1
|
Shan M, Li Z, Wang H, Shi Y, Gao Q, Wang Y, Xiao W, Yao M. Engineered β-Carotene Hydroxylase with Excellent Thermostability Promotes Zeaxanthin Production in Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12319-12327. [PMID: 40358126 DOI: 10.1021/acs.jafc.5c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Zeaxanthin, as an important natural pigment and nutrient, is applied in food and cosmetics industries. Zeaxanthin is converted from β-carotenoid by the β-carotene hydroxylase (CrtZ). Limited by the thermostability of CrtZ, zeaxanthin and its derivatives tend to be fermented in Saccharomyces cerevisiae at low temperatures. In this study, CrtZ mutants with improved thermostability and catalytic efficiency were designed via the position-specific scoring matrix (PSSM), and the beneficial mutants were verified in vitro. Moreover, molecular dynamics simulations revealed the thermostability mechanisms of the mutants. Subsequently, CrtZ mutant M83L was introduced into the S. cerevisiae chassis, and the zeaxanthin titer increased by 121.2% compared with that of the CrtZ, reaching 156.8 mg/L in shake flask fermentation at 30 °C. Furthermore, the oxidoreductase RFNR/FD3 system was introduced to match the overexpressed M83L, and the zeaxanthin titer further increased by 138.9% (reaching 374.6 mg/L). Ultimately, 814.6 mg/L zeaxanthin was produced in S. cerevisiae in 5.0 L fed-batch fermentation at 30 °C, which is the highest reported titer in S. cerevisiae. This study not only provides a useful strategy to increase the thermostability of key enzymes but also describes an efficient platform for the biosynthesis of zeaxanthin and its high-value derivatives.
Collapse
Affiliation(s)
- Mengying Shan
- State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Zhenlu Li
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Herong Wang
- State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Yi Shi
- State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Qi Gao
- State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Ying Wang
- State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China
| | - Mingdong Yao
- State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Lin P, Zhang L, Du G, Chen J, Zhang J, Peng Z. Construction of Saccharomyces cerevisiae Platform Strain for the Biosynthesis of Carotenoids and Apocarotenoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9187-9196. [PMID: 40168627 DOI: 10.1021/acs.jafc.5c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Carotenoids and apocarotenoids, natural compounds with vital biological functions, are now sustainably produced via microbial synthesis as an eco-friendly alternative to inefficient and polluting traditional plant-based extraction methods. In their biosynthesis, β-carotene (BC) plays a crucial role as it is the key intermediate from which different downstream derivatives are formed. Here, we engineered a high-producing Saccharomyces cerevisiae platform strain to produce BC through a combination of systematic metabolic engineering and atmospheric and room temperature plasma mutagenesis. The strain achieved a BC production of 2.09 g/L via fed-batch fermentation in a 5-L bioreactor, the highest yield reported in S. cerevisiae to date. Using this platform strain, we constructed zeaxanthin- and β-ionone-producing strains by introducing key enzyme genes. The engineered strains produced 39.09 mg/L of zeaxanthin and 31.87 mg/L of β-ionone in shake-flask cultures. The engineered BC platform established in this study provides a higher starting point for producing diverse BC derivatives.
Collapse
Affiliation(s)
- Ping Lin
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Linpei Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Juan Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Zheng Peng
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Kim K, Shim K, Wang YW, Yang D. Synthetic Biology Strategies for the Production of Natural Colorants and Their Non-Natural Derivatives. ACS Synth Biol 2025; 14:662-676. [PMID: 40066730 DOI: 10.1021/acssynbio.4c00799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Colorants are widely used in our daily lives to give colors to diverse chemicals and materials, including clothes, food, drugs, cosmetics, and paints. Although synthetic colorants derived from fossil fuels have been predominantly used due to their low cost, there is a growing need to replace them with natural alternatives. This shift is driven by increasing concerns over the climate crisis caused by excessive fossil fuel use, as well as health issues associated with the consumption of foods, beverages, and cosmetics containing petroleum-derived chemicals. In addition, many natural colorants show health-promoting properties such as antioxidant and antimicrobial activities. Despite such advantages, natural colorants could not be readily commercialized and distributed in the market due to their low stability, limited color spectrum, and low yields from natural resources. To this end, synthetic biology approaches have been developed to efficiently produce natural colorants from renewable resources with high yields. Strategies to diversify natural colorants to produce non-natural derivatives with enhanced properties and an expanded color spectrum have been also developed. In this Review, we discuss the recent synthetic biology strategies developed for enhancing the production of natural colorants and their non-natural derivatives, together with accompanying examples. Challenges ahead and future perspectives are also discussed.
Collapse
Affiliation(s)
- Kyoungwon Kim
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Kyubin Shim
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ying Wei Wang
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dongsoo Yang
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
4
|
Hao C, Hu K, Xie J, Tong X, Zhang X, Qi Z, Tang S. Recent Advancements in the Biomanufacturing of Crocetin and Crocins: Key Enzymes and Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6400-6415. [PMID: 40056449 DOI: 10.1021/acs.jafc.4c12576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Crocetin and crocins are high-value apocarotenoids recognized for their role as food colorants as well as for their numerous industrial and therapeutic applications. Biotechnological platforms have the potential to replace traditional plant-based extraction of these compounds with a more sustainable approach. This review first introduced the catalytic characteristics of key enzymes involved in the biosynthetic pathway of crocetin and crocins, including carotenoid cleavage dioxygenases, aldehyde dehydrogenases, and uridine diphosphate glycosyltransferases. Next, we highlighted advanced metabolic engineering strategies aimed at enhancing crocetin and crocin production, such as increasing the pool of precursors and cofactors, protein mining and engineering, tuning protein expression, biosensor, genomic integration, and process optimization. Finally, the paper proposed potential strategies and tools associated with further boosting the heterologous production of crocetin and crocins to meet commercial-scale demands.
Collapse
Affiliation(s)
- Chengpeng Hao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Kefa Hu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Jingcong Xie
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, China
| | - Xinyi Tong
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiaomeng Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhipeng Qi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Shaoheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| |
Collapse
|
5
|
Lee JH, Park JY, Seo MD, Lee PC. Protein engineering of an oxidative cleavage-free pathway for crocetin-dialdehyde production in Escherichia coli. Metab Eng 2025; 88:137-147. [PMID: 39742954 DOI: 10.1016/j.ymben.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/28/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
The growing depletion of petroleum resources and the increasing demand for sustainable alternatives have spurred advancements in microorganism-based biofactories. Among high-value compounds, carotenoids are widely sought after in pharmaceuticals, cosmetics, and nutrition, making them prime candidates for microbial production. In this study, we engineered an efficient biosynthetic pathway in Escherichia coli for the production of the C20-carotenoid crocetin-dialdehyde. By bypassing traditional oxidative cleavage reactions mediated by carotenoid cleavage dioxygenases (CCDs), our approach reduces the enzymatic complexity of the pathway. Using the crystal structure of a CrtMLIKE enzyme identified in this study, we developed a mutant enzyme capable of condensing two C10-geranyl pyrophosphate molecules to form C20-phytoene. This intermediate was then desaturated and oxidized by CrtN and CrtP to produce crocetin-dialdehyde, achieving a yield of 1.13 mg/L. By reducing enzyme requirements from six to three and eliminating the need for CCDs, this pathway alleviates metabolic stress on the host and enhances the scalability of production for industrial applications. Overall, our research presents a streamlined and innovative approach to carotenoid biosynthesis, advancing sustainable production methods for short-chain carotenoids.
Collapse
Affiliation(s)
- Jun Ho Lee
- Department of Molecular Science and Technology and Advanced College of Bio-convergence Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Jeong-Yang Park
- Department of Molecular Science and Technology and Advanced College of Bio-convergence Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, Republic of Korea; College of Pharmacy, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Min-Duk Seo
- Department of Molecular Science and Technology and Advanced College of Bio-convergence Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, Republic of Korea; College of Pharmacy, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| | - Pyung Cheon Lee
- Department of Molecular Science and Technology and Advanced College of Bio-convergence Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| |
Collapse
|
6
|
Zhou T, Park YK, Fu J, Hapeta P, Klemm C, Ledesma-Amaro R. Metabolic engineering of Yarrowia lipolytica for the production and secretion of the saffron ingredient crocetin. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:1. [PMID: 39773299 PMCID: PMC11706156 DOI: 10.1186/s13068-024-02598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Crocetin is a multifunctional apocarotenoid natural product derived from saffron, holding significant promises for protection against various diseases and other nutritional applications. Historically, crocetin has been extracted from saffron stigmas, but this method is hindered by the limited availability of high-quality raw materials and complex extraction processes. To overcome these challenges, metabolic engineering and synthetic biology can be applied to the sustainable production of crocetin. RESULTS We constructed a Yarrowia lipolytica strain using hybrid promoters and copy number adjustment, which was able to produce 2.66 g/L of β-carotene, the precursor of crocetin. Next, the crocetin biosynthetic pathway was introduced, and we observed both the production and secretion of crocetin. Subsequently, the metabolite profiles under varied temperatures were studied and we found that low temperature was favorable for crocetin biosynthesis in Y. lipolytica. Therefore, a two-step temperature-shift fermentation strategy was adopted to optimize yeast growth and biosynthetic enzyme activity, bringing a 2.3-fold increase in crocetin titer. Lastly, fermentation media was fine-tuned for an optimal crocetin output of 30.17 mg/L, bringing a 51% higher titer compared with the previous highest report in shake flasks. Concomitantly, we also generated Y. lipolytica strains capable of achieving substantial zeaxanthin production, yielding 1575.09 mg/L, doubling the previous highest reported titer. CONCLUSIONS Through metabolic engineering and fermentation optimization, we demonstrated the first de novo biosynthesis of crocetin in the industrial yeast Yarrowia lipolytica. In addition, we achieved a higher crocetin titer in flasks than all our known reports. This work not only represents a high production of crocetin, but also entails a significant simultaneous zeaxanthin production, setting the stage for sustainable and cost-effective production of these valuable compounds.
Collapse
Affiliation(s)
- Tingan Zhou
- Department of Bioengineering, Imperial College Centre for Synthetic Biology, Bezos Centre for Sustainable Protein, UKRI Engineering Biology Mission Hub on Microbial Food, Imperial College London, London, SW7 2AZ, UK
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Young-Kyoung Park
- Department of Bioengineering, Imperial College Centre for Synthetic Biology, Bezos Centre for Sustainable Protein, UKRI Engineering Biology Mission Hub on Microbial Food, Imperial College London, London, SW7 2AZ, UK.
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.
| | - Jing Fu
- Department of Bioengineering, Imperial College Centre for Synthetic Biology, Bezos Centre for Sustainable Protein, UKRI Engineering Biology Mission Hub on Microbial Food, Imperial College London, London, SW7 2AZ, UK
| | - Piotr Hapeta
- Department of Bioengineering, Imperial College Centre for Synthetic Biology, Bezos Centre for Sustainable Protein, UKRI Engineering Biology Mission Hub on Microbial Food, Imperial College London, London, SW7 2AZ, UK
| | - Cinzia Klemm
- Department of Bioengineering, Imperial College Centre for Synthetic Biology, Bezos Centre for Sustainable Protein, UKRI Engineering Biology Mission Hub on Microbial Food, Imperial College London, London, SW7 2AZ, UK
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Imperial College Centre for Synthetic Biology, Bezos Centre for Sustainable Protein, UKRI Engineering Biology Mission Hub on Microbial Food, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
7
|
Bernard A, Rossignol T, Park YK. Biotechnological approaches for producing natural pigments in yeasts. Trends Biotechnol 2024; 42:1644-1662. [PMID: 39019677 DOI: 10.1016/j.tibtech.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
Pigments are widely used in the food, cosmetic, textile, pharmaceutical, and materials industries. Demand for natural pigments has been increasing due to concerns regarding potential health problems and environmental pollution from synthetic pigments. Microbial production of natural pigments is a promising alternative to chemical synthesis or extraction from natural sources. Here, we discuss yeasts as promising chassis for producing natural pigments with their advantageous traits such as genetic amenability, safety, rapid growth, metabolic diversity, and tolerance. Metabolic engineering strategies and optimizing strategies in downstream process to enhance production of natural pigments are thoroughly reviewed. We discuss the challenges, including expanding the range of natural pigments and improving their feasibility of industrial scale-up, as well as the potential strategies for future development.
Collapse
Affiliation(s)
- Armand Bernard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Tristan Rossignol
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Young-Kyoung Park
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
8
|
Li S, Zhou Z, Li Y, Hu Y, Huang Z, Hu G, Wang Y, Wang X, Lou Q, Gao L, Shen C, Gao R, Xu Z, Song J, Pu X. Construction of a high-efficiency GjCCD4a mutant and its application for de novo biosynthesis of five crocins in Escherichia coli. Int J Biol Macromol 2024; 277:133985. [PMID: 39033887 DOI: 10.1016/j.ijbiomac.2024.133985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Crocins are bioactive natural products that rarely exist in plants. High costs and resource shortage severely limit its development and application. Synthetic biology studies on crocins are of considerable global interest. However, the lack of high-efficiency genetic tools and complex cascade biocatalytic systems have substantially hindered progress in crocin biosynthesis-related research. Based on mutagenesis, a high-efficiency GjCCD4a mutant (N212m) was constructed with a catalytic efficiency that was 25.08-fold higher than that of the wild-type. Solubilized GjCCD4a was expressed via fusion with an MBP tag. Moreover, N212m and ten other genes were introduced into Escherichia coli for the de novo biosynthesis of five crocins. The engineered E57 strain produced crocins III and V with a total yield of 11.50 mg/L, and the E579 strain produced crocins I-V with a total output of 8.43 mg/L at shake-flask level. This study identified a marvelous genetic element (N212m) for crocin biosynthesis and achieved its de novo biosynthesis in E. coli using glucose. This study provides a reference for the large-scale production of five crocins using E. coli cell factories.
Collapse
Affiliation(s)
- Siqi Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ze Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yufang Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yan Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ziyi Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ge Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ying Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xu Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qian Lou
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Longlong Gao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chuanpu Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ranran Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhichao Xu
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Xiangdong Pu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
9
|
Hua Z, Liu N, Yan X. Research progress on the pharmacological activity, biosynthetic pathways, and biosynthesis of crocins. Beilstein J Org Chem 2024; 20:741-752. [PMID: 38633914 PMCID: PMC11022409 DOI: 10.3762/bjoc.20.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Crocins are water-soluble apocarotenoids isolated from the flowers of crocus and gardenia. They exhibit various pharmacological effects, including neuroprotection, anti-inflammatory properties, hepatorenal protection, and anticancer activity. They are often used as coloring and seasoning agents. Due to the limited content of crocins in plants and the high cost of chemical synthesis, the supply of crocins is insufficient to meet current demand. The biosynthetic pathways for crocins have been elucidated to date, which allows the heterologous production of these valuable compounds in microorganisms by fermentation. This review article provides a comprehensive overview of the chemistry, pharmacological activity, biosynthetic pathways, and heterologous production of crocins, aiming to lay the foundation for the large-scale production of these valuable natural products by using engineered microbial cell factories.
Collapse
Affiliation(s)
- Zhongwei Hua
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Nan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| |
Collapse
|
10
|
Zhou J, Huang D, Liu C, Hu Z, Li H, Lou S. Research Progress in Heterologous Crocin Production. Mar Drugs 2023; 22:22. [PMID: 38248646 PMCID: PMC10820313 DOI: 10.3390/md22010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Crocin is one of the most valuable components of the Chinese medicinal plant Crocus sativus and is widely used in the food, cosmetics, and pharmaceutical industries. Traditional planting of C. sativus is unable to fulfill the increasing demand for crocin in the global market, however, such that researchers have turned their attention to the heterologous production of crocin in a variety of hosts. At present, there are reports of successful heterologous production of crocin in Escherichia coli, Saccharomyces cerevisiae, microalgae, and plants that do not naturally produce crocin. Of these, the microalga Dunaliella salina, which produces high levels of β-carotene, the substrate for crocin biosynthesis, is worthy of attention. This article describes the biosynthesis of crocin, compares the features of each heterologous host, and clarifies the requirements for efficient production of crocin in microalgae.
Collapse
Affiliation(s)
- Junjie Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
| | - Danqiong Huang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
| | - Chenglong Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
| | - Zhangli Hu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Hui Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Sulin Lou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
11
|
Qi Z, Tong X, Zhang Y, Jia S, Fang X, Zhao L. Carotenoid Cleavage Dioxygenase 1 and Its Application for the Production of C13-Apocarotenoids in Microbial Cell Factories: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19240-19254. [PMID: 38047615 DOI: 10.1021/acs.jafc.3c06459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
C13-apocarotenoids are naturally derived from the C9-C10 (C9'-C10') double-bond cleavage of carotenoids by carotenoid cleavage dioxygenases (CCDs). As high-value flavors and fragrances in the food and cosmetic industries, the sustainable production of C13-apocarotenoids is emerging in microbial cell factories by the carotenoid cleavage dioxygenase 1 (CCD1) subfamily. However, the commercialization of microbial-based C13-apocarotenoids is still limited by the poor performance of CCD1, which severely constrains its conversion efficiency from precursor carotenoids. This review focuses on the classification of CCDs and their cleavage modes for carotenoids to generate corresponding apocarotenoids. We then emphatically discuss the advances for C13-apocarotenoid biosynthesis in microbial cell factories with various strategies, including optimization of CCD1 expression, improvement of CCD1's catalytic activity and substrate specificity, strengthening of substrate channeling, and development of oleaginous microbial hosts, which have been verified to increase the conversion rate from carotenoids. Lastly, the current challenges and future directions will be discussed to enhance CCDs' application for C13-apocarotenoids biomanufacturing.
Collapse
Affiliation(s)
- Zhipeng Qi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Xinyi Tong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Yangyang Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Shutong Jia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Xianying Fang
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
- Jiangsu Province Key Lab for the Chemistry & Utilization of Agricultural and Forest, Nanjing 210037, China
| |
Collapse
|
12
|
Wang Y, Li S, Zhou Z, Sun L, Sun J, Shen C, Gao R, Song J, Pu X. The Functional Characteristics and Soluble Expression of Saffron CsCCD2. Int J Mol Sci 2023; 24:15090. [PMID: 37894770 PMCID: PMC10606151 DOI: 10.3390/ijms242015090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Crocins are important natural products predominantly obtained from the stigma of saffron, and that can be utilized as a medicinal compound, spice, and colorant with significant promise in the pharmaceutical, food, and cosmetic industries. Carotenoid cleavage dioxygenase 2 (CsCCD2) is a crucial limiting enzyme that has been reported to be responsible for the cleavage of zeaxanthin in the crocin biosynthetic pathway. However, the catalytic activity of CsCCD2 on β-carotene/lycopene remains elusive, and the soluble expression of CsCCD2 remains a big challenge. In this study, we reported the functional characteristics of CsCCD2, that can catalyze not only zeaxanthin cleavage but also β-carotene and lycopene cleavage. The molecular basis of the divergent functionality of CsCCD2 was elucidated using bioinformatic analysis and truncation studies. The protein expression optimization results demonstrated that the use of a maltose-binding protein (MBP) tag and the optimization of the induction conditions resulted in the production of more soluble protein. Correspondingly, the catalytic efficiency of soluble CsCCD2 was higher than that of the insoluble one, and the results further validated its functional verification. This study not only broadened the substrate profile of CsCCD2, but also achieved the soluble expression of CsCCD2. It provides a firm platform for CsCCD2 crystal structure resolution and facilitates the synthesis of crocetin and crocins.
Collapse
Affiliation(s)
- Ying Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei 230032, China
| | - Siqi Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei 230032, China
| | - Ze Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei 230032, China
| | - Lifen Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei 230032, China
| | - Jing Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei 230032, China
| | - Chuanpu Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei 230032, China
| | - Ranran Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiangdong Pu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
13
|
Guo J, Gao W, Wang J, Yao Y, Man Z, Cai Z, Qing Q. Thr22 plays an important role in the efficient catalytic process of Bacillus subtilis chitosanase BsCsn46A. Enzyme Microb Technol 2023; 167:110242. [PMID: 37099965 DOI: 10.1016/j.enzmictec.2023.110242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023]
Abstract
Threonine 22 (Thr22) located in catalytic center near the catalytic amino acid Glu19 was non-conserved in Bacillus species chitosanase. In order to study the function of Thr22, saturation mutagenesis was carried out towards P121N, a mutant previously constructed in our laboratory. Compared with P121N, which was designated as the wild type (WT) in this research, the specific enzyme activity of all mutants was decreased, and that of the T22P mutant was decreased by 91.6 %. Among these mutants, the optimum temperature decreased from 55 °C to 50 °C for 10 mutants and 45 °C for 4 mutants, respectively. The optimum temperature of mutant T22P was 40 °C. In order to analyze the reasons for the changes in enzymatic properties of the mutants, molecular docking analysis of WT and its mutants with substrate were performed. The hydrogen bond analysis around position 22 also conducted. The substitution of Thr22 was found to significantly affect the enzyme-substrate complex interaction. In addition, the hydrogen network near position 22 has undergone obvious changes. These changes may be the main reasons for the changes in enzymatic properties of the mutants. Altogether, this study is valuable for the future research on Bacillus chitosanase.
Collapse
Affiliation(s)
- Jing Guo
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, China
| | - Wenjun Gao
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, China
| | - Jing Wang
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, China
| | - Yao Yao
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, China
| | - Zaiwei Man
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, China; Zao zhuang Key Laboraory of Corn Bioengineering, Zaozhuang Science and Technology Collaborative Innovation Center of Enzyme, Shandong Hengren Gongmao Co. Ltd, Zaozhuang, China.
| | - Zhiqiang Cai
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, China
| | - Qing Qing
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, China
| |
Collapse
|
14
|
Hot spots-making directed evolution easier. Biotechnol Adv 2022; 56:107926. [DOI: 10.1016/j.biotechadv.2022.107926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/04/2022] [Accepted: 02/07/2022] [Indexed: 01/20/2023]
|
15
|
Abstract
Carotenoid cleavage dioxygenases (CCDs) constitute a superfamily of enzymes that are found in all domains of life where they play key roles in the metabolism of carotenoids and apocarotenoids as well as certain phenylpropanoids such as resveratrol. Interest in these enzymes stems not only from their biological importance but also from their remarkable catalytic properties including their regioselectivity, their ability to accommodate diverse substrates, and the additional activities (e.g., isomerase) that some of these enzyme possess. X-ray crystallography is a key experimental approach that has allowed detailed investigation into the structural basis behind the interesting biochemical features of these enzymes. Here, we describe approaches used by our lab that have proven successful in generating single crystals of these enzymes in resting or ligand-bound states for high-resolution X-ray diffraction analysis.
Collapse
Affiliation(s)
- Anahita Daruwalla
- Department of Physiology & Biophysics, University of California, Irvine School of Medicine, Irvine, CA, United States
| | - Xuewu Sui
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Philip D Kiser
- Department of Physiology & Biophysics, University of California, Irvine School of Medicine, Irvine, CA, United States; Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine School of Medicine, Irvine, CA, United States; Research Service, VA Long Beach Healthcare System, Long Beach, CA, United States.
| |
Collapse
|