1
|
Nakamura T, Takayanagi H, Nakahata M, Okubayashi T, Baba H, Ishii Y, Watanabe G, Tanabe D, Nabeshima T. Amide cyclodextrin that recognises monophosphate anions in harmony with water molecules. Chem Sci 2024; 16:171-181. [PMID: 39583557 PMCID: PMC11583042 DOI: 10.1039/d4sc04529g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
Anion recognition in water by synthetic host molecules is a popular and challenging topic. It has been considered difficult because the water molecules compete for the recognition units. In this study, we have successfully created a novel macrocycle that achieves precise recognition through multipoint hydrogen bonding in harmony with water molecules. Specifically, an N-methylpyridinium amide β-cyclodextrin (β-CD) derivative 1(OTf)7 was synthesized, whose amide groups are directly attached to each pyranose ring. The pyridinium amide CD encapsulated a monophosphate anion in water, but it did not show interactions with sulfonates or carboxylates, thus a remarkable selectivity was demonstrated. Two monophosphates with different substituents, phenyl phosphate (PhOPO3 2-) and adamantyl phosphate (AdOPO3 2-), exhibited interesting contrasting pictures in the inclusion process, which were revealed by a combination of NOESY experiments, ITC measurements, and MD simulations. PhOPO3 2- was positioned slightly "upper" (closer to the pyridinium amide side) in 17+ with the oxygen atom of the phosphate ester R-O-P involved in the hydrogen bonds with the amide N-H, and configurational entropy plays a key role in the inclusion. Meanwhile, AdOPO3 2- was positioned "lower" (closer to the methoxy rim of CD) with the terminal -PO3 2- forming hydrogen bonds with the amides, and the hydrophobic effect is a major contributing driving force of the inclusion. The molecular design presented herein to achieve the precise recognition in water and clarification of the detailed mechanisms including the hydration phenomenon greatly contribute to the development of functional molecules that work in aqueous environments.
Collapse
Affiliation(s)
- Takashi Nakamura
- Institute of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| | - Hayato Takayanagi
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| | - Masaki Nakahata
- Graduate School of Science, Osaka University 1-1 Machikaneyama-cho Toyonaka Osaka 560-0043 Japan
| | - Takumi Okubayashi
- School of Science and Engineering, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| | - Hitomi Baba
- School of Science, Kitasato University 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0373 Japan
| | - Yoshiki Ishii
- School of Frontier Engineering, Kitasato University 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0373 Japan
| | - Go Watanabe
- School of Science, Kitasato University 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0373 Japan
- School of Frontier Engineering, Kitasato University 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0373 Japan
- Kanagawa Institute of Industrial Science and Technology 705-1 Shimoimaizumi Ebina Kanagawa 243-0435 Japan
| | - Daisuke Tanabe
- School of Science and Engineering, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| | - Tatsuya Nabeshima
- Institute of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| |
Collapse
|
2
|
Yu Q, Huang L, Zhang Y, Teng W, Wang Y, Cao J, Wang J. Intestinal-Targeted Digestion of Heme Chloride by Forming Inclusion Complexes In Vitro. Foods 2024; 13:3078. [PMID: 39410113 PMCID: PMC11482528 DOI: 10.3390/foods13193078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Hemin, a heme-like compound with significant biological activity, shows promise as an iron supplement for humans. Nonetheless, its poor solubility in water greatly impedes its absorption and utilization. To surmount this obstacle, researchers have chosen various cyclodextrins with distinct cavity sizes and derivative groups to act as hosts, forming inclusion complexes with hemin chloride. Among these, γ-cyclodextrin has been identified as the optimal carrier, based on a thorough evaluation of its encapsulation efficiency, solubility, and molecular docking. Multiple characterization techniques further confirmed the formation of these inclusion complexes. Results from IEC-6 cell experiments indicated that the cytotoxicity of the inclusion complexes was lower than that of FeSO4. Static and dynamic gastrointestinal simulation digestion systems were established, and the results showed that the bioavailability of the inclusion complex was significantly higher than that of raw hemin. Additionally, only about 0.29% of hemin chloride is digested by gastric enzymes, whereas 9.52% is digested by pancreatic enzymes in the static gastrointestinal simulation digestion system, with similar outcomes observed in the dynamic system. These findings suggest that targeted digestion in the intestine significantly enhances the bioavailability of hemin chloride by forming inclusion complexes in vitro.
Collapse
Affiliation(s)
- Qianfan Yu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Q.Y.); (L.H.); (Y.Z.); (W.T.); (Y.W.); (J.C.)
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Li Huang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Q.Y.); (L.H.); (Y.Z.); (W.T.); (Y.W.); (J.C.)
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yuemei Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Q.Y.); (L.H.); (Y.Z.); (W.T.); (Y.W.); (J.C.)
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Q.Y.); (L.H.); (Y.Z.); (W.T.); (Y.W.); (J.C.)
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Ying Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Q.Y.); (L.H.); (Y.Z.); (W.T.); (Y.W.); (J.C.)
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Q.Y.); (L.H.); (Y.Z.); (W.T.); (Y.W.); (J.C.)
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jinpeng Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Q.Y.); (L.H.); (Y.Z.); (W.T.); (Y.W.); (J.C.)
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
3
|
Boczar D, Michalska K. A Review of Machine Learning and QSAR/QSPR Predictions for Complexes of Organic Molecules with Cyclodextrins. Molecules 2024; 29:3159. [PMID: 38999108 PMCID: PMC11243237 DOI: 10.3390/molecules29133159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Cyclodextrins are macrocyclic rings composed of glucose residues. Due to their remarkable structural properties, they can form host-guest inclusion complexes, which is why they are frequently used in the pharmaceutical, cosmetic, and food industries, as well as in environmental and analytical chemistry. This review presents the reports from 2011 to 2023 on the quantitative structure-activity/property relationship (QSAR/QSPR) approach, which is primarily employed to predict the thermodynamic stability of inclusion complexes. This article extensively discusses the significant developments related to the size of available experimental data, the available sets of descriptors, and the machine learning (ML) algorithms used, such as support vector machines, random forests, artificial neural networks, and gradient boosting. As QSAR/QPR analysis only requires molecular structures of guests and experimental values of stability constants, this approach may be particularly useful for predicting these values for complexes with randomly substituted cyclodextrins, as well as for estimating their dependence on pH. This work proposes solutions on how to effectively use this knowledge, which is especially important for researchers who will deal with this topic in the future. This review also presents other applications of ML in relation to CD complexes, including the prediction of physicochemical properties of CD complexes, the development of analytical methods based on complexation with CDs, and the optimisation of experimental conditions for the preparation of the complexes.
Collapse
Affiliation(s)
- Dariusz Boczar
- Department of Synthetic Drugs, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
| | - Katarzyna Michalska
- Department of Synthetic Drugs, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
| |
Collapse
|
4
|
Wang Y, Li C, Li Z, Moalin M, den Hartog GJM, Zhang M. Computational Chemistry Strategies to Investigate the Antioxidant Activity of Flavonoids-An Overview. Molecules 2024; 29:2627. [PMID: 38893503 PMCID: PMC11173571 DOI: 10.3390/molecules29112627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Despite several decades of research, the beneficial effect of flavonoids on health is still enigmatic. Here, we focus on the antioxidant effect of flavonoids, which is elementary to their biological activity. A relatively new strategy for obtaining a more accurate understanding of this effect is to leverage computational chemistry. This review systematically presents various computational chemistry indicators employed over the past five years to investigate the antioxidant activity of flavonoids. We categorize these strategies into five aspects: electronic structure analysis, thermodynamic analysis, kinetic analysis, interaction analysis, and bioavailability analysis. The principles, characteristics, and limitations of these methods are discussed, along with current trends.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Chujie Li
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Zhengwen Li
- School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, China;
| | - Mohamed Moalin
- Research Centre Material Sciences, Zuyd University of Applied Science, 6400 AN Heerlen, The Netherlands;
| | - Gertjan J. M. den Hartog
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Ming Zhang
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| |
Collapse
|
5
|
Huang J, Wang X, Huang T, Yang Y, Tu J, Zou J, Yang H, Yang R. Application of sodium sulfobutylether-β-cyclodextrin based on encapsulation. Carbohydr Polym 2024; 333:121985. [PMID: 38494236 DOI: 10.1016/j.carbpol.2024.121985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Sodium Sulfobutylether-β-cyclodextrin (SBE-β-CD) is a derivative of β-cyclodextrin, characterized by its stereo structure, which closely resembles a truncated cone with a hydrophobic internal cavity. The solubility of insoluble substances within the hydrophobic cavity is significantly enhanced, reducing contact between the guest and the environment. Consequently, SBE-β-CD is frequently employed as a co-solvent and stabilizer. As the research progresses, it has been observed that the inclusion of SBE-β-CD is reversible and competitive. Besides, some inclusion complexes undergo distinct physicochemical property alterations compared to the guests. Additionally, certain guests exhibit varying inclusions with SBE-β-CD at different concentrations. These features have contributed to the expanding applications. SBE-β-CD finds widespread application in pharmaceutics as a protective agent and pKa regulator, in pharmaceutical analysis as a chiral substance separator, and in biomedical engineering for encapsulating dyes and modifying sensors. The article will elaborate in detail on the physicochemical properties of SBE-β-CD, encapsulation principles, and factors influencing the formation of inclusion complexes. Furthermore, the review focuses on the application of SBE-β-CD through encapsulation in pharmaceutics, pharmaceutical analysis, and biomedical engineering. Finally, the prospects and potential applications of SBE-β-CD are discussed.
Collapse
Affiliation(s)
- Jiaqi Huang
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China
| | - Xiaofeng Wang
- National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China
| | - Ting Huang
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China
| | - Yang Yang
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China
| | - Jiasheng Tu
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jian Zou
- National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China
| | - Huiying Yang
- National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China.
| | - Rui Yang
- National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China.
| |
Collapse
|
6
|
Ding X, Luo X, Khan IM, Yue L, Zhang Y, Wang Z. Covalent modification of γ-cyclodextrin with geraniol: An antibacterial agent with good thermal stability, solubility and biocompatibility. Colloids Surf B Biointerfaces 2024; 237:113841. [PMID: 38492412 DOI: 10.1016/j.colsurfb.2024.113841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/27/2023] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
Geraniol (Ger) is an essential oil molecule with excellent biological activity. High hydrophobicity and volatility limit its practical application. Cyclodextrins (CDs) are water-soluble cyclic oligosaccharides with hydrophobic cavities. Physical encapsulation of CDs to improve the solubility and stability of essential oil molecules is not satisfactory. Therefore, this study synthesized the γ-CD derivative (γ-CD-Ger) by grafting Ger onto γ-CD using a bromide-mediated method. Compared to the inclusion complexes (γ-CD/Ger) formed by both, the derivatives exhibit better solubility and thermal stability. The derivative has better antibacterial activity when the ratio of γ-CD to Ger was 1:2. In addition, the derivatives did not exhibit cytotoxic and hemolytic properties. These results indicate that this research provides a water-soluble antibacterial agent with a wide range of promising applications and offers new ideas for the application of alcohol hydrophobic molecules in aqueous systems.
Collapse
Affiliation(s)
- Xiaowei Ding
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China.
| | - Xuerong Luo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China.
| | - Imran Mahmood Khan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, PR China.
| | - Lin Yue
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China.
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, PR China.
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
7
|
Patil H, Vemula SK, Narala S, Lakkala P, Munnangi SR, Narala N, Jara MO, Williams RO, Terefe H, Repka MA. Hot-Melt Extrusion: from Theory to Application in Pharmaceutical Formulation-Where Are We Now? AAPS PharmSciTech 2024; 25:37. [PMID: 38355916 DOI: 10.1208/s12249-024-02749-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Hot-melt extrusion (HME) is a globally recognized, robust, effective technology that enhances the bioavailability of poorly soluble active pharmaceutical ingredients and offers an efficient continuous manufacturing process. The twin-screw extruder (TSE) offers an extremely resourceful customizable mixer that is used for continuous compounding and granulation by using different combinations of conveying elements, kneading elements (forward and reverse configuration), and distributive mixing elements. TSE is thus efficiently utilized for dry, wet, or melt granulation not only to manufacture dosage forms such as tablets, capsules, or granule-filled sachets, but also for designing novel formulations such as dry powder inhalers, drying units for granules, nanoextrusion, 3D printing, complexation, and amorphous solid dispersions. Over the past decades, combined academic and pharmaceutical industry collaborations have driven novel innovations for HME technology, which has resulted in a substantial increase in published articles and patents. This article summarizes the challenges and models for executing HME scale-up. Additionally, it covers the benefits of continuous manufacturing, process analytical technology (PAT) considerations, and regulatory requirements. In summary, this well-designed review builds upon our earlier publication, probing deeper into the potential of twin-screw extruders (TSE) for various new applications.
Collapse
Affiliation(s)
- Hemlata Patil
- Department of Product Development, Catalent Pharma Solutions, 14 Schoolhouse Road, Somerset, New Jersey, 08873, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA
| | - Preethi Lakkala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA
| | - Siva Ram Munnangi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA
| | - Nagarjuna Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA
| | - Miguel O Jara
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas, 78712, USA
| | - Robert O Williams
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas, 78712, USA
| | - Hibreniguss Terefe
- Department of Product Development, Catalent Pharma Solutions, 14 Schoolhouse Road, Somerset, New Jersey, 08873, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA.
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, Oxford, Mississippi, 38677, USA.
| |
Collapse
|
8
|
Kou X, Su D, Pan F, Xu X, Meng Q, Ke Q. Molecular dynamics simulation techniques and their application to aroma compounds/cyclodextrin inclusion complexes: A review. Carbohydr Polym 2024; 324:121524. [PMID: 37985058 DOI: 10.1016/j.carbpol.2023.121524] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/22/2023]
Abstract
Homeostatic technologies play a crucial role in maintaining the quality and extending the service life of aroma compounds (ACs). Commercial cyclodextrins (CDs) are commonly used to form inclusion complexes (ICs) with ACs to enhance their solubility, stability, and morphology. The selection of suitable CDs and ACs is of paramount importance in this process. Molecular dynamics (MD) simulations provide an in-depth understanding of the interactions between ACs and CDs, aiding researchers in optimising the properties and effects of ICs. This review offers a systematic discussion of the application of MD simulations in ACs/CDs ICs, covering the establishment of the simulation process, parameter selection, model evaluation, and various application cases, along with their advantages and disadvantages. Additionally, this review summarises the major achievements and challenges of this method while identifying areas that require further exploration. These findings may contribute to a comprehensive understanding of the formation and stabilization mechanisms of ACs/CDs ICs and offer guidance for the selection and computational characterisation of CDs in the AC steady state.
Collapse
Affiliation(s)
- Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Dongdong Su
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xiwei Xu
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China.
| | - Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China.
| |
Collapse
|
9
|
Jung J, Liu H, Borg AJE, Nidetzky B. Solvent Engineering for Nonpolar Substrate Glycosylation Catalyzed by the UDP-Glucose-Dependent Glycosyltransferase UGT71E5: Intensification of the Synthesis of 15-Hydroxy Cinmethylin β-d-Glucoside. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13419-13429. [PMID: 37655961 PMCID: PMC10510383 DOI: 10.1021/acs.jafc.3c04027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
Sugar nucleotide-dependent glycosyltransferases are powerful catalysts of the glycosylation of natural products and xenobiotics. The low solubility of the aglycone substrate often limits the synthetic efficiency of the transformation catalyzed. Here, we explored different approaches of solvent engineering for reaction intensification of β-glycosylation of 15HCM (a C15-hydroxylated, plant detoxification metabolite of the herbicide cinmethylin) catalyzed by safflower UGT71E5 using UDP-glucose as the donor substrate. Use of a cosolvent (DMSO, ethanol, and acetonitrile; ≤50 vol %) or a water-immiscible solvent (n-dodecane, n-heptane, n-hexane, and 1-hexene) was ineffective due to enzyme activity and stability, both impaired ≥10-fold compared to a pure aqueous solvent. Complexation in 2-hydroxypropyl-β-cyclodextrin enabled dissolution of 50 mM 15HCM while retaining the UGT71E5 activity (∼0.32 U/mg) and stability. Using UDP-glucose recycling, 15HCM was converted completely, and 15HCM β-d-glucoside was isolated in 90% yield (∼150 mg). Collectively, this study highlights the requirement for a mild, enzyme-compatible strategy for aglycone solubility enhancement in glycosyltransferase catalysis applied to glycoside synthesis.
Collapse
Affiliation(s)
- Jihye Jung
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, A-8010 Graz, Austria
| | - Hui Liu
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, A-8010 Graz, Austria
| | - Annika J. E. Borg
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, A-8010 Graz, Austria
- Austrian
Centre of Industrial Biotechnology, A-8010 Graz, Austria
| | - Bernd Nidetzky
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, A-8010 Graz, Austria
- Austrian
Centre of Industrial Biotechnology, A-8010 Graz, Austria
| |
Collapse
|
10
|
Wang W, Yang Y, Tang K. Selective extraction of glabridin from Glycyrrhiza glabra crude extracts by sulfobutylether-β-cyclodextrin in a ternary extraction system. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
11
|
Gao J, Zhang Y, Yu L, Li Y, Liao S, Wang J, Guan L. Identification of Enolase 1 as a Potential Target for Magnaporthe oryzae: Integrated Proteomic and Molecular Dynamics Simulation. J Chem Inf Model 2023; 63:619-632. [PMID: 36580498 DOI: 10.1021/acs.jcim.2c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rice blast is an essential factor affecting rice yield and quality, which is caused by Magnaporthe oryzae (M. oryzae). Isobavachalcone (IBC) is a botanical fungicide derived from the seed extract of the Leguminosae plant Psoralea corylifolia L. and has shown an excellent rice blast control effect in field applications. To explore the potential targets of rice blast control, the analysis of the differentially expressed proteins (DEPs) between the liquid culture medium of mycelium treated by 10 mg/L of IBC for 2 h and the control group indicated that Enolase 1 (ENO1) was the most significantly down-regulated DEP with a fold change value of 0.305. In vitro experiments showed that after treating liquid culture mycelium with 10 mg/L of IBC for 0.5, 1, 2, 4, and 8 h, the enzymatic activity of ENO1 in the IBC experimental groups was 0.97, 0.75, 0.52, 0.44, and 0.39 times as much as in the control groups, respectively. To further explore the molecular interaction and binding mode between IBC and ENO1, the three-dimensional structure of ENO1 was established based on homology modeling. Molecular docking and molecular dynamics simulation showed that IBC had a pi-pi stacking effect with the residue TYR_365, a hydrogen bond interaction with the residue ARG_393, and hydrophobic interactions with non-polar residues ALA_361, LYS_362, and VAL_371 of ENO1. These findings indicated that ENO1 is a potential target of M. oryzae, which would pave the way for screening novel effective fungicides targeting ENO1.
Collapse
Affiliation(s)
- Jie Gao
- Department of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Yaoliang Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Lin Yu
- Applied Biology Laboratory, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Yuejuan Li
- Department of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Shumin Liao
- Department of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Lijie Guan
- Department of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| |
Collapse
|
12
|
Anconi CPA, Souza LCA. Multi-equilibrium approach to study cyclodextrins host–guest systems with GFN2-xTB quantum method: A case study of phosphorothioates included in β-cyclodextrin. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Wang Y, Liu T, Xie J, Cheng M, Sun L, Zhang S, Xin J, Zhang N. A review on application of molecular simulation technology in food molecules interaction. Curr Res Food Sci 2022; 5:1873-1881. [PMID: 36276243 PMCID: PMC9579209 DOI: 10.1016/j.crfs.2022.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Molecular simulation is a new technology to analyze the interaction between molecules. This review mainly summarizes the application of molecular simulation technology in the food industry. This technology has been employed to assess structural changes of biomolecules, the interaction between components, and the mechanism of physical and chemical property alterations. These conclusions provide a deeper understanding of the molecular interaction mechanism in foods, break through the limitations of scientific experiments and avoid blind and time-consuming scientific research. In this paper, the advantages and development trends of molecular simulation technology in the food research field are described. This methodology can be used to contribute to further studies of the mechanism of molecular interactions in food, confirm experimental results and provide new ideas for research in the field of food sciences.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin, 150076, PR China
| | - Tianjiao Liu
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin, 150076, PR China
| | - Jinhui Xie
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin, 150076, PR China
| | - Meijia Cheng
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin, 150076, PR China
| | - Lirui Sun
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin, 150076, PR China
| | - Shuai Zhang
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin, 150076, PR China
| | - Jiaying Xin
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin, 150076, PR China,State Key Laboratory for Oxo Synthesis & Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China
| | - Na Zhang
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin, 150076, PR China,Corresponding author.
| |
Collapse
|
14
|
Su Y, Zhang S, Li H, Zhao B, Tian K, Zou Z. Dimethylaminoethyl Methacrylate/Diethylene Glycol Dimethacrylate Grafted onto Folate-Esterified Bagasse Xylan/Andrographolide Composite Nanoderivative: Synthesis, Molecular Docking and Biological Activity. Molecules 2022; 27:molecules27185970. [PMID: 36144706 PMCID: PMC9505221 DOI: 10.3390/molecules27185970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
As a biocompatible biomaterial, bagasse xylan (BX) has been widely used in the biomedical field. The low biological activity of andrographolide (AD) restricts its development, so AD with certain anticancer activity is introduced. We use chemical modification methods such as grafting and esterification to improve the biological activity and make a novel anticancer nanomaterial. On the basis of the esterification of a mixture of BX and AD with folic acid (FA), a novel anticancer nanoderivative of bagasse xylan/andrographolide folate-g-dimethylaminoethyl methacrylate (DMAEMA)/diethylene glycol dimethacrylate (DEGDMA) nanoparticles (FA-BX/AD-g-DMAEMA/DEGDMA NPs) was synthesized by introducing DMAEMA and DEGDMA monomers through a graft copolymerization and nanoprecipitation method. The effects of reaction temperature, reaction time, the initiator concentration and the mass ratio of FA-BX/AD to mixed monomers on the grafting rate (GR) were investigated. The structure of the obtained product was characterized by FTIR, SEM, XRD and DTG. Further, molecular docking and MTT assays were performed to understand the possible docking sites with the target proteins and the anticancer activity of the product. The results showed that the GR of the obtained product was 79% under the conditions of the initiator concentration 55 mmol/L, m (FA-BX/AD):m (mixed monomer) = 1:2, reaction temperature 50 °C and reaction time 5 h. The inhibition rate of FA-BX/AD-g-DMAEMA/DEGDMA NPs on human lung cancer cells (NCI-H460) can reach 39.77 ± 5.62%, which is about 7.6 times higher than that of BX. Therefore, this material may have potential applications in the development of anticancer drug or carriers and functional materials.
Collapse
Affiliation(s)
- Yue Su
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Heping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
- Correspondence: ; Tel.: +86-773-8996098
| | - Bin Zhao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Kexin Tian
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zhiming Zou
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
15
|
Wang Y, Qin D, Jin L, Liang G. Caffeoyl malic acid is a potential dual inhibitor targeting TNFα/IL-4 evaluated by a combination strategy of network analysis-deep learning-molecular simulation. Comput Biol Med 2022; 145:105410. [PMID: 35325732 DOI: 10.1016/j.compbiomed.2022.105410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/03/2022]
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disease involving multiple signaling pathways. One of the effective treatment strategies of AD is to develop a new drug capable of regulating the key therapeutic targets. Here we report the combination use of network analysis, deep learning, and molecular simulation for the identification of key therapeutic targets for AD and screening of potential multi-target drugs. From the TCM@Taiwan database, we identify a small molecule, namely caffeoyl malic acid (CMA), to inhibit the key therapeutic targets (TNFα and IL-4) for AD. CMA is further identified as a TNFα inhibitor by a deep learning model based on convolutional neural network. Molecular simulations demonstrate that CMA can stably bind to TNFα and IL-4, thereby producing diverse effects on the structural fluctuation, structural flexibility, looseness, and motion strength of each protein. Furthermore, conformation alignments reveal that CMA makes the distance between chain A and C of TNFα become wider and the slit between the two α helices of IL-4 get narrow obviously. CMA leads to the change of protein conformation, which hinders the formation of the protein-receptor complex. Collectively, our findings suggest that CMA is a potential dual TNFα/IL-4 inhibitor for the treatment of AD.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Dongya Qin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|