1
|
Chen X, Wang X, Wang Q, Cai D, Yu J, Zhou D, Liu X, Yin F. Hydrolysis and transport characteristics of starch inclusion complexes with long-chain alkyl gallates: Controlled two-step release of gallic acid and retardation of starch digestion. Int J Biol Macromol 2025; 295:139337. [PMID: 39755318 DOI: 10.1016/j.ijbiomac.2024.139337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Corn starch inclusion complexes of alkyl gallates (typical phenololipid representatives), including stearyl gallate, dodecyl gallate, octyl gallate, and hexadecyl gallate, were synthesized by using a heat treatment method. Such inclusion complexes exhibited significantly improved two-step release properties for gallic acid. In other words, gallic acid was generated via the breakdown of alkyl gallates that were released from inclusion complexes in an everted rat intestinal sac model, as determined by HPLC-UV analysis. The produced gallic acid could subsequently pass through intestinal membranes. On the other hand, a glucose oxidase-peroxidase analysis revealed that starch inclusion complexes can slow down starch digestion by increasing the proportion of resistant starch (from 12.2 % to 14.5-30.8 %) and decreasing the proportion of rapidly digestible starch (from 51.2 % to 39.4-49.2 %). Importantly, the two-step release characteristics of gallic acid and the retardation behavior of starch digestion can be easily regulated by modifying the acyl carbon chain length.
Collapse
Affiliation(s)
- Xuan Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
| | - Xinmiao Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Qian Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Dong Cai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Jinghan Yu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Dayong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xiaoyang Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Fawen Yin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| |
Collapse
|
2
|
Chen X, Wang X, Wang Q, Cai D, Yu J, Zhu B, Zhou D, Yin F. In vitro hydrolysis of V-type starch inclusion complexes of alkyl gallates: the controlled two-step release behavior of gallic acid and its beneficial effect on glycemic control. Food Funct 2025; 16:1550-1561. [PMID: 39907005 DOI: 10.1039/d4fo05743k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The heat treatment method was used to synthesize starch inclusion complexes from starch and short-chain alkyl gallates (a typical representative of phenololipids), such as butyl gallate, propyl gallate, ethyl gallate and methyl gallate. In an everted rat gut sac model, HPLC-UV analysis revealed that the released alkyl gallates from inclusion complexes were degraded to produce gallic acid. Gallic acids (0.009455-0.014160 nmol min-1) and alkyl gallates (0.2695-0.9441 nmol min-1) were both able to pass through intestinal membranes. After transmembrane transfer, alkyl gallates could also be hydrolyzed to produce gallic acid (1.947 × 10-5-2.290 × 10-5 min-1). It was evident that such an inclusion complex demonstrated superior dual sustained-release characteristics for phenolic compounds. Meanwhile, starch inclusion complexes can also slow down starch digestion by raising resistant starch (from 12.2% to 27.2-46.0%) and lowering rapidly digestible starch (from 51.2% to 22.2-51.2%), according to a glucose oxidase-peroxidase analysis. The delayed digestion behavior of starch in inclusion complexes is very beneficial for blood glucose control. Thus, our work effectively established a theoretical foundation for modifying the dual sustained-release behavior of phenolic compounds and the retardation of starch digestion by adjusting the carbon-chain length in starch inclusion complexes.
Collapse
Affiliation(s)
- Xuan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
| | - Xinmiao Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Qian Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Dong Cai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Jinghan Yu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Beiwei Zhu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Dayong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Fawen Yin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| |
Collapse
|
3
|
Peng H, Shahidi F. Metabolic, toxicological, chemical, and commercial perspectives on esterification of dietary polyphenols: a review. Crit Rev Food Sci Nutr 2024; 64:7465-7504. [PMID: 36908213 DOI: 10.1080/10408398.2023.2185589] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Molecular modifications have been practiced for more than a century and nowadays they are widely applied in food, pharmaceutical, or other industries to manipulate the physicochemical, bioactivity, metabolic/catabolic, and pharmacokinetic properties. Among various structural modifications, the esterification/O-acylation has been well-established in altering lipophilicity and bioactivity of parent bioactive compounds, especially natural polyphenolics, while maintaining their high biocompatibility. Meanwhile, various classic chemical and enzymatic protocols and other recently emerged cell factory technology are being employed as viable esterification strategies. In this contribution, the main motivations of phenolic esterification, including the tendency to replace synthetic alkyl phenolics with safer alternatives in the food industry to improve the bioavailability of phenolics as dietary supplements/pharmaceuticals, are discussed. In addition, the toxicity, metabolism, and commercial application of synthetic and natural phenolics are briefly introduced. Under these contexts, the mechanisms and reaction features of several most prevalent chemical and enzymatic esterification pathways are demonstrated. In addition, insights into the studies of esterification modification of natural phenolic compounds and specific pros/cons of various reaction systems with regard to their practical application are provided.
Collapse
Affiliation(s)
- Han Peng
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
4
|
Wang X, Wang Q, Cai D, Yu J, Chen X, Guo X, Tong P, Liu X, Yin F, Zhou D. Comparative study on the enzymatic degradation of phenolic esters: The HPLC-UV quantification of tyrosol and gallic acid liberated from tyrosol acyl esters and alkyl gallates by hydrolytic enzymes. Food Chem 2024; 442:138529. [PMID: 38271912 DOI: 10.1016/j.foodchem.2024.138529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
HPLC-UV analysis was used to evaluate the enzymatic degradation characteristics of tyrosol acyl esters (TYr-Es) and alkyl gallates (A-GAs). Among various hydrolytic enzymes, TYr-Es can be hydrolyzed by pancrelipase, while A-GAs cannot be hydrolyzed by pancrelipase. Interestingly, carboxylesterase-1b (CES-1b), carboxylesterase-1c (CES-1c) and carboxylesterase-2 (CES-2) are able to hydrolyze TYr-Es and A-GAs, and thus to liberate tyrosol (TYr) and gallic acid (GA). By contrast, the degrees of hydrolysis (DHs) of TYr-Es and A-GAs by CES-1b and CES-1c were significantly higher than those by CES-2. Meanwhile, the DHs of TYr-Es were much higher than those of A-GAs. Especially, the DHs firstly increased and then decreased with the increasing alkyl chain length. Besides, DHs positively correlated with the unsaturation degree at the same chain length. Through regulating carbon length, unsaturation degree and the ester bond structure, controlled-release of phenolic compounds and fatty acids (or fatty alcohols) from phenolic esters will be easily achieved.
Collapse
Affiliation(s)
- Xinmiao Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Qian Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Dong Cai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Jinghan Yu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xuan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
| | - Xu Guo
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Peiyong Tong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xiaoyang Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Fawen Yin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Dayong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| |
Collapse
|
5
|
Wang W, Xin X, Zhang M, Li X, Zhao G, Bai WD. Improving physicochemical characteristics and cytotoxicity of baicalin esters by liposome encapsulation. J Microencapsul 2024; 41:312-325. [PMID: 38717966 DOI: 10.1080/02652048.2024.2348462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
The instability of ester bonds, low water solubility, and increased cytotoxicity of flavonoid glycoside esters significantly limit their application in the food industry. Therefore, the present study attempted to resolve these issues through liposome encapsulation. The results showed that baicalin butyl ester (BEC4) and octyl ester (BEC8) have higher encapsulation and loading efficiencies and lower leakage rate from liposomes than baicalin. FTIR results revealed the location of BEC4 and BEC8 in the hydrophobic layer of liposomes, which was different from baicalin. Additionally, liposome encapsulation improved the water solubility and stability of BEC4 and BEC8 in the digestive system and PBS but significantly reduced their cytotoxicity. Furthermore, the release rate of BEC4 and BEC8 from liposomes was lower than that of baicalin during gastrointestinal digestion. These results indicate that liposome encapsulation alleviated the negative effects of fatty chain introduction into flavonoid glycosides.
Collapse
Affiliation(s)
- Wei Wang
- College of Light Industry and Food Technology, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Xuan Xin
- College of Light Industry and Food Technology, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Mengmeng Zhang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Xiaofeng Li
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Guanglei Zhao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Wei Dong Bai
- College of Light Industry and Food Technology, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Williams LM, Cao S. Harnessing and delivering microbial metabolites as therapeutics via advanced pharmaceutical approaches. Pharmacol Ther 2024; 256:108605. [PMID: 38367866 PMCID: PMC10985132 DOI: 10.1016/j.pharmthera.2024.108605] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/05/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Microbial metabolites have emerged as key players in the interplay between diet, the gut microbiome, and host health. Two major classes, short-chain fatty acids (SCFAs) and tryptophan (Trp) metabolites, are recognized to regulate inflammatory, immune, and metabolic responses within the host. Given that many human diseases are associated with dysbiosis of the gut microbiome and consequent reductions in microbial metabolite production, the administration of these metabolites represents a direct, multi-targeted treatment. While a multitude of preclinical studies showcase the therapeutic potential of both SCFAs and Trp metabolites, they often rely on high doses and frequent dosing regimens to achieve systemic effects, thereby constraining their clinical applicability. To address these limitations, a variety of pharmaceutical formulations approaches that enable targeted, delayed, and/or sustained microbial metabolite delivery have been developed. These approaches, including enteric encapsulations, esterification to dietary fiber, prodrugs, and nanoformulations, pave the way for the next generation of microbial metabolite-based therapeutics. In this review, we first provide an overview of the roles of microbial metabolites in maintaining host homeostasis and outline how compromised metabolite production contributes to the pathogenesis of inflammatory, metabolic, autoimmune, allergic, infectious, and cancerous diseases. Additionally, we explore the therapeutic potential of metabolites in these disease contexts. Then, we provide a comprehensive and up-to-date review of the pharmaceutical strategies that have been employed to enhance the therapeutic efficacy of microbial metabolites, with a focus on SCFAs and Trp metabolites.
Collapse
Affiliation(s)
- Lindsey M Williams
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Shijie Cao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
7
|
Wang X, Wang Q, Hu Y, Yin F, Liu X, Zhou D. Hydrolysis and transport characteristics of tyrosol-SCFA esters in rat intestine and blood: Two-step release of tyrosol and SCFAs to enhance the beneficial effects. Food Chem 2023; 414:135710. [PMID: 36821923 DOI: 10.1016/j.foodchem.2023.135710] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
The models of rat everted gut sac and hydrolysis by rat plasma were used to clarify the hydrolysis and transport characteristics of tyrosol-SCFA esters (TYr-SEs). HPLC-UV results indicated that TYr-SEs could be hydrolyzed by intestinal lipase, which showed sustained release of SCFAs and TYr. Meanwhile, TYr-SEs and the liberated SCFAs and TYr could cross the membrane and were transported into blood circulation. TYr-SEs were further hydrolyzed by carboxylesterase in plasma. Obviously, the hydrolysis of TYr-SEs in blood also showed sustained release of SCFAs and TYr. Especially, the rates of hydrolysis and transport correlated positively with the acyl chain lengths. Besides, the above rates of the TYr-SE with a straight chain were greater than those of its isomer with a branched chain. Therefore, the above-mentioned two-step release of SCFAs and TYr clearly demonstrated that TYr-SEs would be an effective approach to enhance the beneficial health effects of SCFAs and TYr.
Collapse
Affiliation(s)
- Xinmiao Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Qian Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yuanyuan Hu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China; Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Fawen Yin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Xiaoyang Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Dayong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| |
Collapse
|
8
|
Wang X, Wang Q, Hu Y, Yin F, Liu X, Zhou D. Gastrointestinal Digestion and Microbial Hydrolysis of Alkyl Gallates: Potential Sustained Release of Gallic Acid. Foods 2022; 11:foods11233936. [PMID: 36496745 PMCID: PMC9737867 DOI: 10.3390/foods11233936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Phenolipids such as alkyl gallates (A-GAs) have been approved by the food industry as non-toxic antioxidant additives, which are also regarded as an emerging source of functional food ingredients. However, comprehensive understanding of their digestive absorption is needed. Thus, the models of live mice and anaerobic fermentation were used to clarify the distribution and microbial hydrolysis characteristics of A-GAs in the gastrointestinal tract. HPLC-UV results demonstrated that A-GAs could be hydrolyzed by intestinal lipases and gut microorganisms including Lactobacillus to produce free gallic acid (GA). Through regulating the chain length of the lipid part in A-GAs, the sustained and controllable release of the GA can be easily achieved. Furthermore, A-GAs were also able to reach the colon and the cecum, which would lead to potential gastrointestinal protective effects. Therefore, A-GAs may be applied as possible ingredient for functional foods.
Collapse
Affiliation(s)
- Xinmiao Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Qian Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yuanyuan Hu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Fawen Yin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: ; Tel.: +86-0411-86323453
| | - Xiaoyang Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Dayong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|