1
|
Tiruneh A, Ptaszek P, Żmudziński D, Tarko T. Peas ( Pisum sativum subsp. arvense Asch) and Beans ( Vicia faba var. minor) as Source of Quality Plant Proteins. Molecules 2025; 30:2009. [PMID: 40363814 PMCID: PMC12073127 DOI: 10.3390/molecules30092009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/23/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
The demand for plant-based proteins has grown significantly due to their sustainability and lower environmental impact compared to animal proteins. Shifting from animal-based to plant-based diets, particularly those incorporating protein-rich legumes like beans and peas, can substantially reduce the climate footprint of food production. Underutilized legumes, which are often critical in resource-poor regions, hold immense potential for enhancing food security, nutrition, and agricultural development. Despite their importance, information about these legumes remains limited and region-specific. The shift towards plant proteins is further driven by the growing popularity of vegetarian and vegan diets, alongside mounting concerns over the environmental impacts of livestock farming. Consequently, plant proteins are increasingly favored over their animal-based counterparts in the food industry. Scientists are now exploring novel plant protein sources and developing superior-quality proteins with enhanced functional and nutritional characteristics using cutting-edge technologies. While traditional plant protein sources like wheat and soy present challenges such as allergenicity, pulses like peas, beans, chickpeas, and lentils are gaining prominence due to their agronomic and nutritional advantages. It is anticipated that ongoing research will address the existing knowledge gaps regarding the nutritional and health benefits of fodder seeds such as field bean and field pea seeds, broadening their application across diverse food industries. In this context, the present review focuses on the potential of field bean and field pea as valuable sources of food and functional ingredients. Despite their benefits, current knowledge about these crops is limited to specific geographic areas where they hold cultural or local significance.
Collapse
Affiliation(s)
- Abebaw Tiruneh
- Department of Engineering and Machinery in Food Industry, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland; (A.T.); (D.Ż.)
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar P.O. Box 26, Ethiopia
| | - Paweł Ptaszek
- Center for Innovation and Research on Prohealthy and Safe Food, University of Agriculture in Krakow, ul. Balicka 104, 30-149 Krakow, Poland
| | - Daniel Żmudziński
- Department of Engineering and Machinery in Food Industry, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland; (A.T.); (D.Ż.)
| | - Tomasz Tarko
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland
| |
Collapse
|
2
|
Yuan H, Huang H, Du Y, Zhao J, Yu S, Lin Y, Chen Y, Shan C, Zhao Y, Belwal T, Fu X. Sea buckthorn polyphenols on gastrointestinal health and the interactions with gut microbiota. Food Chem 2025; 469:142591. [PMID: 39721439 DOI: 10.1016/j.foodchem.2024.142591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
The potential health benefits of sea buckthorn polyphenols (SBP) have been extensively studied, attracting increasing attention from researchers. This paper reviews the composition of SBP, the effects of processing on SBP, its interactions with nutrients, and its protective role in the gastrointestinal tract. Polyphenols influence nutrient absorption and metabolism by regulating the intestinal flora, thereby enhancing bioavailability, protecting the gastrointestinal tract, and altering nutrient structures. Additionally, polyphenols exhibit anti-inflammatory and immunomodulatory effects, promoting intestinal health. The interaction between polyphenols and intestinal flora plays a significant role in gastrointestinal health, supporting the composition and diversity of the gut microbiota. However, further research is needed to emphasize the importance of human trials and to explore the intricate relationship between SBP and gut microbiota, as these insights are crucial for understanding the mechanisms underlying SBP's benefits for the gastrointestinal tract (GIT).
Collapse
Affiliation(s)
- Hexi Yuan
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Hao Huang
- College of Ecology, Lishui University, Lishui 323000, China
| | - Yinglin Du
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China.
| | - Jiaqi Zhao
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Shiyang Yu
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yanhong Lin
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yan Chen
- GOBI Memory Brand Management Co. Ltd, Ninth Division 170 Regiment Sea buckthorn Picking-garden, Tacheng 834700, China
| | - Chunhui Shan
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yue Zhao
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | | | - Xizhe Fu
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
3
|
Wei F, Ren X, Huang Y, Hua N, Wu Y, Yang F. Hydrodynamic cavitation induced fabrication of soy protein isolate-polyphenol complexes: Structural and functional properties. Curr Res Food Sci 2025; 10:100969. [PMID: 39867916 PMCID: PMC11762184 DOI: 10.1016/j.crfs.2024.100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/21/2024] [Accepted: 12/31/2024] [Indexed: 01/28/2025] Open
Abstract
The combination of polyphenols and protein can improve the functional characteristics of protein. How to effectively promote the binding of polyphenols to protein is still a difficult topic. In this study, hydrodynamic cavitation (HC) was used to induce the fabrication of complexes between soy protein isolate (SPI) and different polyphenols (tannic acid (TA), chlorogenic acid (CGA), ferulic acid (FA), caffeic acid (CA), and gallic acid (GA)). The effect of HC on the interaction between polyphenols and SPI was investigated, and the structural and functional properties of the formed complexes were characterized. The results showed that HC treatment led to SPI structure stretching, which increased the binding level of polyphenols, especially that of TA (increased from 35.08 ± 0.73% to 66.42 ± 1.35%). The increase in ultraviolet-visible absorption intensity and quenching of fluorescence intensity confirmed that HC enhanced the interaction between polyphenols and protein. HC treatment reduced the contents of free sulfhydryl and amino groups in SPI-polyphenol complexes and altered their Fourier transform infrared spectroscopy, indicating that HC treatment promoted the formation of C-N and C-S bonds between SPI and polyphenols. Circular dichroism spectroscopy indicated that HC treatment altered the secondary structure of SPI-polyphenol complexes, inducing an increase in α-helix and random coil contents and a decrease in β-sheet content. Regarding functional properties, HC treatment improved the emulsification and antioxidant activity of SPI-polyphenol complexes. Therefore, HC is an effective technique for promoting the binding of polyphenols to protein.
Collapse
Affiliation(s)
- Fengyan Wei
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Liuzhou, 545006, China
| | - Xianʹe Ren
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Liuzhou, 545006, China
- Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou, 545006, China
| | - Yongchun Huang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Liuzhou, 545006, China
- Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou, 545006, China
| | - Ning Hua
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Liuzhou, 545006, China
| | - Yuting Wu
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Liuzhou, 545006, China
| | - Feng Yang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Liuzhou, 545006, China
- Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou, 545006, China
| |
Collapse
|
4
|
Manzoor MF, Zeng XA, Waseem M, Siddique R, Javed MR, Verma DK, Ali M. Soy protein-polyphenols conjugates interaction mechanism, characterization, techno-functional and biological properties: An updated review. Food Chem 2024; 460:140571. [PMID: 39079358 DOI: 10.1016/j.foodchem.2024.140571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/06/2024] [Accepted: 07/21/2024] [Indexed: 09/05/2024]
Abstract
Soy protein is a promising nutritional source with improved functionality and bioactivities due to conjugation with polyphenols (PP)-the conjugates between soy protein and PP held by covalent and noncovalent bonds. Different approaches, including thermodynamics, spectroscopy, and molecular docking simulations, can demonstrate the outcomes and mechanism of these conjugates. The soy protein, PP structure, matrix properties (temperature, pH), and interaction mechanism alter the ζ-potential, secondary structure, thermal stability, and surface hydrophobicity of proteins and also improve the techno-functional properties such as gelling ability, solubility, emulsifying, and foaming properties. Soy protein-PP conjugates also reveal enhanced in vitro digestibility, anti-allergic, antioxidant, anticancer, anti-inflammatory, and antimicrobial activities. Thus, these conjugates may be employed as edible film additives, antioxidant emulsifiers, hydrogels, and nanoparticles in the food industry. Future research is needed to specify the structure-function associations of soy protein-PP conjugates that may affect their functionality and application in the food industry.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Muhammad Waseem
- Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Rabia Siddique
- Department of Chemistry, Government College University Faisalabad, Pakistan
| | - Muhammad Rizwan Javed
- Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Murtaza Ali
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
5
|
Chen Y, Li T, Jiang L, Huang Z, Zhang W, Luo Y. The composition, extraction, functional property, quality, and health benefits of coconut protein: A review. Int J Biol Macromol 2024; 280:135905. [PMID: 39332551 DOI: 10.1016/j.ijbiomac.2024.135905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Coconut is widely appreciated for its distinctive flavor and is commonly utilized in the production of a variety of goods. Coconut protein, a by-product derived from coconut oil and coconut milk cake, is frequently underutilized or discarded. This study provides a comprehensive overview of the distribution and composition of coconut protein. Analyses reveal that coconut protein, specifically 11S globulin and 7S globulin, is predominantly found in coconut flesh. Furthermore, various extraction techniques for coconut protein, such as chemical, enzymatic, and physical methods, are discussed. The alkali dissolution and acid precipitation methods are widely utilized for extracting coconut protein, with the potential for enhancement through the incorporation of physical methods such as ultrasound. The evaluation of functional properties, quality, and health benefits of coconut protein is essential, given the limitations imposed by its solubility. Modification may be necessary to optimize its functional properties. Coconut presents a promising source of food protein, characterized by balanced amino acid composition, high digestibility, and low allergenic potential. In conclusion, this study provides a comprehensive overview of the extraction methods, functional properties, quality, and nutritional benefits of coconut protein, offering insights for potential future research directions in the field. Additionally, the information presented may serve as a valuable reference for incorporating coconut protein into plant-based food products.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States of America
| | - Tong Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lianzhou Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhaoxian Huang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570228, China.
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States of America.
| |
Collapse
|
6
|
Xue Z, Zhang M, Wang M, Wang S, Wang S, Wang P, Li J, Liu H. Development and characterization of adhesives constructed by soy protein isolate and tea polyphenols for enhanced tensile strength in plant-protein meat applications. Food Chem 2024; 453:139643. [PMID: 38761734 DOI: 10.1016/j.foodchem.2024.139643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
The study aimed to evaluate a food adhesive developed using tea polyphenols (TPs) with soybean protein isolate (SPI) to create a cohesive bond between soy protein gel and simulated fat. Upon the addition of 5.0 % TPs, significant increases in viscosity, thermal stability, and crystallinity were noted in adhesives, suggesting the formation of a cohesive network. Furthermore, TPs effectively enhanced adhesion strength, with the optimal addition being 5.0 %. This enhancement can be attributed to hydrogen bonding, hydrophobic and electrostatic interactions between TPs and SPI molecules. TPs induced a greater expansion of the protein structure, exposing numerous buried hydrophobic groups to a more hydrophilic and polar environment. However, excessive TPs were found to diminish adhesion strength. This can be attributed to enhanced reactions between TPs and SPI, where high molecular weight SPI-TPs cooperatively aggregate to form agglomerates that eventually precipitated, rendering the adhesive network inhomogeneous, less stable, and more prone to disruption.
Collapse
Affiliation(s)
- Zixi Xue
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Minghao Zhang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Meiquan Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China.
| | - Shumin Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - Peng Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - Jun Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| |
Collapse
|
7
|
Brüls-Gill M, Boerkamp VJ, Hohlbein J, van Duynhoven JP. Spatiotemporal assessment of protein and lipid oxidation in concentrated oil-in-water emulsions stabilized with legume protein isolates. Curr Res Food Sci 2024; 9:100817. [PMID: 39228684 PMCID: PMC11369386 DOI: 10.1016/j.crfs.2024.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 08/03/2024] [Indexed: 09/05/2024] Open
Abstract
The growing trend of substituting animal-based proteins with plant-based proteins requires more understanding of the functionality and stability of vegan mayonnaises, especially regarding their susceptibility to lipid and protein oxidation. Here, we investigate the spatial and temporal dynamics of lipid and protein oxidation in emulsions stabilized with legume ((hydrolyzed) soy, pea, and faba bean) protein isolates (hSPI, SPI, PPI, FPI). We assessed lipid oxidation globally by NMR and locally by confocal laser scanning microscopy using the oxidation-sensitive fluorescent dye BODIPY 665/676. Further, we assessed local protein oxidation by employing protein autofluorescence and the fluorescently labeled radical spin-trap CAMPO-AFDye 647. Oxidation of oil in droplets was governed by the presence of tocopherols in the oil phase and pro-oxidant transition metals that were introduced via the protein isolates. Non-stripped oil emulsions stabilized with PPI and hSPI displayed higher levels of lipid hydroperoxides as compared to emulsions prepared with SPI and FPI. We attribute this finding to higher availability of catalytically active transition metals in PPI and hSPI. For stripped oil emulsions stabilized with SPI and FPI, lipid hydroperoxide concentrations were negligible in the presence of ascorbic acid, indicating that this agent acted as antioxidant. For the emulsions prepared with PPI and hSPI, lipid hydroperoxide formation was only partly inhibited by ascorbic acid, indicating a role as prooxidant. Interestingly, we observed protein-lipid aggregates in all emulsions. The aggregates underwent fast and extensive co-oxidation, which was also modulated by transition metals and tocopherols originating from the oil phase. Our study demonstrates the potential of spatiotemporal imaging techniques to enhance our understanding of the oxidation processes in emulsions stabilized with plant proteins.
Collapse
Affiliation(s)
- Mariska Brüls-Gill
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Vincent J.P. Boerkamp
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
- Microspectroscopy Research Facility, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - John P.M. van Duynhoven
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
- Unilever Global Foods Innovation Centre, Plantage 14, 6708 WJ Wageningen, the Netherlands
| |
Collapse
|
8
|
Kamani MH, Neji C, Fitzsimons SM, Fenelon MA, Murphy EG. Unlocking the nutritional and functional potential of legume waste to produce protein ingredients. Crit Rev Food Sci Nutr 2024; 64:7311-7329. [PMID: 36876476 DOI: 10.1080/10408398.2023.2184322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Worldwide, many production supply chains generate a considerable amount of legume by-products (e.g., leaves, husks, broken seeds, defatted cakes). These wastes can be revalorized to develop sustainable protein ingredients, with positive economic and environmental effects. To separate protein from legume by-products, a broad spectrum of conventional (e.g., alkaline solubilization, isoelectric precipitation, membrane filtration) and novel methodologies (e.g., ultrasound, high-pressure homogenization, enzymatic approaches) have been studied. In this review, these techniques and their efficiency are discussed in detail. The present paper also provides an overview of the nutritional and functional characteristics of proteins extracted from legume by-products. Moreover, existing challenges and limitations associated with the valorization of by-product proteins are highlighted, and future perspectives are proposed.
Collapse
Affiliation(s)
- Mohammad Hassan Kamani
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, County Cork, Ireland
| | - Chaima Neji
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Sinead M Fitzsimons
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, County Cork, Ireland
| | - Mark A Fenelon
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, County Cork, Ireland
| | - Eoin G Murphy
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, County Cork, Ireland
| |
Collapse
|
9
|
Patil ND, Bains A, Kaur S, Yadav R, Goksen G, Ali N, AlAsmari AF, Chawla P. Effect of dual modifications with ultrasonication and succinylation on Cicer arietinum protein-iron complexes: Characterization, digestibility, in-vitro cellular mineral uptake and preparation of fortified smoothie. Food Res Int 2024; 186:114344. [PMID: 38729696 DOI: 10.1016/j.foodres.2024.114344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
The research aimed to evaluate the effect of ultrasonication and succinylation on the functional, iron binding, physiochemical, and cellular mineral uptake efficacy of chickpea protein concentrate. Succinylation resulted in significant improvements in the water-holding capacity (WHC) (25.47 %), oil-holding capacity (OHC) (31.38 %), and solubility (5.80 %) of the chickpea protein-iron complex. Mineral bioavailability significantly increased by 4.41 %, and there was a significant increase in cellular mineral uptake (64.64 %), retention (36.68 %), and transport (27.96 %). The ferritin content of the succinylated chickpea protein-iron complex showed a substantial increase of 66.31%. Furthermore, the dual modification approach combining ultrasonication and succinylation reduced the particle size of the protein-iron complex with a substantial reduction of 83.25 %. It also resulted in a significant enhancement of 51.5 % in the SH (sulfhydryl) content and 48.92 % in the surface hydrophobicity. Mineral bioavailability and cellular mineral uptake, retention, and transport were further enhanced through dual modification. In terms of application, the addition of single and dual-modified chickpea protein-iron complex to a fruit-based smoothie demonstrated positive acceptance in sensory attributes. Overall, the combined approach of succinylation and ultrasonication to the chickpea protein-iron complex shows a promising strategy for enhancing the physiochemical and techno-functional characteristics, cellular mineral uptake, and the development of vegan food products.
Collapse
Affiliation(s)
- Nikhil Dnyaneshwar Patil
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rahul Yadav
- Shoolini Life Sciences Pvt. Ltd., Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey.
| | - Nemat Ali
- Département of Pharmacology and Toxicology, Collège of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah F AlAsmari
- Département of Pharmacology and Toxicology, Collège of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
10
|
Su G, Chen J, Huang L, Zhao M, Huang Q, Zhang J, Zeng X, Zhang Y, Deng L, Zhao T. Effects of walnut seed coat polyphenols on walnut protein hydrolysates: Structural alterations, hydrolysis efficiency, and acetylcholinesterase inhibitory capacity. Food Chem 2024; 437:137905. [PMID: 37922803 DOI: 10.1016/j.foodchem.2023.137905] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
The walnut meal is rich in nutrients such as protein from the kernel and polyphenolic compounds from the seed coat. However, the influences of seed coat polyphenols on walnut protein (WP) hydrolysis remained unclear. In this study, our findings indicated that polyphenols induced alterations in the secondary structure and amino acid composition of WP. These changes resulted in both a hindrance of hydrolysis and an enhancement of acetylcholinesterase (AChE) inhibition. Furthermore, four peptides of 119 identified peptides (LR, SF, FQ, and FR) were synthesized based on higher predicted bioactivity and Vinascores in silico. Among them, FQ showed interaction with amino acid residues in AChE through the formation of four π-π stacking bonds and two hydrogen bonds, resulting in the highest AChE inhibitory capacity. The combination index showed that chlorogenic acid derived from the seed coat and FQ at the molar ratio of 1:4 exhibited synergistic effects of AChE inhibition.
Collapse
Affiliation(s)
- Guowan Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jieqiong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lin Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, United States
| | - Jianan Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xi Zeng
- Guangzhou Institute for Food Control, Guangzhou 511400, China
| | - Yehui Zhang
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Liuxin Deng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tiantian Zhao
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; Department of Food Science, Rutgers University, New Brunswick, NJ 08901, United States; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, China.
| |
Collapse
|
11
|
Zhang X, Zhang T, Zhao Y, Jiang L, Sui X. Structural, extraction and safety aspects of novel alternative proteins from different sources. Food Chem 2024; 436:137712. [PMID: 37852073 DOI: 10.1016/j.foodchem.2023.137712] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
With rapid population growth and continued environmental degradation, it is no longer sustainable to rely on conventional proteins to meet human requirements. This has prompted the search for novel alternative protein sources of greater sustainability. Currently, proteins of non-conventional origin have been developed, with such alternative protein sources including plants, insects, algae, and even bacteria and fungi. Most of these protein sources have a high protein content, along with a balanced amino acid composition, and are regarded as healthy and nutritious sources of protein. While these novel alternative proteins have excellent nutritional, research on their structure are still at a preliminary stage, particularly so for insects, algae, bacteria, and fungi. Therefore, this review provides a comprehensive overview of promising novel alternative proteins developed in recent years with a focus on their nutrition, sustainability, classification, and structure. In addition, methods of extraction and potential safety factors for these proteins are summarized.
Collapse
Affiliation(s)
- Xin Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianyi Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Schmidt HDO, Oliveira VRD. Overview of the Incorporation of Legumes into New Food Options: An Approach on Versatility, Nutritional, Technological, and Sensory Quality. Foods 2023; 12:2586. [PMID: 37444324 DOI: 10.3390/foods12132586] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Consumers are more aware and demanding of healthy food options, besides being concerned with environment-friendly consumption. This paper aims to evaluate nutritional, technological, and sensory characteristics of legumes and their products' quality and versatility, considering potential applications in new food options. Legumes are foods that have a recognized nutritional group since they have high protein and fiber content. However, their consumption is still somehow limited for some reasons: in some countries it is not easy to find all the species or cultivars, they need an organization and planning before preparation since they need soaking, and there is the presence of antinutritional factors. Due to the different functionalities of legume proteins, they can be applied to a variety of foods and for different purposes, as grains themselves, aquafaba, extracts, flours, brans, and textured proteins and sprouts. These products have been inserted as ingredients in infant food formulations, gluten-free foods, vegetarian diets, and in hybrid products to reduce food costs as well. Foods such as bread, cakes, cookies, meat analogues, and other baked or cooked products have been elaborated with nutritional, technological and sensory quality. Further development of formulations focused on improving the quality of legume-based products is necessary because of their potential and protein quality.
Collapse
Affiliation(s)
- Helena de Oliveira Schmidt
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
| | - Viviani Ruffo de Oliveira
- Postgraduate Program in Food, Nutrition and Health, Nutrition Department, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil
| |
Collapse
|
13
|
Li S, Feng X, Hao X, Zhu Y, Zou L, Chen X, Yao Y. A comprehensive review of mung bean proteins: Extraction, characterization, biological potential, techno-functional properties, modifications, and applications. Compr Rev Food Sci Food Saf 2023; 22:3292-3327. [PMID: 37282814 DOI: 10.1111/1541-4337.13183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023]
Abstract
The popularity of plant-based proteins has increased, and mung bean protein (MBP) has gained immense attention due to its high yield, nutritional value, and health benefits. MBP is rich in lysine and has a highly digestible indispensable amino acid score. Dry and wet extractions are used to extract MBP flours and concentrates/isolates, respectively. To enhance the quality of commercial MBP flours, further research is needed to refine the purity of MBPs using dry extraction methods. Furthermore, MBP possesses various biological potential and techno-functional properties, but its use in food systems is limited by some poor functionalities, such as solubility. Physical, biological, and chemical technologies have been used to improve the techno-functional properties of MBP, which has expanded its applications in traditional foods and novel fields, such as microencapsulation, three-dimensional printing, meat analogs, and protein-based films. However, study on each modification technique remains inadequate. Future research should prioritize exploring the impact of these modifications on the biological potential of MBP and its internal mechanisms of action. This review aims to provide ideas and references for future research and the development of MBP processing technology.
Collapse
Affiliation(s)
- Shiyu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xuewei Feng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, P. R. China
| | - Xiyu Hao
- Heilongjiang Feihe Dairy Co., Ltd., Beijing, P. R. China
| | - Yingying Zhu
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, P. R. China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, P. R. China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, P. R. China
| | - Yang Yao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
14
|
Mao Y, Huang W, Jia R, Bian Y, Pan MH, Ye X. Correlation between Protein Features and the Properties of pH-Driven-Assembled Nanoparticles: Control of Particle Size. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5686-5699. [PMID: 37012896 DOI: 10.1021/acs.jafc.3c00147] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
This study sought to understand how the features of proteins impact the properties of nanoparticles assembled using the pH-shifting approach and the mechanism behind. Four legume protein isolates from faba bean, mung bean, soy, and pea were fractionated into natural aqueous-soluble (Sup) and aqueous-insoluble (Sed) fractions, which were proved to serve as shell and core, respectively, for the pH-driven-assembled nanoparticles. Using zein instead of Sed fractions as the core improved size uniformity, and particle size can be precisely controlled by adjusting core/shell ratios. Using the proteomic technique and silico characterization, the features of identified proteins indicated that hydrophobicity rather than molecular weight, surface charge, etc., mainly determined particle size. With molecular docking, structural analysis, and dissociation tests, the assembly of zein/Sup-based nanoparticles was dominantly driven by hydrophobic interactions. This study provides constructive information on the correlation between protein features and the properties of pH-driven-assembled nanoparticles, achieving a precise control of particle size.
Collapse
Affiliation(s)
- Yuhong Mao
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Technology, Fuzhou University, Fuzhou 350116, P.R. China
| | - Wenting Huang
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Technology, Fuzhou University, Fuzhou 350116, P.R. China
| | - Rongju Jia
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Technology, Fuzhou University, Fuzhou 350116, P.R. China
| | - Yangyang Bian
- The College of Life Science, Northwest University, Xi'an 710069, P.R. China
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Xiuyun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Technology, Fuzhou University, Fuzhou 350116, P.R. China
| |
Collapse
|
15
|
Tawalbeh D, Al-U’datt MH, Wan Ahmad WAN, Ahmad F, Sarbon NM. Recent Advances in In Vitro and In Vivo Studies of Antioxidant, ACE-Inhibitory and Anti-Inflammatory Peptides from Legume Protein Hydrolysates. Molecules 2023; 28:2423. [PMID: 36985395 PMCID: PMC10056053 DOI: 10.3390/molecules28062423] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/20/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Consumption of legumes has been shown to enhance health and lower the risk of cardiovascular disease and specific types of cancer. ACE inhibitors, antioxidants, and synthetic anti-inflammatories are widely used today; however, they have several undesirable side effects. Thus, researchers have focused on finding ACE inhibitors, antioxidant, and anti-inflammatory peptides from natural sources, such as legumes. Recently, in vitro and in vivo research has shown the bioactive peptides generated from legume protein hydrolysates, such as antioxidant, anti-hypertensive, anticancer, anti-proliferative, anti-inflammatory, etc., in the context of different disease mitigation. Therefore, this review aims to describe the recent advances in in vitro and in vivo studies of antioxidant, anti-hypertensive and anti-inflammatory peptides isolated from legume-derived protein hydrolysates. The results indicated that antioxidant legumes peptides are characterized by short-chain sequence amino acids and possess anti-hypertensive properties by reducing systolic blood pressure (SBP) in spontaneously hypertensive rats (SHR).
Collapse
Affiliation(s)
- Deia Tawalbeh
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Muhammad H. Al-U’datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | | | - Fisal Ahmad
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Norizah Mhd Sarbon
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| |
Collapse
|
16
|
Liu J, Song G, Zhou L, Yuan Y, Wang D, Yuan T, Li L, Yuan H, Xiao G, Gong J. Recent advances in the effect of ultrasound on the binding of protein−polyphenol complexes in foodstuff. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Affiliation(s)
- Jiayuan Liu
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Gongshuai Song
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Like Zhou
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Yawen Yuan
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Danli Wang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Tinglan Yuan
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Ling Li
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Haina Yuan
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Gongnian Xiao
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Jinyan Gong
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| |
Collapse
|
17
|
Pickering emulsions stabilized by hemp protein nanoparticles: Tuning the emulsion characteristics by adjusting anti-solvent precipitation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108434] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Liang Y, Guo Y, Zheng Y, Liu S, Cheng T, Zhou L, Guo Z. Effects of high-pressure homogenization on physicochemical and functional properties of enzymatic hydrolyzed soybean protein concentrate. Front Nutr 2022; 9:1054326. [PMID: 36505251 PMCID: PMC9729746 DOI: 10.3389/fnut.2022.1054326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
This paper investigates the effect on the physicochemical and functional properties of soybean protein concentrate (SPC) by using Alcalase protease and high-pressure homogenization (HPH) (0, 20, 40, 60, 80, and 100 MPa) for the combined modification. The results showed that the degree of hydrolysis of SPC was 4.1% and the antigen protein was degraded after Alcalase hydrolysis, when the homogenization pressure (HP) was 6 0Mpa, the particle size of the SPC was the smallest, the zate potential absolute value up to 33.45 mV, the secondary structure has the lowest β-sheet content, the highest random coil content, and the highest surface hydrophobicity (H0), the size of protein fragments on the microstructure surface is the smallest, the lowest denaturation temperature (T d ) and enthalpy (△H) are 72.59°C and 1.35 J/g, the highest solubility is 80.54%, and the highest water and oil holding capacities are 7.73 g/g and 6.51 g/g, respectively. The best emulsifying activity and emulsifying stability were 43.46 m2/g and 190.35 min, the most even distribution of emulsion droplets. This indicates that the HPH treatment destroys the structure of enzymatic hydrolyzed SPC, changes its physicochemical properties, and improves its functional properties. In this study, SPC was modified by HPH and enzyme combined treatment, in order to improve the functionality and application range of SPC, and provide a theoretical basis for its high-value utilization in the food field.
Collapse
Affiliation(s)
- Yaru Liang
- College of Food Science, Beijing Technology and Business University, Beijing, China
- College of Food, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Soybean Biology, Ministry of Education, Northeast Agricultural University, Harbin, Yunnan, China
| | - Yanan Guo
- College of Food, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuxuan Zheng
- College of Food, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Sibo Liu
- College of Food, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Tianfu Cheng
- College of Food, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Linyi Zhou
- College of Food Science, Beijing Technology and Business University, Beijing, China
| | - Zengwang Guo
- College of Food, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
19
|
Juárez-Chairez MF, Cid-Gallegos MS, Meza-Márquez OG, Jiménez-Martínez C. Biological functions of peptides from legumes in gastrointestinal health. A review legume peptides with gastrointestinal protection. J Food Biochem 2022; 46:e14308. [PMID: 35770807 DOI: 10.1111/jfbc.14308] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022]
Abstract
Extensively consumed worldwide, legumes such as beans, soybeans, chickpeas, and peas represent a great source of protein. Legume-derived proteins provide bioactive peptides, small sequences of amino acids produced by enzymatic hydrolysis, gastrointestinal digestion, fermentation, or germination. Recent studies showed diverse biological effects of these peptides as antioxidants, antihypertensives, anti-inflammatory, antimicrobial, antithrombotic, antidiabetic, hypocholesterolemic, and even immunomodulators. These beneficial effects aid in preventing and treating chronic illnesses, particularly inflammatory disorders, obesity, and cardiovascular diseases. Thus, this work discusses these biological functions in gastrointestinal digestion health of bioactive peptides obtained from common beans, soybeans, chickpeas, peas, and other legumes. PRACTICAL APPLICATIONS: Knowledge of the nutraceutical properties of legumes can encourage the use of these seeds as ingredients in the development and design of functional foods.
Collapse
Affiliation(s)
- Milagros Faridy Juárez-Chairez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - María Stephanie Cid-Gallegos
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - Ofelia Gabriela Meza-Márquez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - Cristian Jiménez-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| |
Collapse
|
20
|
Cai Y, Zhang Y, Qu Q, Xiong R, Tang H, Huang C. Encapsulated Microstructures of Beneficial Functional Lipids and Their Applications in Foods and Biomedicines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8165-8187. [PMID: 35767840 DOI: 10.1021/acs.jafc.2c02248] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Beneficial functional lipids are essential nutrients for the growth and development of humans and animals, which nevertheless possess poor chemical stability because of heat/light-sensitivity. Various encapsulation technologies have been developed to protect these nutrients against adverse factors. Different microstructures are exhibited through different encapsulation methods, which influence the encapsulation efficiency and release behavior at the same time. This review summarizes the effects of preparation methods and process parameters on the microstructures of capsules at first. The mechanisms of the different microstructures on encapsulation efficiency and controlled release behavior of core materials are analyzed. Next, a comprehensive overview on the beneficial functional lipids capsules in the latest food and biomedicine applications are provided as well as the matching relationship between the microstructures of the capsules and applications are discussed. Finally, the remaining challenges and future possible directions that have potential interest are outlined. The purpose of this review is to convey the construction of beneficial functional lipids capsules and the function mechanism, a critical analysis on its current status and challenges, and opinions on its future development. This review is believed to promote communication among the food, pharmacy, agronomy, engineering, and nutrition industries.
Collapse
Affiliation(s)
- Yixin Cai
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Yingying Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Qingli Qu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Hu Tang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, P. R. China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| |
Collapse
|
21
|
Wen C, Zhang J, Zhang H, Duan Y. New Perspective on Natural Plant Protein-Based Nanocarriers for Bioactive Ingredients Delivery. Foods 2022; 11:foods11121701. [PMID: 35741899 PMCID: PMC9223235 DOI: 10.3390/foods11121701] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
The health effects of bioactive substances in the human body are affected by several factors, including food processing conditions, storage conditions, light and heat, among others. These factors greatly limit the stability and bioavailability of bioactive substances. These problems can be solved by a novel protein-based nanocarrier technology, which has the excellent potential to enhance solubility, bioavailability, and the controlled release of bioactive substances. In addition, plant protein has the advantages of economy, environmental protection, and high nutrition compared to animal protein. In this review, the preparation, characterization, and application of plant protein-based nanocarriers are summarized. The research deficiency and future prospects of plant protein nanocarriers are emphasized.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
- Correspondence: (J.Z.); (Y.D.)
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- Correspondence: (J.Z.); (Y.D.)
| |
Collapse
|