1
|
Chowdhury MAH, Reem CSA, Ashrafudoulla M, Rahman MA, Shaila S, Jie-Won Ha A, Ha SD. Role of advanced cleaning and sanitation techniques in biofilm prevention on dairy equipment. Compr Rev Food Sci Food Saf 2025; 24:e70176. [PMID: 40260792 DOI: 10.1111/1541-4337.70176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/24/2025]
Abstract
Biofilm formation on dairy equipment is a persistent challenge in the dairy industry, contributing to product contamination, equipment inefficiency, and economic losses. Traditional methods such as manual cleaning and basic chemical sanitation are discussed as foundational approaches, followed by an in-depth investigation of cutting-edge technologies, including clean-in-place systems, high-pressure cleaning, foam cleaning, ultrasonic and electrochemical cleaning, dry ice blasting, robotics, nanotechnology-based agents, enzymatic cleaners, and oxidizing agents. Enhanced sanitation techniques, such as dry steam, pulsed light, acidic and alkaline electrolyzed water, hydrogen peroxide vapor, microbubble technology, and biodegradable biocides, are highlighted for their potential to achieve superior sanitation while promoting sustainability. The effectiveness, feasibility, and limitations of these methods are evaluated, emphasizing their role in maintaining dairy equipment hygiene and reducing biofilm-associated risks. Additionally, challenges, such as equipment compatibility, cost, and regulatory compliance, are addressed, along with insights into future directions and innovations, including automation, smart cleaning systems, and green cleaning solutions. This review provides a comprehensive resource for researchers, industry professionals, and policymakers aiming to tackle biofilm formation in dairy production systems and enhance food safety, operational efficiency, and sustainability.
Collapse
Affiliation(s)
- Md Anamul Hasan Chowdhury
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-Do, Republic of Korea
- GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Chowdhury Sanat Anjum Reem
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-Do, Republic of Korea
- GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Md Ashrafudoulla
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Md Ashikur Rahman
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-Do, Republic of Korea
- GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Shanjida Shaila
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-Do, Republic of Korea
- GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Angela Jie-Won Ha
- Sofitel Ambassador Seoul Hotel & Serviced Residences, Seoul, Republic of Korea
| | - Sang-Do Ha
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-Do, Republic of Korea
- GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Rong H, Yu Y, Zhang B, Tao D, Zhu T, Wu D, Ma F. Effect of solution plasma process on microorganism sterilization, physicochemical properties and nutrients of milk. Food Chem 2024; 460:140721. [PMID: 39111040 DOI: 10.1016/j.foodchem.2024.140721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024]
Abstract
Solution plasma process (SPP) was used for sterilizing Staphylococcus aureus (S. aureus) in raw milk (RM). The sterilization efficacy analysis and kinetics analysis showed bacterial concentration and the distance between electrodes were negatively correlated with the sterilization effect, while discharge voltage was positive. The better sterilization effect was achieved at 4 kV. The electrochemical indices analysis indicated that pH value of RM had no changed. The DO content decreased. The conductivity increased with the increasing discharge voltage. The nutrient content analysis revealed that the content of acidity, lactose, fat, and protein decreased. RM after SPP treatment exhibited higher values of sourness and slightly lower values of astringency than the control. The higher discharge voltage and narrower distance between electrodes presented the stronger effect. The structural characterization of CMs and MFGs was carried out using a laser particle sizer, FTIR, 1H NMR, XRD, and AFM. The results showed that the main chemical structure of CMs was unchanged basically. The SPP with the narrower distance between electrodes and lower discharge voltage significantly reduced the size and aggregation of MFGs at the molecular level. At 4 kV/2 mm, the particle sizes of CMs and MFGs were reduced from 238 nm and 523 nm to 224 nm and 302 nm, respectively. The average diameter of MFGs was reduced from 45 nm to 18 nm. Therefore, SPP is a potential method in the milk industry and provides a new idea for the preservation and processing of beverage.
Collapse
Affiliation(s)
- Haifeng Rong
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Yu
- China Certification & Inspection Group Liaoning Co., Ltd., Shenyang 110866, China
| | - Baiqing Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Dongbing Tao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Tingyu Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Dongge Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Fengming Ma
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
3
|
Ghaani M, Azimzadeh M, Büyüktaş D, Carullo D, Farris S. Electrochemical Sensors in the Food Sector: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24170-24190. [PMID: 39453461 DOI: 10.1021/acs.jafc.4c09423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
In a world that is becoming increasingly concerned with health, safety, and the sustainability of food supply chains, the control and assurance of food quality have become of utmost importance. This review examines the application and potential of electrochemical sensors in the dynamic field of food science to meet these expanding demands. The article introduces electrochemical sensors and describes their operational mechanics and the components contributing to their function. A summary of the most prevalent electrochemical methods outlines the diverse food analysis techniques available. The review shifts to discussing the food science applications of these sensors, highlighting their crucial role in detecting compounds in food samples like meat, fish, juice, and milk for contemporary quality control. This paper showcases electrochemical sensors' utility in food analysis, underscoring their significance as powerful, efficient tools for maintaining food safety and how they could transform our approach to global food quality control and assurance.
Collapse
Affiliation(s)
- Masoud Ghaani
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Food Packaging Lab, University of Milan, via Celoria 2 - I, 20133 Milan, Italy
- Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Mostafa Azimzadeh
- Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Duygu Büyüktaş
- Department of Food Engineering, Faculty of Engineering, Izmir Institute of Technology, Gülbahçe Köyü, Urla, Izmir 35430, Turkey
| | - Daniele Carullo
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Food Packaging Lab, University of Milan, via Celoria 2 - I, 20133 Milan, Italy
| | - Stefano Farris
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Food Packaging Lab, University of Milan, via Celoria 2 - I, 20133 Milan, Italy
| |
Collapse
|
4
|
Guan Z, Liu Q, Ma CB, Du Y. Electrochemical microfluidic sensing platforms for biosecurity analysis. Anal Bioanal Chem 2024; 416:4663-4677. [PMID: 38523160 DOI: 10.1007/s00216-024-05256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Biosecurity encompasses the health and safety of humans, animals, plants, and the environment. In this article, "biosecurity" is defined as encompassing the comprehensive aspects of human, animal, plant, and environmental safety. Reliable biosecurity testing technology is the key point for effectively assessing biosecurity risks and ensuring biosecurity. Therefore, it is crucial to develop excellent detection technologies to detect risk factors that can affect biosecurity. An electrochemical microfluidic biosensing platform integrates fluid control, target recognition, signal transduction, and output and incorporates the advantages of electrochemical analysis technology and microfluidic technology. Thus, an electrochemical microfluidic biosensing platform, characterized by exceptional analytical sensitivity, portability, rapid analysis speed, low reagent consumption, and low risk of contamination, shows considerable promise for biosecurity detection compared to traditional, more complex, and time-consuming detection technologies. This review provides a concise introduction to electrochemical microfluidic biosensors and biosecurity. It highlights recent research advances in utilizing electrochemical microfluidic biosensing platforms to assess biosecurity risk factors. It includes the use of electrochemical microfluidic biosensors for the detection of risk factors directly endangering biosecurity (direct application: namely, risk factors directly endangering the health of human, animals, and plants) and for the detection of risk factors indirectly endangering biosecurity (indirect application: namely, risk factors endangering the safety of food and the environment). Finally, we outline the current challenges and future perspectives of electrochemical microfluidic biosensing platforms.
Collapse
Affiliation(s)
- Zhaowei Guan
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
| | - Quanyi Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science & Technology of China, Hefei, 230026, Anhui, China
| | - Chong-Bo Ma
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China.
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
- School of Applied Chemistry and Engineering, University of Science & Technology of China, Hefei, 230026, Anhui, China.
| |
Collapse
|
5
|
Elancheziyan M, Lee S, Yoon TH, Singh M, Lee D, Won K. Disposable electrochemical sensors based on reduced graphene oxide/polyaniline/poly(alizarin red S)-modified integrated carbon electrodes for the detection of ciprofloxacin in milk. Mikrochim Acta 2024; 191:507. [PMID: 39098931 DOI: 10.1007/s00604-024-06578-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
An electrochemical sensor based on an electroactive nanocomposite was designed for the first time consisting of electrochemically reduced graphene oxide (ERGO), polyaniline (PANI), and poly(alizarin red S) (PARS) for ciprofloxacin (CIPF) detection. The ERGO/PANI/PARS-modified screen-printed carbon electrode (SPCE) was constructed through a three-step electrochemical protocol and characterized using FTIR, UV-visible spectroscopy, FESEM, CV, LSV, and EIS. The new electrochemical CIPF sensor demonstrated a low detection limit of 0.0021 μM, a broad linear range of 0.01 to 69.8 μM, a high sensitivity of 5.09 μA/μM/cm2, and reasonable selectivity and reproducibility. Moreover, the ERGO/PANI/PARS/SPCE was successfully utilized to determine CIPF in milk with good recoveries and relative standard deviation (< 5%), which were close to those with HPLC analysis.
Collapse
Affiliation(s)
- Mari Elancheziyan
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Sooyeon Lee
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Tae Hyun Yoon
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Manisha Singh
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Dogyeong Lee
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Keehoon Won
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea.
| |
Collapse
|
6
|
Chen Y, Liu Y, Zhao P, Liang Y, Ma Y, Liu H, Hou J, Hou C, Huo D. Sulfhydryl-functionalized 3D MXene-AuNPs enabled electrochemical sensors for the selective determination of Pb 2+, Cu 2+ and Hg 2+ in grain. Food Chem 2024; 446:138770. [PMID: 38428079 DOI: 10.1016/j.foodchem.2024.138770] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/08/2024] [Accepted: 02/14/2024] [Indexed: 03/03/2024]
Abstract
Herein, we made 3D MXene-AuNPs by in situ growth of gold nanoparticles (AuNPs) on the surface of MXene by chemical reduction method, and then introduced three sulfhydryl (-SH) compounds as functionalized modifiers attached to the AuNPs to form a highly selective composite material for the detection of Pb2+, Cu2+, and Hg2+, respectively. The doping of AuNPs changes the microstructure of 2D MXene and generates more active sites. On a sensing platform based on ITO array electrodes, the detection system was optimised with sensitivities up to 1.157, 0.846 and 0.799 μA·μg-1Lcm-2 (Pb2+, Cu2+, and Hg2+). The selectivity of MXene@AuNPs was effectively improved by sulfhydryl group modification. In the range of 1-1300 μg L-1, the detection limits of three ions were 0.07, 0.13 and 0.21 μg L-1. In addition, this method can efficiently and accurately detect heavy metal ions in four cereal samples with consistent results with inductively coupled plasma mass spectrometry.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Yiyi Liu
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Peng Zhao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Yi Liang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin 644000, PR China
| | - Huan Liu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Jingzhou Hou
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; Postdoctoral Research Station, Chongqing University, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 401331, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin 644000, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
7
|
Algethami FK, Marwani HM, Raza N, Asiri AM, Rahman MM. Non-enzymatic electrochemical detection of melamine in dairy products by using CuO decorated carbon nanotubes nanocomposites. Food Chem 2024; 445:138792. [PMID: 38387321 DOI: 10.1016/j.foodchem.2024.138792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Melamine, a typical nitrogen enriched organic compound exhibiting great potential in the industrial sector, is exploited as an adulterant to inflate protein levels in dairy products, can pose serious threats to humans and therefore necessitates its swift detection and precise quantification at its first exposure. In this investigation, sensitive and reliable sensor probes were fabricated using CuO nanoparticles and its nanocomposites (NCs) with carbon nanotubes (CNTs), carbon black (CB), and graphene oxide (GO) to promptly quantify melamine in dairy products. The optical, morphological, and structural characteristics of the CuO-CNT NCs were achieved using diverse instrumental techniques including UV-visible spectroscopy, transmission electron microscopy, X- ray diffraction, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy and etc. The fabrication of glassy carbon electrodes (GCE) was accomplished by coating CuO-CNT NCs through a binder (5 % nafion). These sensor probes demonstrated outstanding electrochemical sensor performance with CuO-CNT NCs/Nafion/GCE sensor probe in terms of very low limit of detection (0.27 nM), good linearity range (0.05-0.5 nM), and relatively high sensitivity (93.924 µA µM-1 m-2) for melamine under optimized experimental conditions. Furthermore, the performance of CuO-CNT NCs/Nafion/GCE coated sensor probes was practically validated for the selective melamine detection in the real sample analysis of commercially available milk brands, which revealed significant figures of merit in a very short response time of 10 s. From the results, it was concluded that the current study might be helpful in the development of an efficient commercial sensor based on ultra-sensitive transition metal oxides in the field of health care monitoring, food stuffs in a broader scale as well as food applications.
Collapse
Affiliation(s)
- Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Hadi M Marwani
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Nadeem Raza
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Department of Chemistry, Government Alamdar Hussain Islamia Degree College Multan, Pakistan
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohammed M Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
8
|
Liu H, Gao X, Qin H, Yan M, Zhu C, Li L, Qu F. Self-Responsive Fluorescence Aptasensor for Lactoferrin Determination in Dairy Products. Molecules 2024; 29:3013. [PMID: 38998965 PMCID: PMC11243337 DOI: 10.3390/molecules29133013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
In this study, a self-responsive fluorescence aptasensor was established for the determination of lactoferrin (Lf) in dairy products. Herein, the aptamer itself functions as both a recognition element that specifically binds to Lf and a fluorescent signal reporter in conjunction with fluorescent moiety. In the presence of Lf, the aptamer preferentially binds to Lf due to its specific and high-affinity recognition by folding into a self-assembled and three-dimensional spatial structure. Meanwhile, its reduced spatial distance in the aptamer-Lf complex induces a FRET phenomenon based on the quenching of 6-FAM by amino acids in the Lf protein, resulting in a turn-off of the fluorescence of the system. As a result, the Lf concentration can be determined straightforwardly corresponding to the change in the self-responsive fluorescence signal. Under the optimized conditions, good linearities (R2 > 0.99) were achieved in an Lf concentration range of 2~10 μg/mL for both standard solutions and the spiked matrix, as well as with the desirable detection limits of 0.68 μg/mL and 0.46 μg/mL, respectively. Moreover, the fluorescence aptasensor exhibited reliable recoveries (89.5-104.3%) in terms of detecting Lf in three commercial samples, which is comparable to the accuracy of the HPCE method. The fluorescence aptasensor offers a user-friendly, cost-efficient, and promising sensor platform for point-of-need detection.
Collapse
Affiliation(s)
- Hao Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China;
| | - Xibao Gao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China;
| | - Hongwei Qin
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Q.); (M.Y.)
- Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan 250100, China
| | - Mengmeng Yan
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Q.); (M.Y.)
- Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan 250100, China
| | - Chao Zhu
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Q.); (M.Y.)
- Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan 250100, China
| | - Linsen Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China; (L.L.); (F.Q.)
| | - Feng Qu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China; (L.L.); (F.Q.)
| |
Collapse
|
9
|
Jiang W, Tang Q, Zhu Y, Gu X, Wu L, Qin Y. Research progress of microfluidics-based food safety detection. Food Chem 2024; 441:138319. [PMID: 38218144 DOI: 10.1016/j.foodchem.2023.138319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
High demands for food safety detection and analysis have been advocated with people's increasing living standards. Even though numerous analytical testing techniques have been proposed, their widespread adoption is still constrained by the high limit of detection, narrow detection ranges, and high implementation costs. Due to their advantages, such as reduced sample and reagent consumption, high sensitivity, automation, low cost, and portability, using microfluidic devices for food safety monitoring has generated significant interest. This review provides a comprehensive overview of the latest microfluidic detection platforms (published in recent 4 years) and their applications in food safety, aiming to provide references for developing efficient research strategies for food contaminant detection and facilitating the transition of these platforms from laboratory research to practical field use.
Collapse
Affiliation(s)
- Wenjun Jiang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Qu Tang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Yidan Zhu
- Medical School, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Xijuan Gu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China; School of Life Science, Nantong University, Nantong, Jiangsu 226001, PR China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China.
| |
Collapse
|
10
|
Magarelli G, da Silva JG, Ribeiro CL, de Freitas TV, Rodrigues MA, de Souza Gil E, Marraccini P, de Souza JR, de Castro CSP, Bemquerer MP. A voltammetric peptide biosensor for Cu 2+ metal ion quantification in coffee seeds. J Inorg Biochem 2024; 251:112441. [PMID: 38103419 DOI: 10.1016/j.jinorgbio.2023.112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/19/2023]
Abstract
A prion-derived copper(II)-binding peptide was assembled onto a gold electrode for the building of a voltammetric biosensor for measuring the Cu2+ metal ion in biological samples. The chosen sequence was H-CVNITKQHTVTTTT-NH2, with an appended cysteine residue for binding to the gold surface as a self-assembled monolayer and a histidine residue as the anchorage point for copper(II) complexation. The biosensor showed a linear range of 10-7 to 10-6 M with an 8.0 × 10-8 M detection limit and a 1.0 × 10-7 M quantification limit, with good precision, trueness, and absence of matrix effect. The quantification of Cu2+ was performed in the presence of other transition metal ions, such as Zn2+, Cd2+, Fe2+, or Ni2+, which indicates the excellent selectivity of the biosensor. When the modified electrode was applied for measuring copper(II) in calcined coffee seeds, a difference in copper amount was observed between two Coffea arabica cultivars that were submitted to a treatment with a copper-based antifungal, showing the applicability of the biosensor in the agricultural field.
Collapse
Affiliation(s)
- Gabriella Magarelli
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av. W5 Norte (final) P.O. Box 02372, 70770-917 Brasília, DF, Brazil
| | - Jonatas Gomes da Silva
- Universidade Federal do Oeste da Bahia, Campus Reitor Edgard Santos, 47810-047 Barreiras, BA, Brazil
| | - Caroline Luchtenberg Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av. W5 Norte (final) P.O. Box 02372, 70770-917 Brasília, DF, Brazil
| | - Thiago Viana de Freitas
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av. W5 Norte (final) P.O. Box 02372, 70770-917 Brasília, DF, Brazil
| | - Magali Aparecida Rodrigues
- Departamento de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, 05508-000 São Paulo, SP, Brazil
| | - Eric de Souza Gil
- Faculdade de Farmácia, Universidade Federal de Goiás, Setor Universitário, 74605-220 Goiânia, GO, Brazil
| | - Pierre Marraccini
- CIRAD (Centre de Coopération Internationale en Recherche Agronomique Pour de Développement), UMR DIADE, 34398 Montpellier, France.; UMR DIADE (Diversity, Adaptation, Development of Plants), University of Montpellier, CIRAD, IRD, 34398 Montpellier, France
| | - Jurandir Rodrigues de Souza
- Instituto de Química, Universidade de Brasília, Campus Darcy Ribeiro, P.O. Box 4478, 70910900 Brasília, DF, Brazil
| | - Clarissa Silva Pires de Castro
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av. W5 Norte (final) P.O. Box 02372, 70770-917 Brasília, DF, Brazil
| | - Marcelo Porto Bemquerer
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av. W5 Norte (final) P.O. Box 02372, 70770-917 Brasília, DF, Brazil; Embrapa Gado de Leite, Rua Eugênio do Nascimento, 610, Dom Bosco, 36038-330 Juiz de Fora, MG, Brazil.
| |
Collapse
|
11
|
Mechoor A, Berchmans S, Venkatachalam G. Bimetallic Cu-Zn Zeolitic Imidazolate Frameworks as Peroxidase Mimics for the Detection of Hydrogen Peroxide: Electrochemical and Spectrophotometric Evaluation. ACS OMEGA 2023; 8:39636-39650. [PMID: 37901575 PMCID: PMC10601070 DOI: 10.1021/acsomega.3c05535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
Abstract
A copper incorporated zeolitic imidazolate framework-8 (ZIF-8) has been synthesized and demonstrated to be a potential material for a peroxidase mimic. The resultant bimetallic Cu-Zn incorporated MOF is used for the dual mode sensing of hydrogen peroxide by following electrochemical as well as spectrophotometric methods. Using 3,3',5,5'-tetramethylbenzidine (TMB) as a chromogenic substrate, spectrophotometric studies are carried out, and the steady state kinetic parameters are determined for two different concentrations of Cu incorporated ZIF-8 (viz Cu@ZIF-8-1 and Cu@ZIF-8-2). It is found that both Cu@ZIF-8-1 and Cu@ZIF-8-2 exhibit more affinity toward the TMB substrate than the horseradish peroxidase (HRP) enzyme as indicated by the low Km values obtained for the substrate. Also, as the concentration of incorporated Cu increases, Vmax values are also found to be enhanced. Electrochemically, the Cu@ZIF-8 modified glassy carbon electrode (GCE) showed a good response for peroxide detection in the concentration range from 0.5 mM to 5 mM at a working potential of -0.25 V in PBS (pH 7.0) with a limit of detection (LOD) value of 0.46 mM and a sensitivity of 20.25 μA/mM. Further, the chromogenic substrate TMB is successfully immobilized on the electrode surface and subsequently used for the peroxide detection along with Cu@ZIF-8. Here, TMB acts as a mediator and shifted the working potential to 0.1 V in acetate buffer (pH 5.0) in the concentration range from 0.5 mM to 5 mM with an LOD value of 0.499 mM and a sensitivity of 0.097 μA/mM. Interestingly, the same electrode in PBS of pH 7.0 showed a response to peroxide at a working potential of -0.1 V in the concentration range from 0.5 mM to 5 mM with an LOD value of 0.143 mM and a sensitivity of 0.33 μA/mM. Moreover, the applicability of this material for peroxide sensing is evaluated using milk samples, and the proposed material is able to recover the peroxide present in milk. Thus, the bimetallic Cu-Zn MOF can be utilized for the dual mode sensing of peroxide and can be extended for various real time applications.
Collapse
Affiliation(s)
- Aswathi Mechoor
- Electrodics
and Electrocatalysis (EEC) Division, CSIR—Central
Electrochemical Research Institute (CSIR—CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy
of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Sheela Berchmans
- Electrodics
and Electrocatalysis (EEC) Division, CSIR—Central
Electrochemical Research Institute (CSIR—CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy
of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Ganesh Venkatachalam
- Electrodics
and Electrocatalysis (EEC) Division, CSIR—Central
Electrochemical Research Institute (CSIR—CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy
of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Zheng Y, Huang Y, Zuo Q, Zhang Y, Wu Y, Zhang Z. On-Demand Portable Paper-Based Electrospray Ionization Mass Spectrometry for High-Sensitivity Analysis of Complex Samples. Anal Chem 2023; 95:6163-6171. [PMID: 36996354 DOI: 10.1021/acs.analchem.3c00673] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Paper spray ionization has been demonstrated to be the most promising substrate-based source, but this technique suffers from the low desorption efficiency of target compounds and poor portability. In the current study, we describe a portable paper-based electrospray ionization (PPESI) in which a piece of triangle paper and adsorbent are packed sequentially into a modified disposable micropipette tip. This source not only captures the feature of paper spray and adsorbent for highly efficient suppression of sample matrixes for target compound analysis but also takes advantage of a micropipette tip to prevent spray solvent from rapid evaporation. The performance of developed PPESI depends on the type and amount of packed adsorbent, paper substrate, and spray solvent and applied voltage. Moreover, by contrast to other related sources, the analytical sensitivity and the spray duration of PPESI in tandem with MS have been improved by factors of 2.8-32.3 and 2.0-13.3, respectively. Based on its high accuracy (>96%) and precision (less than 3% relative standard deviation), the PPESI coupled to a mass spectrometer has been used to determine diverse therapeutic drugs and pesticides in complex biological (e.g., whole blood, serum, and urine) and food (e.g., milk and orange juice) matrixes, and the limits of detection and quantification were 2-4 pg mL-1 and 7-13 pg mL-1, respectively. Taking the portability, high sensitivity, and repeatability, the technique may be a promising alternative for complex sample analysis.
Collapse
Affiliation(s)
- Yajun Zheng
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Yajie Huang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Qianqian Zuo
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Yuhua Wu
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Zhiping Zhang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| |
Collapse
|
13
|
The detection of goat milk adulteration with cow milk using a combination of voltammetric fingerprints and chemometrics analysis. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
14
|
Huang R, Lv J, Chen J, Zhu Y, Zhu J, Wågberg T, Hu G. Three-dimensional porous high boron-nitrogen-doped carbon for the ultrasensitive electrochemical detection of trace heavy metals in food samples. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130020. [PMID: 36155296 DOI: 10.1016/j.jhazmat.2022.130020] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/28/2022] [Accepted: 09/16/2022] [Indexed: 05/29/2023]
Abstract
Exposure to even trace amounts of Cd(II) and Pb(II) in food can have serious effects on the human body. Therefore, the development of novel electrochemical sensors that can accurately detect the different toxicity levels of heavy metal ions in food is of great significance. Based on the principle of green chemistry, we propose a new type of boron and nitrogen co-doped carbon (BCN) material derived from a metal-organic framework material and study its synthesis, characterization, and heavy-metal ion detection ability. Under the optimum conditions, the BCN-modified glassy carbon electrode was studied using square-wave anodic stripping voltammetry, which showed good electrochemical responses to Cd(II) and Pb(II), with sensitivities as low as 0.459 and 0.509 μA/μM cm2, respectively. The sensor was successfully used to detect Cd(II) and Pb(II) in Beta vulgaris var. cicla L samples, which is consistent with the results obtained using inductively coupled plasma-mass spectrometry. It also has a strong selectivity for complex samples. This study provides a novel approach for the detection of heavy metal ions in food and greatly expands the application of heteroatom-doped metal-free carbon materials in detection platforms.
Collapse
Affiliation(s)
- Ruihua Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Jiapei Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianbing Chen
- Research Academy of Non-metallic Mining Industry Development, Materials and Environmental Engineering College, Chizhou University, Chizhou 247000, China
| | - Yeling Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Thomas Wågberg
- Department of Physics, Umeå University, Umeå 901 87, Sweden
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; Department of Physics, Umeå University, Umeå 901 87, Sweden.
| |
Collapse
|
15
|
Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Svigelj R, Zuliani I, Dossi N, Toniolo R. A portable electrochemiluminescence aptasensor for β-lactoglobulin detection. Anal Bioanal Chem 2022; 414:7935-7941. [PMID: 36131144 PMCID: PMC9568494 DOI: 10.1007/s00216-022-04328-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022]
Abstract
Cow’s milk allergy is one of the most common food allergies in children with a prevalence of around 2.5%. Milk contains several allergens; the main ones are caseins and β-lactoglobulin (β-LG). At regulatory level, β-LG is not explicitly named, but milk is included in the list of substances or products causing allergies or intolerances. Hence, the presence of β-LG can be a useful marker for determining the presence of milk in food. In this work, we present an aptasensor based on electrochemiluminescence (ECL) for the quantification of β-LG in real food matrices displaying integrated advantages consisting of high specificity, good sensitivity, portability, and cost effectiveness. The performance and applicability of this sensor were tested by analyzing a sample of skimmed milk and an oat-based drink proposed as a vegetable substitute for milk of animal origin. We obtained a linear correlation between the intensity of the signal and the concentration of β-LG standard solutions (y = x * 0.00653 + 1.038, R2 = 0.99). The limit of detection (LOD) and the limit of quantification (LOQ) were found to be 1.36 and 4.55 μg L−1, respectively.
Collapse
Affiliation(s)
- Rossella Svigelj
- Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, 33100, Udine, Italy.
| | - Ivan Zuliani
- Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, 33100, Udine, Italy
| | - Nicolò Dossi
- Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, 33100, Udine, Italy
| | - Rosanna Toniolo
- Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, 33100, Udine, Italy.
| |
Collapse
|
17
|
de Souza CC, Alves GF, Lisboa TP, Matos MAC, Matos RC. Low-cost paper-based electrochemical sensor for the detection of ciprofloxacin in honey and milk samples. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Länge K. Bulk and Surface Acoustic Wave Biosensors for Milk Analysis. BIOSENSORS 2022; 12:bios12080602. [PMID: 36005001 PMCID: PMC9405821 DOI: 10.3390/bios12080602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 05/06/2023]
Abstract
Milk and dairy products are common foods and, therefore, are subject to regular controls. Such controls cover both the identification and quantification of specific components and the determination of physical parameters. Components include the usual milk ingredients, mainly carbohydrates, proteins, and fat, and any impurities that may be present. The latter range from small molecules, such as drug residues, to large molecules, e.g., protein-based toxins, to pathogenic microorganisms. Physical parameters of interest include viscosity as an indicator of milk gelation. Bulk and surface acoustic wave sensors, such as quartz crystal microbalance (QCM) and surface acoustic wave (SAW) devices, can principally be used for both types of analysis, with the actual application mainly depending on the device coating and the test format. This review summarizes the achievements of acoustic sensor devices used for milk analysis applications, including the determination of physical liquid parameters and the detection of low- and high-molecular-weight analytes and microorganisms. It is shown how the various requirements resulting from the respective analytes and the complex sample matrix are addressed, and to what extent the analytical demands, e.g., with regard to legal limits, are met.
Collapse
Affiliation(s)
- Kerstin Länge
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
19
|
Stefan-van Staden RI, Niculae AR, van Staden JF, Georgescu State R, Sfirloaga P. Nanographene-based electrochemical sensors for ultrasensitive determination of sorbic acid from food. Anal Bioanal Chem 2022; 414:6813-6824. [PMID: 35879426 DOI: 10.1007/s00216-022-04244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Abstract
Ultrasensitive determination of sorbic acid in food is essential for the assessment of the food quality. Therefore, two sensors based on nanographene decorated with gold nanoparticle paste modified with metal porphyrins (Zn protoporphyrin IX, and 2,3,7,8,12,13,17,18 octaethyl, 21H, 23H-porphirine Mn(III) chloride) were proposed for the determination of sorbic acid in food (bakery products and mayonnaise). Square-wave voltammetry was used for the characterization and validation of the proposed sensors. Response characteristics showed that the limits of detection for both sensors were 0.33 µmol L-1 while the limits of quantification were 1.00 µmol L-1. Both sensors can be used for the determination of sorbic acid in the concentration range 1-1000 µmol L-1, the linear concentration range making them appropriate for the assay of sorbic acid in food. The highest sensitivity (0.35 nA/µmol L-1) was recorded when the sensor based on 2,3,7,8,12,13,17,18 octaethyl, 21H, 23H-porphirine Mn(III) chloride was used, proving the higher electrocatalytic effect of this electrocatalyst versus the one of the Zn protoporphyrin IX. High recoveries (values higher than 95.00%) and low RSD (%) values (lower than 5.00%) were recorded for both sensors when used for the determination of sorbic acid in bread and mayonnaise, proving the high reliability of the proposed sensors and method.
Collapse
Affiliation(s)
- Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, 202 Splaiul Independentei Str., 060021, Bucharest-6, Romania.
- Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest, Bucharest, Romania.
| | - Andreea-Roxana Niculae
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, 202 Splaiul Independentei Str., 060021, Bucharest-6, Romania
- Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest, Bucharest, Romania
| | - Jacobus Frederick van Staden
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, 202 Splaiul Independentei Str., 060021, Bucharest-6, Romania
| | - Ramona Georgescu State
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, 202 Splaiul Independentei Str., 060021, Bucharest-6, Romania
| | - Paula Sfirloaga
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, 202 Splaiul Independentei Str., 060021, Bucharest-6, Romania
| |
Collapse
|
20
|
Curulli A. Recent Advances in Electrochemical Sensing Strategies for Food Allergen Detection. BIOSENSORS 2022; 12:bios12070503. [PMID: 35884306 PMCID: PMC9313194 DOI: 10.3390/bios12070503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/06/2023]
Abstract
Food allergy has been indicated as the most frequent adverse reaction to food ingredients over the past few years. Since the only way to avoid the occurrence of allergic phenomena is to eliminate allergenic foods, it is essential to have complete and accurate information on the components of foodstuff. In this framework, it is mandatory and crucial to provide fast, cost-effective, affordable, and reliable analysis methods for the screening of specific allergen content in food products. This review reports the research advancements concerning food allergen detection, involving electrochemical biosensors. It focuses on the sensing strategies evidencing different types of recognition elements such as antibodies, nucleic acids, and cells, among others, the nanomaterial role, the several electrochemical techniques involved and last, but not least, the ad hoc electrodic surface modification approaches. Moreover, a selection of the most recent electrochemical sensors for allergen detection are reported and critically analyzed in terms of the sensors’ analytical performances. Finally, advantages, limitations, and potentialities for practical applications of electrochemical biosensors for allergens are discussed.
Collapse
Affiliation(s)
- Antonella Curulli
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), 00161 Rome, Italy
| |
Collapse
|
21
|
Manikandan VS, Boateng E, Durairaj S, Chen A. Electrochemical Sensing of Vanillin Based on Fluorine-Doped Reduced Graphene Oxide Decorated with Gold Nanoparticles. Foods 2022; 11:foods11101448. [PMID: 35627019 PMCID: PMC9140755 DOI: 10.3390/foods11101448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
4-hydroxy-3-methoxybenzaldehyde (vanillin) is a biophenol compound that is relatively abundant in the world’s most popular flavoring ingredient, natural vanilla. As a powerful antioxidant chemical with beneficial antimicrobial properties, vanillin is not only used as a flavoring agent in food, beverages, perfumery, and pharmaceutical products, it may also be employed as a food-preserving agent, and to fight against yeast and molds. The widespread use of vanilla in major industries warrants the need to develop simple and cost-effective strategies for the quantitative determination of its major component, vanillin. Herein, we explore the applications of a selective and sensitive electrochemical sensor (Au electrodeposited on a fluorine-doped reduced-graphene-oxide-modified glassy-carbon electrode (Au/F-rGO/GCE)) for the detection of vanillin. The electrochemical performance and analytical capabilities of this novel electrochemical sensor were investigated using electrochemical techniques including cyclic voltammetry and differential pulse voltammetry. The excellent sensitivity, selectivity, and reproducibility of the proposed electrochemical sensor may be attributed to the high conductivity and surface area of the formed nanocomposite. The high performance of the sensor developed in the present study was further demonstrated with real-sample analysis.
Collapse
Affiliation(s)
- Venkatesh S. Manikandan
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada; (V.S.M.); (E.B.); (S.D.)
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Emmanuel Boateng
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada; (V.S.M.); (E.B.); (S.D.)
| | - Sharmila Durairaj
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada; (V.S.M.); (E.B.); (S.D.)
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada; (V.S.M.); (E.B.); (S.D.)
- Correspondence: ; Tel.: +1-519-8244120 (ext. 54764)
| |
Collapse
|
22
|
dos Santos AM, Junior AGT, Carvalho SG, Chorilli M. An updated review on properties, nanodelivery systems, and analytical methods for the determination of 5-fluorouracil in pharmaceutical and biological samples. Curr Pharm Des 2022; 28:1501-1512. [DOI: 10.2174/1381612828666220509150918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
5-Fluorouracil (5-FU) is an antimetabolite drug used for over 70 years as first-line chemotherapy to treat various types of cancer, such as head, neck, breast and colorectal cancer. 5-FU acts mainly by inhibiting thymidylate synthase, thereby interfering with deoxyribonucleic acid (DNA) replication or by 5-FU incorporating into DNA, causing damage to the sequence of nucleotides. Being analogous to uracil, 5-FU enters cells using the same transport mechanism, where a is converted into active metabolites such as fluorouridine triphosphate (FUTP), fluorodeoxyuridine monophosphate (FdUMP), and fluorodeoxyuridine triphosphate (FdUTP). Currently, there are several nanodelivery systems being developed and evaluated at the preclinical level to overcome existing limitations to 5-FU chemotherapy, including liposomes, polymeric nanoparticles, polymeric micelles, nanoemulsions, mesoporous silica nanoparticles, and solid lipid nanoparticles. Therefore, it is essential to choose and develop suitable analytical methods for the quantification of 5-FU and its metabolites (5-fluorouridine and 5-fluoro-2-deoxyuridine) in pharmaceutical and biological samples. Among the analytical techniques, chromatographic methods are commonly the most used for the quantification of 5-FU from different matrices. However, other analytical methods have also been developed for the determination of 5-FU, such as electrochemical methods, a sensitive, selective, and precise technique, in addition to having a reduced cost. Here, we first review the physicochemical properties, mechanism of action, and advances in 5-FU nanodelivery systems. Next, we summarize the current progress of other chromatographic methods described to determine 5-FU. Lastly, we discuss the advantages of electrochemical methods for the identification and quantification of 5-FU and its metabolites in pharmaceutical and biological samples.
Collapse
Affiliation(s)
- Aline Martins dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| | | | - Suzana Gonçalves Carvalho
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| |
Collapse
|