1
|
Cheng B, Feng H, Li C, Jia F, Zhang X. The mutual effect of dietary fiber and polyphenol on gut microbiota: Implications for the metabolic and microbial modulation and associated health benefits. Carbohydr Polym 2025; 358:123541. [PMID: 40383597 DOI: 10.1016/j.carbpol.2025.123541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 05/20/2025]
Abstract
Gut microbiota plays a critical role in maintaining human health by regulating digestion, metabolism, and immune function. Emerging research highlights the potential of dietary interventions, particularly dietary fiber (DF) and polyphenols, in modulating gut microbiota composition and function. DF serves as a fermentable substrate for beneficial gut bacteria, promoting the production of short-chain fatty acids (SCFAs). Polyphenols, a diverse group of bioactive compounds selectively modulate microbial populations and contribute to the production of bioactive metabolites with host health benefits. Importantly, the interplay between DF and polyphenols creates a synergistic effect within the gut microbiome, shaping microbial diversity, enhancing SCFAs production, and strengthening gut barrier function, which together support metabolic and immune homeostasis. This review systematically explores the synergistic effects of DF-polyphenol combinations on gut microbiota modulation, microbial metabolites, and their implications for overall health. The combined effects of DF and polyphenols hold promise for targeted nutritional strategies in preventing metabolic disorders and improving gut health. Moreover, the extent of these benefits is influenced by the structural characteristics of DF, the source and dosage of polyphenols, and individual gut microbiota composition. Further research is warranted to optimize DF-polyphenol interactions and facilitate their applications in personalized nutrition and functional food development.
Collapse
Affiliation(s)
- Bo Cheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongyan Feng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Cheng Li
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
| | - Fei Jia
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Xiaowei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
2
|
Yuan D, Xiao W, Tao X, Gao Z, Wu Y, Jiang W, Li Y, Ni X, Zhou M. Formation of dimers delayed alginate degradation in fecal microbiota fermentation. Carbohydr Polym 2025; 358:123524. [PMID: 40383583 DOI: 10.1016/j.carbpol.2025.123524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 05/20/2025]
Abstract
The present study was to examine the dimer formation of two alginate chains and its degradation in gut microbiota using an in vitro colon fermentation model. The most rapid degradation stage of guluronate in alginate was from 6 h to 24 h (1.68 μg/mL/h), while guluronate in dimers was from 24 h to 36 h (1.69 μg/mL/h). The degradation extent of alginate (97.40 %) was remarkably higher than that of dimers (84.20 %) in 48 h fermentation. Fecal microbiota randomly cleaved alginate into discrete mannuronate blocks (M-blocks), guluronate blocks (G-blocks), or M/G G-blocks. In contrast, dimers were sequentially cleaved into M-blocks before the crosslinked G-blocks. Approximately 25 % of crosslinked G-blocks survived the 48-h fermentation. Furthermore, three Bacteroides spp. strains could collaboratively degrade M-blocks and then crosslinked G-blocks in dimers sequentially. Collectively, the crosslinked G-blocks impeded the dimer degradation by fecal microbiota, presenting a slower degradation rate and a lesser degradation extent.
Collapse
Affiliation(s)
- Dan Yuan
- Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Wenqian Xiao
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Xingyu Tao
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Zhiming Gao
- Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China.
| | - Yuehan Wu
- Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Wenxin Jiang
- Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Yanlei Li
- Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Xuewen Ni
- Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Mengzhou Zhou
- Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| |
Collapse
|
3
|
Gan M, Cao A, Cai L, Xiang X, Li J, Luan Q. Preparation of cellulose-based nanoparticles via electrostatic self-assembly for the pH-responsive delivery of astaxanthin. Food Chem 2025; 463:141324. [PMID: 39321653 DOI: 10.1016/j.foodchem.2024.141324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
Oral administration of astaxanthin (AST), a potent antioxidant, is limited owing to its low solubility, physicochemical stability, and bioavailability. This study developed pH-responsive nanocarriers by the electrostatic self-assembly of 2,2,6,6-tetramethylpiperidine-1-oxyradical (TEMPO)-oxidized cellulose nanofibers (TCNFs) and chitosan (CS) to enhance the intestinal delivery of AST. The TCNF/CS@AST nanoparticles were optimized through single-factor experiments and Box-Behnken design, subsequently overcoming the hydrophobicity of AST and demonstrating improved stability against environmental stressors and controlled release in the intestinal environment. Transmission electron microscopy confirmed the near-spherical shape of these nanoparticles, with an average hydrodynamic diameter of 64 nm. TCNF/CS@AST enhanced the antioxidant effectiveness of AST after digestion and in lipopolysaccharide-stimulated RAW 264.7 cells while demonstrating good cellular compatibility. These nanoparticles present a promising strategy for the oral delivery of hydrophobic bioactive compounds orally, with potential applications in precision nutrition.
Collapse
Affiliation(s)
- Miaoyu Gan
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
| | - Ailing Cao
- Silk Inspection Center, Hangzhou Customs, Hangzhou 310063, China
| | - Luyun Cai
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Polytechnic Institute, Zhejiang University, Hangzhou 310015, China; College of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| | - Xia Xiang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jian Li
- Ningbo Luming Biotechnology Co., Ltd, Ningbo 315100, China
| | - Qian Luan
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Polytechnic Institute, Zhejiang University, Hangzhou 310015, China; College of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| |
Collapse
|
4
|
Lin J, Li S, Li C. Targeting gut microbiota by starch molecular size and chain-length distribution to produce various short-chain fatty acids. Carbohydr Polym 2025; 347:122707. [PMID: 39486948 DOI: 10.1016/j.carbpol.2024.122707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/12/2024] [Accepted: 09/03/2024] [Indexed: 11/04/2024]
Abstract
The detailed relationships among starch fine molecular structures, gut microbiota, and short-chain fatty acids (SCFAs) are not fully understood. We hypothesized that specific starch molecular size and chain-length distribution are favored by gut bacteria for the secretion of SCFAs. To investigate this, different types of starches with diverse molecular size and chain-length distributions (e.g., amylose content ranging from about 1 % to 38 %) were subjected to in vitro fermentation with human fecal inocula. Tapioca and waxy maize starches were notably more effective at producing acetate and propionate compared to lentil, wheat, and pea starches (p < 0.05). Correlation analysis revealed, for the first time, that the number of amylose chains with a degree of polymerization between 500 and 5000 was positively correlated with the abundance of Bacteroides_coprocola_DSM_17136 and Bacteroides_plebeius, possibly relating to the higher production of acetate and propionate. These results indicate that starches with certain fine molecular structures could be used to target gut bacteria to produce various types of SCFAs, thereby amplifying beneficial effects on human health.
Collapse
Affiliation(s)
- Jiakang Lin
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Cheng Li
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China.
| |
Collapse
|
5
|
Liu A, Wu H, Dong Z, Fan Q, Huang J, Jin Z, Xiao N, Liu H, Li Z, Ming L. Recent trends in nanocellulose: Metabolism-related, gastrointestinal effects, and applications in probiotic delivery. Carbohydr Polym 2024; 343:122442. [PMID: 39174123 DOI: 10.1016/j.carbpol.2024.122442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 08/24/2024]
Abstract
Nanocellulose, a versatile and sustainable nanomaterial derived from cellulose fibers, has attracted considerable attention in various fields due to its unique properties. Similar to dietary fibers, nanocellulose is difficult to digest in the human gastrointestinal tract. The indigestible nanocellulose is fermented by gut microbiota, producing metabolites and potentially exhibiting prebiotic activity in intestinal diseases. Additionally, nanocellulose can serve as a matrix material for probiotic protection and show promising prospects for probiotic delivery. In this review, we summarize the classification of nanocellulose, including cellulose nanocrystals (CNC), cellulose nanofibers (CNF), and bacterial nanocellulose (BNC), highlighting their distinct characteristics and applications. We discuss the metabolism-related characteristics of nanocellulose from oral ingestion to colon fermentation and introduce the prebiotic activity of nanocellulose in intestinal diseases. Furthermore, we provide an overview of commonly used nanocellulose-based encapsulation techniques, such as emulsification, extrusion, freeze drying, and spray drying, as well as the delivery systems employing nanocellulose matrix materials, including microcapsules, emulsions, and hydrogels. Finally, we discuss the challenges associated with nanocellulose metabolism, prebiotic functionality, encapsulation techniques, and delivery systems using nanocellulose matrix material for probiotics. This review will provide new insight into the application of nanocellulose in the treatment of intestinal diseases and probiotic delivery.
Collapse
Affiliation(s)
- Ao Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hailian Wu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Zishu Dong
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Qimeng Fan
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Jia Huang
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Zhengji Jin
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Nan Xiao
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hongning Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| | - Zhe Li
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| | - Liangshan Ming
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| |
Collapse
|
6
|
Qin Z, Ng W, Ede J, Shatkin JA, Feng J, Udo T, Kong F. Nanocellulose and its modified forms in the food industry: Applications, safety, and regulatory perspectives. Compr Rev Food Sci Food Saf 2024; 23:e70049. [PMID: 39495568 DOI: 10.1111/1541-4337.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/16/2024] [Accepted: 10/02/2024] [Indexed: 11/06/2024]
Abstract
Nanocellulose (NC), known for its unique properties including high mechanical strength, low density, and extensive surface area, presents significant potential for broad application in the food sector. Through further modification, NC can be enhanced and adapted for various purposes. Applications in the food industry include stabilizing, encapsulating, and packaging material. Additionally, due to its unique characteristics during digestion in the gastrointestinal tract, NC and its derivatives exhibit the potential to be used as health-promotion food ingredients. However, while the safety data on unmodified NC is readily available, the safety of modified forms of NC for use in food remains uncertain. This review offers a comprehensive analysis of recent breakthroughs in NC and its derivatives for innovative food applications. It synthesizes existing research on safety evaluations, with a particular emphasis on the latest findings on toxicity and biocompatibility. Furthermore, the paper outlines the regulatory landscape for NC-based food ingredients and food contact materials in the United States and European Union and provides recommendations to expedite regulatory authorization and commercialization. Ultimately, this work offers valuable insights to promote the sustainable and innovative application of NC compounds in the food sector.
Collapse
Affiliation(s)
- Zijin Qin
- Department of Food Science and Technology, University of Georgia, Clarke, Athens, Georgia, USA
| | - Wei Ng
- Vireo Advisors, LLC, Boston, Massachusetts, USA
| | - James Ede
- Vireo Advisors, LLC, Boston, Massachusetts, USA
| | | | - Jiannan Feng
- Department of Food Science and Technology, University of Georgia, Clarke, Athens, Georgia, USA
| | - Toshifumi Udo
- Department of Food Science and Technology, University of Georgia, Clarke, Athens, Georgia, USA
| | - Fanbin Kong
- Department of Food Science and Technology, University of Georgia, Clarke, Athens, Georgia, USA
| |
Collapse
|
7
|
Mora-Castaño G, Domínguez-Robles J, Himawan A, Millán-Jiménez M, Caraballo I. Current trends in 3D printed gastroretentive floating drug delivery systems: A comprehensive review. Int J Pharm 2024; 663:124543. [PMID: 39094921 DOI: 10.1016/j.ijpharm.2024.124543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Gastrointestinal (GI) environment is influenced by several factors (gender, genetics, sex, disease state, food) leading to oral drug absorption variability or to low bioavailability. In this scenario, gastroretentive drug delivery systems (GRDDS) have been developed in order to solve absorption problems, to lead to a more effective local therapy or to allow sustained drug release during a longer time period than the typical oral sustained release dosage forms. Among all GRDDS, floating systems seem to provide a promising and practical approach for achieving a long intra-gastric residence time and sustained release profile. In the last years, a novel technique is being used to manufacture this kind of systems: three-dimensional (3D) printing technology. This technique provides a versatile and easy process to manufacture personalized drug delivery systems. This work presents a systematic review of the main 3D printing based designs proposed up to date to manufacture floating systems. We have also summarized the most important parameters involved in buoyancy and sustained release of the systems, in order to facilitate the scale up of this technology to industrial level. Finally, a section discussing about the influence of materials in drug release, their biocompatibility and safety considerations have been included.
Collapse
Affiliation(s)
- Gloria Mora-Castaño
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Juan Domínguez-Robles
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Achmad Himawan
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Mónica Millán-Jiménez
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain.
| | - Isidoro Caraballo
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| |
Collapse
|
8
|
Yuan D, Xiao W, Gao A, Lu W, Gao Z, Hu B, Wu Y, Jiang W, Li Y. In vitro colon fermentation behaviors of Ca 2+ cross-linked guluronic acid block from sodium alginate. Food Funct 2024; 15:8128-8142. [PMID: 39011745 DOI: 10.1039/d4fo00934g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The degradation of sodium alginate by human gut microbiota was found to be retarded via calcium cross-linking in our previous study. We hypothesized that the guluronic acid block (GB) on the alginate molecule might be the key structural region affecting alginate degradation by the gut microbiota when cross-linked with calcium. This study aims to prove this hypothesis by studying the structural features of the cross-linked GB on its in vitro fecal fermentation behaviors concerning the aspects of total carbohydrate contents, monosaccharide contents, short-chain fatty acids production, calcium state variations, and structural variations. Herein, GB isolated from sodium alginate was cross-linked under ranges of molar ratios of [Ca2+]/[-COOH] that further restricted the degradation by gut microbiota similar to the cross-linked alginates. First, total carbohydrate contents, short-chain fatty acids production, monosaccharides contents, and calcium state analyses confirmed that the degradation of GB by gut microbiota was restricted by calcium cross-linking. Furthermore, the tracking analysis of structural variations during in vitro fermentation revealed that the "granules" structure could further restrict degradation by the gut microbiota, leaving more cross-linked GB fragments surviving in comparison to the "networks" structure. In addition, Bacteroides xylanisolvens showed a significant positive correlation to the "cross-linking porosity (R = 0.825, p < 0.001), which supported our previous findings on fermentation behaviors of cross-linked alginate. Together, guluronic acid blocks are the key structural regions that retard the degradation of sodium alginate by the gut microbiota when cross-linked with calcium.
Collapse
Affiliation(s)
- Dan Yuan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China.
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China
| | - Wenqian Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China.
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China
| | - Ao Gao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China.
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China
| | - Wei Lu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China.
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China
| | - Zhiming Gao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China.
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Yuehan Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China.
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China
| | - Wenxin Jiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China.
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China
| | - Yanlei Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China.
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China
| |
Collapse
|
9
|
Zhong J, Xie H, Wang Y, Xiong H, Zhao Q. Nanofibrillated cellulose derived from rice bran, wheat bran, okara as novel dietary fibers: Structural, physicochemical, and functional properties. Int J Biol Macromol 2024; 273:132902. [PMID: 38852734 DOI: 10.1016/j.ijbiomac.2024.132902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Affiliation(s)
- Junbai Zhong
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hexiang Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Yufeng Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Qiang Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China.
| |
Collapse
|
10
|
Zhang X, Yi X, Yu W, Chen T, Gao B, Gilbert RG, Li C. Subtle structural variations of resistant starch from whole cooked rice significantly impact metabolic outputs of gut microbiota. Carbohydr Polym 2024; 329:121779. [PMID: 38286529 DOI: 10.1016/j.carbpol.2024.121779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 01/01/2024] [Indexed: 01/31/2024]
Abstract
While cooked rice is widely consumed as a whole food, the specific characteristics and impact of its resistant starch (RS) on gut microbiota are largely unexplored. In this study, three rice varieties with distinct starch molecular structures were used to prepare RS from cooked rice. All three types of RS had a crystalline structure characterized as B + V type, with the V type being the predominant crystalline polymorph. Distinct differences in chain-length distributions were observed among different RSs, with rapidly fermentable starch fractions comprising short amylopectin and long amylose chains, while the degrees of polymerization (DPs) ∼ 10, 37, 65, and 105 fractions comprised the slowly fermentable starch. Jasmine rice RS showed the highest proportion of this slowly fermentable starch fraction, which appeared to be specifically utilized by Megasphaera_elsdenii_DSM_20460 OTU198. The fermentation of Jasmine RS resulted in the highest production of butyrate after 24 h, which was positively correlated with the relative abundance of Megasphaera_elsdenii_DSM_20460 OTU198. These findings collectively indicate that RS in cooked rice with a higher V type crystallinity and DPs ∼ 10, 37, 65, and 105 fractions promote butyrate production and stimulate the growth of butyrate-producing bacteria in the human gut, thereby conferring beneficial effects on gut health.
Collapse
Affiliation(s)
- Xiaowei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueer Yi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenwen Yu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, China
| | - Tingting Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Boyan Gao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Robert G Gilbert
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu Province, China; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia
| | - Cheng Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China.
| |
Collapse
|
11
|
He X, Sun C, Zhao J, Zhang Y, Zhang X, Fang Y. High Viscosity Slows the Utilization of Rapidly Fermentable Dietary Fiber by Human Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19078-19087. [PMID: 38053507 DOI: 10.1021/acs.jafc.3c05652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In the present study, the influence of viscosity on the fermentation characteristics of fructooligosaccharides (FOS) by gut microbiota was examined. Different concentrations of methylcellulose (MC) were added to create varying viscosities and the mixture was fermented with FOS by gut microbiota. The results demonstrated that higher viscosity had a significant impact on slowing down the fermentation rate of FOS. Specifically, the addition of 2.5 wt% MC, which had the highest viscosity, resulted in the lowest and slowest production of gas and short-chain fatty acids (SCFAs), indicating that increased viscosity could hinder the breakdown of FOS by gut microbiota. Additionally, the slower fermentation of FOS did not significantly alter the structure of the gut microbiota community compared to that of FOS alone, suggesting that MC could be used in combination with FOS to achieve similar prebiotic effects and promote gut health while exhibiting a slower fermentation rate.
Collapse
Affiliation(s)
- Xiangxiang He
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Faculty of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
| | - Cuixia Sun
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingwen Zhao
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Xiaowei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Tahiri M, Johnsrud C, Steffensen IL. Evidence and hypotheses on adverse effects of the food additives carrageenan (E 407)/processed Eucheuma seaweed (E 407a) and carboxymethylcellulose (E 466) on the intestines: a scoping review. Crit Rev Toxicol 2023; 53:521-571. [PMID: 38032203 DOI: 10.1080/10408444.2023.2270574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023]
Abstract
This scoping review provides an overview of publications reporting adverse effects on the intestines of the food additives carrageenan (CGN) (E 407)/processed Eucheuma seaweed (PES) (E 407a) and carboxymethylcellulose (CMC) (E 466). It includes evidence from human, experimental mammal and in vitro research publications, and other evidence. The databases Medline, Embase, Scopus, Web of Science Core Collection, Cochrane Database of Systematic Reviews and Epistemonikos were searched without time limits, in addition to grey literature. The publications retrieved were screened against predefined criteria. From two literature searches, 2572 records were screened, of which 224 records were included, as well as 38 records from grey literature, making a total of 262 included publications, 196 on CGN and 101 on CMC. These publications were coded and analyzed in Eppi-Reviewer and data gaps presented in interactive maps. For CGN, five, 69 and 33 research publications on humans, experimental mammals and in vitro experiments were found, further separated as degraded or native (non-degraded) CGN. For CMC, three human, 20 animal and 14 in vitro research publications were obtained. The most studied adverse effects on the intestines were for both additives inflammation, the gut microbiome, including fermentation, intestinal permeability, and cancer and metabolic effects, and immune effects for CGN. Further studies should focus on native CGN, in the form and molecular weight used as food additive. For both additives, randomized controlled trials of sufficient power and with realistic dietary exposure levels of single additives, performed in persons of all ages, including potentially vulnerable groups, are needed.
Collapse
Affiliation(s)
- Mirlinda Tahiri
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Celine Johnsrud
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Inger-Lise Steffensen
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
13
|
Yuan D, Xiao W, Gao Z, Hu B, Wenxin J, Li Y, Wu Y, Ni X. Modulating in vitro fecal fermentation behavior of sodium alginate by Ca 2+ cross-linking. Food Res Int 2023; 174:113552. [PMID: 37986431 DOI: 10.1016/j.foodres.2023.113552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
Slow fermentable dietary fibers can be utilized by human gut microbiota in the distal region of the colon and thus exert a sufficient short-chain fatty acids (SCFAs) supplement in the distal region of the human colon. Alginate (Alg) based microgels are widely fabricated and used to control their digestion by digestive enzymes releasing active substances site-specifically. Herein, sodium alginate microgels with gradient calcium-ion (Ca2+) cross-linking densities were developed, restricting their degradation by gut microbiota. Alg microgels were prepared using high-speed shearing after Alg was cross-linked with 10, 40, and 60 mmol/L Ca2+, respectively (named 10-Alg, 40-Alg, and 60-Alg). The fluorescence and atomic force microscopic results showed that the 40-Alg particle has the densest structure among the three cross-linked Alg. In vitro human fecal fermentation results revealed that the Ca2+ cross-linking exerted more restricting effects than delaying effects on the fermentation of Alg, and the 40-Alg exhibited the slowest fermentation rate and the least fermentation extent, by characterizing the residual total carbohydrate content, residual monosaccharide content, pH, and total short-chain fatty acids. The 16S rRNA gene sequencing results indicated that cross-linking structures shaped a high specifical Bacteroides-type microbial community and that OTU205 (Bacteroides_xylanisolvens) highly correlated to the cross-linking density (R = 0.65, p = 0.047). In sum, Ca2+ cross-linking generated a dense and compact structure of sodium alginate that facilitated a more restricted fermentation property and specificity-targeting microbial community structure in comparison to the original sodium alginate.
Collapse
Affiliation(s)
- Dan Yuan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Wenqian Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Zhiming Gao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China.
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, PR China
| | - Jiang Wenxin
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Yanlei Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Yuehan Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Xuewen Ni
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| |
Collapse
|