1
|
Alghamdi M, Rathinasabapathy T, Komarnytsky S. Capsaicinoid Profiles, Phenolic Content, and Antioxidant Properties of Chili Peppers Grown in Urban Settings. Int J Mol Sci 2025; 26:4916. [PMID: 40430052 PMCID: PMC12112534 DOI: 10.3390/ijms26104916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/15/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
The Capsicum genus, native to the Americas and cultivated worldwide for culinary and medicinal purposes, includes five domesticated species with diverse fruit characteristics, pungency, and phytochemical profiles. However, the influence of casual urban backyard growing conditions on these traits remains unknown. In this study, we first assessed morphological production traits of 11 popular pepper cultivars over two growing seasons to establish a consistent baseline for cultivar performance. Next, we evaluated capsaicinoid and phenolic profiles of 47 pepper cultivars, which contribute to their pungency and antioxidant properties. Capsaicinoid profiles revealed species-specific ratios of capsaicin, dihydrocapsaicin, and nordihydrocapsaicin, with C. annuum and C. baccatum displaying an average 64:30:6 profile, C. chinense and C. frutescens showing a capsaicin-dominant 73:25:2 profile, and C. pubescens expressing a distinct dihydrocapsaicin-dominant 34:60:6 profile. Antioxidant activity positively correlated with capsaicinoid content (ABTS: R2 = 0.8264, p < 0.0001; FRAP: R2 = 0.8117, p < 0.0001), with C. chinense (Carolina Reaper) exhibiting the highest activity (FRAP = 111.8 µM TE/g). In LPS-activated macrophages, all cultivars suppressed nitric oxide production both at the enzymatic (66-89%, p < 0.001) and gene expression levels (4.2 to 5.3-fold reduction, p < 0.05). Interleukin IL-1β expression was upregulated (3.8 to 12.9-fold, p < 0.001), while no significant effects were noted on Cox-2, IL-6, and MCP-1 mRNA levels. These results provide novel insights into the molecular and biochemical adaptations of peppers grown in urban environments and underscore the importance of optimizing cultivation conditions to maximize their bioactive potential and health benefits.
Collapse
Affiliation(s)
- Malak Alghamdi
- Plants for Human Health Institute, NC State University, 600 Laureate Way, Kannapolis, NC 28081, USA; (M.A.); (T.R.)
- Department of Food, Bioprocessing, and Nutrition Sciences, NC State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| | | | - Slavko Komarnytsky
- Plants for Human Health Institute, NC State University, 600 Laureate Way, Kannapolis, NC 28081, USA; (M.A.); (T.R.)
- Department of Food, Bioprocessing, and Nutrition Sciences, NC State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| |
Collapse
|
2
|
Panda C, Rathinasabapathy T, Metzger B, Dodson S, Hanson D, Griffiths J, Komarnytsky S. Efficacy and tolerability of full spectrum hemp oil in dogs living with pain in common household settings. Front Vet Sci 2024; 11:1384168. [PMID: 39071787 PMCID: PMC11272626 DOI: 10.3389/fvets.2024.1384168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Lameness and restricted mobility are a significant concern in companion animals experiencing chronic pain, inflammation, or age-related pathologies. The growing awareness of health risks and side effects associated with the long-term use of prescription analgesics requires different management strategies to address these issues. In this study, we conducted a crossover evaluation of the effect of full spectrum hemp oil dosed orally at 2 mg/kg BID phytocannabinoids for 8 weeks in dogs (n = 37) living with pain in common household settings. Owner-reported canine pain, home activity, accelerometer-based activity, walkway-based gait, and tolerability were assessed at each phase of the study. Secondary endpoints included changes in blood biochemistry, liver enzymes, inflammatory biomarkers, and plasma metabolites. The intervention was positively associated with a decrease in pain scores (-46.2%, p = 0.0016), increased ability to walk up and down the stairs (10.6-14.7%, p < 0.05), and improved daily activity (25.9%, p = 0.0038). Decreases in plasma levels of proinflammatory cytokines TNF-α, IL-6, and IL-8 were also observed. Taken together, these findings suggest that the benefits of nutritional supplementation with hemp oil could include control of pain, greater mobility, and an overall improvement in the animal wellbeing.
Collapse
Affiliation(s)
- Chinmayee Panda
- Nutrition Innovation Center, Standard Process, Kannapolis, NC, United States
| | | | - Brandon Metzger
- Nutrition Innovation Center, Standard Process, Kannapolis, NC, United States
| | - Sheila Dodson
- Animal Health Clinical Studies, Lenexa, KS, United States
| | - Dirk Hanson
- Animal Health Clinical Studies, Lenexa, KS, United States
| | - Jody Griffiths
- Nutrition Innovation Center, Standard Process, Kannapolis, NC, United States
| | - Slavko Komarnytsky
- Plants for Human Health Institute, NC State University, Kannapolis, NC, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
3
|
Mukhtar M, Khan HA, Zaidi NUSS. Exploring the inhibitory potential of Nigella sativa against dengue virus NS2B/NS3 protease and NS5 polymerase using computational approaches. RSC Adv 2023; 13:18306-18322. [PMID: 37333789 PMCID: PMC10273825 DOI: 10.1039/d3ra02613b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/29/2023] [Indexed: 06/20/2023] Open
Abstract
Dengue fever, a highly infectious and rapidly spreading vector borne illness, is classified as a Neglected Tropical Disease (NTD) by WHO because they generally afflict the world's poor and historically have not received as much attention as other diseases. DENV NS2B/NS3 protease and NS5 polymerase are regarded as significant prospective therapeutic targets because of their critical involvement in the viral replication cycle. To date, no specific antiviral agents exist for dengue. The commonly used herbal plant Nigella sativa is known for its antibacterial, antiviral, anti-inflammatory, wound-healing, and dermatological properties. Nevertheless, not enough studies on the antiviral effects of Nigella sativa against DENV are reported. The current study used several prediction techniques to anticipate the oral bioavailability of substances, druglikeness, and non-toxic and non-mutagenic effects which could lead to the development of novel, safer medications. Therefore, the current study was conducted to explore the inhibitory potential of 18 phytochemicals from Nigella sativa against two important enzymes of dengue virus i.e., NS2B/NS3 and NS5. Promising results have been observed for NS2B/NS3 with Taraxerol (-9.1 kcal mol-1), isoquercetin (8.4 kcal mol-1), apigenin, and stigmasterol (-8.3 kcal mol-1). Similarly, NS5 has shown favorable outcomes with apigenin (-9.9 kcal mol-1), rutin (-9.3 kcal mol-1), nigellicine (-9.1 kcal mol-1), and stigmasterol (-8.8 kcal mol-1). MD simulations validated the structural flexibility of the NS2B/NS3-taraxerol and NS5-apigenin docking complexes based on an RMSF value below 5 Å. The study concluded that among the understudied phytocomponents of N. sativa, apigenin, nigellicine, nigellidine, dithymoquinone, taraxerol, campesterol, cycloeucalenol, stigmasterol and beta-sitosterol have been revealed as potential drug candidates, expected to show antiviral activity and promising drug likeliness. Phytochemicals on the short list may serve as inspiration for the creation of new drugs in the future. Further in vitro examination will assist in elucidating the molecular complexity of therapeutic and antiviral capabilities, opening several opportunities for researchers to identify novel medications throughout the drug development process.
Collapse
Affiliation(s)
- Mamuna Mukhtar
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) H-12 44000 Islamabad Pakistan
| | - Haris Ahmed Khan
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) H-12 44000 Islamabad Pakistan
- Department of Biotechnology, University of Mianwali 42200 Punjab Pakistan
| | - Najam Us Sahar Sadaf Zaidi
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) H-12 44000 Islamabad Pakistan
| |
Collapse
|
4
|
Mammari N, Albert Q, Devocelle M, Kenda M, Kočevar Glavač N, Sollner Dolenc M, Mercolini L, Tóth J, Milan N, Czigle S, Varbanov M. Natural Products for the Prevention and Treatment of Common Cold and Viral Respiratory Infections. Pharmaceuticals (Basel) 2023; 16:ph16050662. [PMID: 37242445 DOI: 10.3390/ph16050662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
The common cold is generally considered a usually harmless infectious disease of the upper respiratory pathway, with mostly mild symptoms. However, it should not be overlooked, as a severe cold can lead to serious complications, resulting in hospitalization or death in vulnerable patients. The treatment of the common cold remains purely symptomatic. Analgesics as well as oral antihistamines or decongestants may be advised to relieve fever, and local treatments can clear the airways and relieve nasal congestion, rhinorrhea, or sneezing. Certain medicinal plant specialties can be used as therapy or as complementary self-treatment. Recent scientific advances discussed in more detail in this review have demonstrated the plant's efficiency in the treatment of the common cold. This review presents an overview of plants used worldwide in the treatment of cold diseases.
Collapse
Affiliation(s)
- Nour Mammari
- CNRS, L2CM, Université de Lorraine, 54000 Nancy, France
| | - Quentin Albert
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologies Fongiques, 13288 Marseille, France
- INRAE, Aix Marseille Université, CIRM-CF, 13288 Marseille, France
| | - Marc Devocelle
- SSPC (Synthesis & Solid State Pharmaceutical Centre), V94 T9PX Limerick, Ireland
- Department of Chemistry, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, D02 YN77 Dublin, Ireland
| | - Maša Kenda
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Nina Kočevar Glavač
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Marija Sollner Dolenc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Jaroslav Tóth
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Nagy Milan
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Mihayl Varbanov
- CNRS, L2CM, Université de Lorraine, 54000 Nancy, France
- Laboratoire de Virologie, CHRU de Nancy Brabois, 54500 Vandœuvre-lès-Nancy, France
| |
Collapse
|
5
|
Komarnytsky S, Wagner C, Gutierrez J, Shaw OM. Berries in Microbiome-Mediated Gastrointestinal, Metabolic, and Immune Health. Curr Nutr Rep 2023; 12:151-166. [PMID: 36738429 DOI: 10.1007/s13668-023-00449-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2022] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Current research has shown that berry-derived polymeric substrates that resist human digestion (dietary fibers and polyphenols) are extensively metabolized in the gastrointestinal tract dominated by microbiota. This review assesses current epidemiological, experimental, and clinical evidence of how berry (strawberry, blueberry, raspberry, blackberry, cranberry, black currant, and grapes) phytochemicals interact with the microbiome and shape health or metabolic risk factor outcomes. RECENT FINDINGS There is a growing evidence that the compositional differences among complex carbohydrate fractions and classes of polyphenols define reversible shifts in microbial populations and human metabolome to promote gastrointestinal health. Interventions to prevent gastrointestinal inflammation and improve metabolic outcomes may be achieved with selection of berries that provide distinct polysaccharide substrates for selective multiplication of beneficial microbiota or oligomeric decoys for binding and elimination of the pathogens, as well as phenolic substrates that hold potential to modulate gastrointestinal mucins, reduce luminal oxygen, and release small phenolic metabolites signatures capable of ameliorating inflammatory and metabolic perturbations. These mechanisms may explain many of the differences in microbiota and host gastrointestinal responses associated with increased consumption of berries, and highlight potential opportunities to intentionally shift gut microbiome profiles or to modulate risk factors associated with better nutrition and health outcomes.
Collapse
Affiliation(s)
- Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA.
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC, 27695, USA.
| | - Charles Wagner
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Janelle Gutierrez
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Odette M Shaw
- Plant & Food Research, Private Bag 11600, Palmerston North, 4442, New Zealand
| |
Collapse
|
6
|
Essential Minerals and Metabolic Adaptation of Immune Cells. Nutrients 2022; 15:nu15010123. [PMID: 36615781 PMCID: PMC9824256 DOI: 10.3390/nu15010123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Modern lifestyles deviated considerably from the ancestral routines towards major shifts in diets and increased sedentarism. The trace elements status of the human body is no longer adequately supported by micronutrient-inferior farmed meats and crop commodities produced by the existing agricultural food systems. This is particular evident in the increased obesogenic adipogenesis and low-grade inflammation that fails to resolve with time. The metabolically restrictive environment of the inflamed tissues drives activation and proliferation of transient and resident populations of immune cells in favor of pro-inflammatory phenotypes, as well as a part of the enhanced autoimmune response. As different stages of the immune activation and resolution depend on the availability of specific minerals to maintain the structural integrity of skin and mucus membranes, activation and migration of immune cells, activation of the complement system, and the release of pro-inflammatory cytokines and chemokines, this review discusses recent advances in our understanding of the contribution of select minerals in optimizing the responses of innate and adaptive immune outcomes. An abbreviated view on the absorption, transport, and delivery of minerals to the body tissues as related to metabolic adaptation is considered.
Collapse
|
7
|
Wang Z, Hu Y, Xue Y, Zhu Z, Wu Y, Zeng Q, Wang Y, Han H, Zhang H, Shen C, Yi K, Jiang C, Liu L, Zhu H, Li H, Liu Q, Shen Q. Mechanism insight on licorice flavonoids release from Carbopol hydrogels: Role of “release steric hindrance” and drug solubility in the release medium. Eur J Pharm Sci 2022; 179:106307. [DOI: 10.1016/j.ejps.2022.106307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
|