development for new eco-friendly NP-based bactericides. CONCLUSION These data contribute to a better understanding of the antibacterial activity of cassane diterpenes. Cassane diterpenes have been discovered to be leading to broad application prospects in the development as novel botanical bactericides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiu-Mei Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, P. R. China
| | - Wang Lu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, P. R. China
| | - Zi-Han Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, P. R. China
| | - Pan-Pan Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, P. R. China
| | - Xiu-Juan Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, P. R. China
| | - Chao-Jiang Xiao
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan, College of Pharmacy, Dali University, Dali, P. R. China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, P. R. China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, P. R. China
| | - Chun-Huan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, P. R. China
| |
Collapse
|
12
|
Liu F, Hou J, Yu F, Gu Z, Hu R. Identification and pathogenicity of multidrug-resistant Elizabethkingia miricola isolated from farmed American bullfrogs Rana catesbeiana in China with in vitro screening of herbal antimicrobial agents. JOURNAL OF AQUATIC ANIMAL HEALTH 2023; 35:117-127. [PMID: 37334434 DOI: 10.1002/aah.10185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 06/20/2023]
Abstract
OBJECTIVE In 2021, an outbreak of an infectious disease characterized by torticollis, cataracts, and neurological disorders caused massive mortality in farmed American bullfrogs Rana catesbeiana in Hubei province, China. We identified the causal agent in this outbreak, characterized its pathogenicity, and screened candidate antimicrobial agents for future disease control. METHODS Bacterium was isolated from the diseased American bullfrogs and identified based on biochemical tests, sequence analyses (16S ribosomal RNA; DNA gyrase subunit B), and experimental challenge. Furthermore, antibiotic sensitivity of the isolated strain was detected with Kirby-Bauer paper diffusion method, and the antibacterial activity of 60 traditional Chinese herbal extracts against the isolated strain was evaluated by agar disc diffusion and broth dilution assays. RESULT We identified Elizabathkingia miricola strain FB210601 as the causative agent of this disease. The isolated E. miricola strain FB210601 exhibited extensive antibiotic resistance to all tested quinolones, β-lactam antibiotics, and aminoglycosides. Eight herbal extracts exhibited excellent antimicrobial activity against E. miricola FB210601, especially Caesalpinia sappan and Rhus chinensis, with minimal inhibitory concentrations less than 0.2 mg/mL. Additionally, the combined effects of two-component herbal mixtures containing C. sappan or R. chinensis were greater than those of the individual extracts. CONCLUSION Our results provide a reference for understanding the pathogenesis of Elizabethkingia infection in frogs. Furthermore, this study will aid in the application of herbal extracts for protection against infections caused by multidrug-resistant Elizabathkingia in the future.
Collapse
Affiliation(s)
- Fangyuan Liu
- College of Fisheries/Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
- National Aquatic Animal Diseases Para-reference Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jiahao Hou
- College of Fisheries/Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
| | - Fang Yu
- College of Fisheries/Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
- National Aquatic Animal Diseases Para-reference Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zemao Gu
- College of Fisheries/Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
- National Aquatic Animal Diseases Para-reference Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ruixue Hu
- College of Fisheries/Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
- National Aquatic Animal Diseases Para-reference Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
13
|
Ma JT, Dong XY, Li ZH, Yan H, He J, Liu JK, Feng T. Antibacterial Metabolites from Kiwi Endophytic Fungus Fusarium tricinctum, a Potential Biocontrol Strain for Kiwi Canker Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7679-7688. [PMID: 37167018 DOI: 10.1021/acs.jafc.3c00233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is a Gram-negative bacterium causing the kiwifruit canker disease, resulting in serious economic losses to the kiwifruit industry. This study investigated the use of an endophytic fungus, Fusarium tricinctum, obtained from the kiwi plant (Actinidia chinesis) as a potential biocontrol strain against the Psa. F. tricinctum showed an inhibition rate of 59.5% in vitro against Psa. Bioassay-guided isolation was conducted on the cultural broth of F. tricinctum and seven new imidazole alkaloids, (±)-fusaritricine J ((±)-1) and fusaritricines K-P (2-7), and four enniatins (8-11) were identified. Their absolute configurations were established through extensive spectroscopic methods, quantum chemical calculations, and X-ray single crystal diffraction. Compounds 1, 4, 5, and 8-11 showed comparable anti-bacterial activities against Psa as positive control, with MIC values of 25-50 μg/mL. Further cell membrane permeability assay suggested that the most active compound 4 could destroy the bacterial cell wall structure. Hence, F. tricinctum metabolites could be applied as potential anti-Psa agents, and F. tricinctum could be considered a biocontrol strain for the control of the kiwifruit canker disease.
Collapse
Affiliation(s)
- Jin-Tao Ma
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xin-Yue Dong
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Zheng-Hui Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - He Yan
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Juan He
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
14
|
Tang Y, Yu P, Chen L. Identification of Antibacterial Components and Modes in the Methanol-Phase Extract from a Herbal Plant Potentilla kleiniana Wight et Arn. Foods 2023; 12:foods12081640. [PMID: 37107435 PMCID: PMC10137656 DOI: 10.3390/foods12081640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The increase in bacterial resistance and the decline in the effectiveness of antimicrobial agents are challenging issues for the control of infectious diseases. Traditional Chinese herbal plants are potential sources of new or alternative medicine. Here, we identified antimicrobial components and action modes of the methanol-phase extract from an edible herb Potentilla kleiniana Wight et Arn, which had a 68.18% inhibition rate against 22 species of common pathogenic bacteria. The extract was purified using preparative high-performance liquid chromatography (Prep-HPLC), and three separated fragments (Fragments 1-3) were obtained. Fragment 1 significantly elevated cell surface hydrophobicity and membrane permeability but reduced membrane fluidity, disrupting the cell integrity of the Gram-negative and Gram-positive pathogens tested (p < 0.05). Sixty-six compounds in Fragment 1 were identified using Ultra-HPLC and mass spectrometry (UHPLC-MS). The identified oxymorphone (6.29%) and rutin (6.29%) were predominant in Fragment 1. Multiple cellular metabolic pathways were altered by Fragment 1, such as the repressed ABC transporters, protein translation, and energy supply in two representative Gram-negative and Gram-positive strains (p < 0.05). Overall, this study demonstrates that Fragment 1 from P. kleiniana Wight et Arn is a promising candidate for antibacterial medicine and food preservatives.
Collapse
Affiliation(s)
- Yingping Tang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Pan Yu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
15
|
Discovery of cryptolepine derivatives as novel promising agents against phytopathogenic bacteria. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|