1
|
Zeng LY, Lin SK, Zou Y, Zheng QW, Tong X, Guo LQ, Hou S, Lin JF. Characterization of Glutamyl Aminopeptidase with Novel Degradation Activity of Soybean Trypsin Inhibitor and Salt-Tolerance from Bacillus amyloliquefaciens phb03 in Soy Sauce Residue. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40420398 DOI: 10.1021/acs.jafc.4c13056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Soybean is acknowledged as an excellent plant-based protein source; however, its nutritional efficacy is compromised by the presence of soybean trypsin inhibitor (STI), which diminishes bioavailability and may induce metabolic disorders. To mitigate the inhibitory effects of STI, this study focused on the purification and characterization of STI-degrading protease (SDP) from Bacillus amyloliquefaciens phb03. The results revealed that SDP is an alkaline salt-tolerant protease with optimal activity at 40 °C, pH 9.0, and 2 M NaCl, retaining over 67% activity in 3 M NaCl after 4 d. SDP was identified as a glutamyl aminopeptidase phb03 (GAPP) through LC-MS Q-E analysis, with a molecular weight of approximately 39 kDa and demonstrating an efficient degradation of 95% STI. Subsequently, heterologous expression of GAPP in Bacillus subtilis WB800 yielded a peak enzyme activity of 411.94 ± 0.37 U·L-1, exhibiting significant STI degradation activity, particularly under high-salinity conditions. It is speculated that the structural compactness and enhanced flexibility in the catalytic center of GAPP contribute to its stability and catalytic activity under high-salt conditions. This degradation protease offers a promising solution to enhancing protein utilization in soybeans affected by STI, with the potential for industrial applications.
Collapse
Affiliation(s)
- Long-Ying Zeng
- College of Food Science, South China Agricultural University, Guangzhou 510640, China
- Foshan Haitian Flavoring Food Co. Ltd, Foshan 528500, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Shi-Kun Lin
- College of Food Science, South China Agricultural University, Guangzhou 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Yuan Zou
- College of Food Science, South China Agricultural University, Guangzhou 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Qian-Wang Zheng
- College of Food Science, South China Agricultural University, Guangzhou 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Xing Tong
- Foshan Haitian Flavoring Food Co. Ltd, Foshan 528500, China
| | - Li-Qiong Guo
- College of Food Science, South China Agricultural University, Guangzhou 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Sha Hou
- Foshan Haitian Flavoring Food Co. Ltd, Foshan 528500, China
| | - Jun-Fang Lin
- College of Food Science, South China Agricultural University, Guangzhou 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| |
Collapse
|
2
|
Wen TT, Yang YM, Zhang YX, Liu MQ, Qian ZY, Zhang ZY, Dong CH, Sun L, Xu L, Sun WJ, Cui FJ. CRISPR-Cas9/Safe Harbor-Targeted Overexpression of Glucan Synthase Gene CmGls in Edible Mushroom Cordyceps militaris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10456-10469. [PMID: 40252041 DOI: 10.1021/acs.jafc.5c01310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
The membrane-integrated β-1,3-glucan synthase is the key enzyme involved in the biosynthesis of the core component β-1,3-glucan of the fungal cell wall. To date, the precise and targeted insertion of the β-1,3-glucan synthase gene into the genomes of edible fungi for safe and predictable overexpression has been extremely difficult due to the large DNA sequences (>5.0 kb) encoding the multitransmembrane domains and large molecular weights. In the present study, a large 5.9 kb DNA sequence of the membrane-bound β-1,3-glucan synthase gene CmGls was successfully and precisely inserted at a genomic safe harbor site CmSh1 of the C. militaris genome for the first time. By comparing mycelial and fermentation performance, overexpression of the β-1,3-glucan synthase gene CmGls resulted in rapid radial growth with a more pronounced yellowish color and increased resistance to cell wall stresses. Overexpression of CmGls significantly improved exopolysaccharide production with higher molecular weights, accompanied by an increase in the transcription levels of genes associated with polysaccharide/glucan synthesis, such as CmPgm, CmPgi, and CmUgp. Our findings provide convincing proof for the elucidation of glucan biosynthetic pathways and a basis for developing safe strains with highly efficient production of polysaccharides/glucans by edible fungi.
Collapse
Affiliation(s)
- Ting-Ting Wen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yu-Meng Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yi-Xin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Meng-Qian Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuo-Yu Qian
- Guangdong HAID Research Institute, Guangzhou 511400, PR China
| | - Zi-Ying Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Cai-Hong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wen-Jing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing 334221, PR China
| | - Feng-Jie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing 334221, PR China
| |
Collapse
|
3
|
Hou J, Mao YL, Lu YH, Nwankwo C, Hu Y, Zhu LR, Dong XY, Cui HL. A Halophilic Aminopeptidase With Broad Substrate Specificity: Exploring Its Catalytic Potential and Application in Salt-Fermented Foods. J Food Sci 2025; 90:e70218. [PMID: 40271915 DOI: 10.1111/1750-3841.70218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/28/2025] [Accepted: 04/05/2025] [Indexed: 04/25/2025]
Abstract
Halophilic aminopeptidases with broad substrate specificity represent valuable biocatalysts for promoting protein hydrolysis in high-salt fermented foods. In this study, an M42 aminopeptidase from the halophilic archaeon, Haladaptatus litoreus, was identified and designated as APHap. The optimal reaction conditions for APHap were 2-2.5 M NaCl, a temperature of 60°C, and a pH of 7.5. It displayed robust activity and stability across a wide range of salinity, temperature, and pH conditions. APHap demonstrated exceptional tolerance to both organic solvents and surfactants. In contrast to most characterized M42 aminopeptidases, APHap exhibited a broad substrate spectrum, with the highest activity observed when using Leu-p-nitroaniline as the substrate. The Vmax and Km for APHap were 5.28 µmol/min/mg and 0.59 mM, respectively. When applied for fish protein hydrolysis in hypersaline conditions, APHap significantly increased the total free amino acid content, particularly enhancing the proportion of sweet and umami amino acids. To our knowledge, APHap is the first halophilic and mesophilic M42 aminopeptidase characterized from the genus Haladaptus. These desirable properties indicated that APHap has great potential for enhancing protein hydrolysis during the processing of high-salt fermented foods. PRACTICAL APPLICATION: The characteristics of APHap conform with the demands of high-salt fermented food production, highlighting its potential as a biocatalyst for improving both process efficiency and product quality.
Collapse
Affiliation(s)
- Jing Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Ya-Ling Mao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yi-Hui Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Chidiebele Nwankwo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yao Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Ling-Rui Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xin-Yue Dong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
4
|
Li X, Shi S, Hao Y, Zhai Z, Zhao Z, Feng X, Yang J, Zhao L, Luo J, Ge S, Sang Y, Zhang Y, Wang F, Wang R. Surface hydrophilic amino acids of sucrose-6-phosphate hydrolase SacA play a key role in high acid production rates in Lacticaseibacillus casei. Lebensm Wiss Technol 2025; 218:117465. [DOI: 10.1016/j.lwt.2025.117465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
|
5
|
Amaly N, Harrison S, Tumuluru JS, Sun G, Pandey PK. Development and application of a polycationic soybean protein-based flocculant for enhanced flocculation and dewatering of dairy manure. CHEMOSPHERE 2025; 371:144050. [PMID: 39755212 DOI: 10.1016/j.chemosphere.2024.144050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/29/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
In agricultural and waste management systems, dairy manure wastewater is often recycled for irrigation. However, a key challenge lies in handling suspended solids (SS) and effectively dewatering sludge. To address this, an innovative polycationic soybean protein-based flocculant (SPI+) was developed and applied to enhance flocculation and sludge dewatering efficiency. The polycationic protein chains of SPI+ were synthesized by grafting 2-(methacryloyloxy)ethyl trimethylammonium chloride (META) monomers onto soybean protein isolate (SPI) chains using an energy-efficient thiol-ene photografting method. This approach achieved a grafting ratio of 85%, endowing the SPI+ with a stable and strong positive zeta-potential (+30 mV) across a range of pH conditions. The SPI + exhibited exceptional flocculation performance, achieving a 96% flocculation efficiency, reducing sludge filtration resistance by 55%, and lowering filter cake moisture content by 10%. The SPI + flocculation and dewatering performance is comparable with synthetic-based commercial flocculant. This remarkable performance of SPI+ is attributed to its ability to effectively neutralize charges, form robust inter-particle bridges, and interact strongly with extracellular polymeric substances (EPS), particularly their protein components, within the sludge matrix. These properties significantly enhance both sludge aggregation and dewaterability. The underlying mechanisms of flocculation and dewatering were further elucidated using confocal imaging, surface morphology analysis of flocs, and quantification of EPS protein and polysaccharide content, providing valuable insights into its functional efficacy.
Collapse
Affiliation(s)
- Noha Amaly
- Department of Biological and Agricultural Engineering, University of California, Davis, United States; Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt; Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, United States.
| | | | - Jaya Shankar Tumuluru
- Southwestern Cotton Ginning Research Laboratory, United States Department of Agriculture-Agricultural Research Service, Las Cruces, United States
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, United States.
| | - Pramod K Pandey
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, United States.
| |
Collapse
|
6
|
Hu Y, Zhang H, Xu M, Rao Z, Zhang X. High-Throughput Screening for Enhanced Thermal Stability of Inherently Salt-Tolerant l-Glutaminase and Its Efficient Expression in Bacillus licheniformis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28325-28334. [PMID: 39666994 DOI: 10.1021/acs.jafc.4c07745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
In addressing the challenges posed by extended fermentation cycles and high-salt conditions in high-salt liquid-state fermentation soy sauce (HLFSS) production, a high-throughput screening method was devised to identify thermally stable l-glutaminase mutants. This study yielded mutants A146D and A51D, exhibiting enhanced thermal stability. Computer-aided analysis revealed that these mutations introduced additional forces, compacting the protein structure and lowering the Gibbs free energy, thereby improving thermostability. Furthermore, the incorporation of aspartic acid augmented the negative surface charge, contributing to superior salt tolerance compared to the wild type (WT). Notably, in a 25% NaCl buffer, A146D and A51D demonstrated half-lives of 72.57 and 71.31 day, respectively, surpassing the WT's 59.08 day. In a 5 L bioreactor, the optimal mutant A146D achieved a remarkable enzymatic activity of 2800.78 ± 98.1 U/mL in recombinant Bacillus licheniformis fermentation broth, setting a new benchmark. This research offers valuable insights and a foundation for the modification and application of l-glutaminase in the food industry, particularly in HLFSS brewing.
Collapse
Affiliation(s)
- Yanglu Hu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, Jiangsu, China
| | - Hengwei Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, Jiangsu, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
7
|
Zhang Z, Ding Y, Hu F, Liu Z, Lin X, Fu J, Zhang Q, Zhang ZH, Ma H, Gao X. Constructing in-situ and real-time monitoring methods during soy sauce production by miniature fiber NIR spectrometers. Food Chem 2024; 460:140788. [PMID: 39126954 DOI: 10.1016/j.foodchem.2024.140788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
The digestion rate of steamed soybean (DRSS), protease activity of koji (PAK) and formaldehyde nitrogen content of moromi (FNCM) are key indicators to monitor soy sauce production. Currently, monitoring these indicators relies on workers' experience, which can sometimes lead to low material utilization rates and even fermentation failures. Near-infrared spectra were collected during soybean steaming, as well as koji and moromi fermentation, using miniature fiber spectrometers. These spectra were optimized using four pretreatment methods, and regression models were constructed using PLS, iPLS, and Si-PLS. The evaluation of models in prediction sets was based on the correlation coefficient (Rp) and root mean square error (RMSEP). Results indicated that Rp = 0.9327, RMSEP = 4.37% for DRSS, Rp = 0.9364, RMSEP = 228 U/g for PAK, and Rp = 0.9237, RMSEP =0.148 g/100 mL for FNCM were obtained. The above results coupling with validation experiments demonstrated that the developed in-situ and real-time spectroscopy system could ensure high-quality soy sauce production.
Collapse
Affiliation(s)
- Zhankai Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yanhua Ding
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Feng Hu
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 528437, China
| | - Zhan Liu
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 528437, China
| | - Xiaodong Lin
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 528437, China
| | - Jiangyan Fu
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 528437, China
| | - Qingyu Zhang
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 528437, China
| | - Zhi-Hong Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Niu D, Feng X, Zhang A, Li K, Wang LH, Zeng XA, Wang S. Revealing the synergistic antibacterial mechanisms of resveratrol (RES) and pulsed electric field (PEF) against Acetobacter sp. Food Res Int 2024; 197:115237. [PMID: 39577929 DOI: 10.1016/j.foodres.2024.115237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/07/2024] [Accepted: 10/18/2024] [Indexed: 11/24/2024]
Abstract
In the wine industry, Acetobacter sp. is a typical spoilage microorganism responsible for increased volatile acids and wine spoilage. This study investigated the impact of combined treatment using varying concentrations of resveratrol (RES) and pulsed electric field (PEF) on the bactericidal efficacy, intracellular enzyme activities, and cellular metabolism of Acetobacter sp. The results from the Weibull mathematical model revealed a notable enhancement in the bactericidal effectiveness of the RES and PEF treatments with increasing RES concentration. In addition, the synergies between RES and PEF might not only resulted in the deactivation of Alcohol dehydrogenase (ADH) and Aldehyde dehydrogenase (ALDH) of Acetobacter sp., but also induced modifications in the secondary and tertiary structures of intracellular enzymes as evidenced by fluorescence, ultraviolet, fourier transform infrared, and circular dichroism spectra. Furthermore, metabolomics results showed that 1,910 metabolites exhibited differential expression, with 1,118 metabolites being down-regulated and 792 metabolites being up-regulated. After the synergies between RES and PEF, 17 biochemical pathways were significantly changed, mainly involving amino acid metabolism, carbohydrate metabolism, cofactor and vitamin metabolism, nucleotide metabolism, etc. These findings demonstrated that the combined treatment of RES and PEF can effectively suppress the growth of Acetobacter sp. and the inactivation mechanism of Acetobacter sp. by PEF in conjunction with RES was revealed.
Collapse
Affiliation(s)
- Debao Niu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Xiaoqin Feng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ailin Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lang-Hong Wang
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xin-An Zeng
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
9
|
Ma N, Duan J, Zhou G, Wang X. Study of the mechanism of non-covalent interactions between chlorogenic acid and soy protein isolate: Multi-spectroscopic, in vitro, and computational docking analyses. Food Chem 2024; 457:140084. [PMID: 38905842 DOI: 10.1016/j.foodchem.2024.140084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
This study investigated the interaction mechanism between chlorogenic acid (CA) and soy protein isolate (SPI) through multi-spectroscopic and computational docking and analyzed the changes in its functional properties. The results showed that the interaction of CA with SPI changed its UV and fluorescence absorption, and the fluorescence quenching mechanism was static quenching. At the same time, the secondary structure of the protein was altered, with a reduction in α-helix, β-sheet and β-turn. Computer docking analysis showed that CA binds to SPI through hydrophobic interactions, van der Waals forces, and hydrogen bonding to form a more compact complex. In addition, the dose-dependent enhancement of CA improved the functional properties of the complexes, including foaming, emulsification, and antioxidant properties. This study systematically investigated the mechanism of interaction between CA and SPI, which supports further research on food complex systems containing CA and SPI, as well as the application of the complex.
Collapse
Affiliation(s)
- Nan Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Jiahui Duan
- Shared Service Platform for Large Instruments and Equipment, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Guowei Zhou
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Xibo Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| |
Collapse
|
10
|
Xing G, Yang S, Huang L, Liu S, Wan X. Effect of transglutaminase crosslinking combined with lactic fermentation on the potential allergenicity and conformational structure of soy protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7977-7984. [PMID: 38817117 DOI: 10.1002/jsfa.13628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Food allergies are a growing concern worldwide, with soy proteins being important allergens that are widely used in various food products. This study investigated the potential of transglutaminase (TGase) and lactic acid bacteria (LAB) treatments to modify the allergenicity and structural properties of soy protein isolate (SPI), aiming to develop safer soy-based food products. RESULTS Treatment with TGase, LAB or their combination significantly reduced the antibody reactivity of β-conglycinin and the immunoglobulin E (IgE) binding capacity of soy protein, indicating a decrease in allergenicity. TGase treatment led to the formation of high-molecular-weight aggregates, suggesting protein crosslinking, while LAB treatment resulted in partial protein hydrolysis. These structural changes were confirmed by Fourier transform infrared spectroscopy, which showed a decrease in β-sheet content and an increase in random coil and β-turn contents. In addition, changes in intrinsic fluorescence and ultraviolet spectroscopy were also observed. The alterations in protein interaction and the reduction in free sulfhydryl groups highlighted the extensive structural modifications induced by these treatments. CONCLUSION The synergistic application of TGase and LAB treatments effectively reduced the allergenicity of SPI through significant structural modifications. This approach not only diminished antibody reactivity of β-conglycinin and IgE binding capacity of soy protein but also altered the protein's primary, secondary and tertiary structures, suggesting a comprehensive alteration of SPI's allergenic potential. These findings provide a promising strategy for mitigating food allergy concerns and lay the foundation for future research on food-processing techniques aimed at allergen reduction. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangliang Xing
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, People's Republic of China
| | - Siran Yang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, People's Republic of China
| | - Lu Huang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Sitong Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, People's Republic of China
- Department of Kinesiology, Health, Food and Nutrition Sciences, University of Wisconsin-Stout, Menomonie, Wisconsin, USA
| | - Xinyi Wan
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, People's Republic of China
- Department of Kinesiology, Health, Food and Nutrition Sciences, University of Wisconsin-Stout, Menomonie, Wisconsin, USA
| |
Collapse
|
11
|
Wang J, Lu X, Zhuge B, Zong H. Enhancing the catalytic efficiency of M32 carboxypeptidase by semi-rational design and its applications in food taste improvement. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7375-7385. [PMID: 38666395 DOI: 10.1002/jsfa.13558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND Carboxypeptidase is an exopeptidase that hydrolyzes amino acids at the C-terminal end of the peptide chain and has a wide range of applications in food. However, in industrial applications, the relatively low catalytic efficiency of carboxypeptidases is one of the main limiting factors for industrialization. RESULTS The study has enhanced the catalytic efficiency of Bacillus megaterium M32 carboxypeptidase (BmeCPM32) through semi-rational design. Firstly, the specific activity of the optimal mutant, BmeCPM32-M2, obtained through single-site mutagenesis and combinatorial mutagenesis, was 2.2-fold higher than that of the wild type (187.9 versus 417.8 U mg-1), and the catalytic efficiency was 2.9-fold higher (110.14 versus 325.75 s-1 mmol-1). Secondly, compared to the wild type, BmeCPM32-M2 exhibited a 1.8-fold increase in half-life at 60 °C, with no significant changes in its enzymatic properties (optimal pH, optimal temperature). Finally, BmeCPM32-M2 significantly increased the umami intensity of soy protein isolate hydrolysate by 55% and reduced bitterness by 83%, indicating its potential in developing tasty protein components. CONCLUSION Our research has revealed that the strategy based on protein sequence evolution and computational residue mutation energy led to an improved catalytic efficiency of BmeCPM32. Molecular dynamics simulations have revealed that a smaller substrate binding pocket and increased enzyme-substrate affinity are the reasons for the enhanced catalytic efficiency. Furthermore the number of hydrogen bonds and solvent and surface area may contribute to the improvement of thermostability. Finally, the de-bittering effect of BmeCPM32-M2 in soy protein isolate hydrolysate suggests its potential in developing palatable protein components. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinjiang Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xinyao Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Bin Zhuge
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hong Zong
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Sun H, Fan R, Fang R, Shen S, Wang Y, Fu J, Hou R, Sun R, Bao S, Chen Q, Yue P, Gao X. Dynamics changes in metabolites and pancreatic lipase inhibitory ability of instant dark tea during liquid-state fermentation by Aspergillus niger. Food Chem 2024; 448:139136. [PMID: 38581964 DOI: 10.1016/j.foodchem.2024.139136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/16/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Instant dark tea (IDT), prepared by liquid-state fermentation using Aspergillus niger, is known for its high theabrownins content and lipid-lowering effect. To explore the impact of fungal fermentation on IDT compositions and its pancreatic lipase inhibitory ability (PLIA), untargeted and targeted metabolomic analysis were applied to track the changes of metabolites over a 9-day fermentation period, and correlation analysis was then conducted between metabolites and PLIA of IDT. There were 54 differential metabolites exhibited significant changes from day 3 to day 5 of fermentation. The concentrations of theabrownins and caffeine increased during fermentation, while phenols and free amino acids decreased. The PLIA of IDT samples significantly increased from day 5 to day 9 of fermentation. Theabrownins not only positively correlated with the PLIA but also exhibited a high inhibition rate. These findings provide a theoretical basis to optimize the production of IDT as functional food ingredient.
Collapse
Affiliation(s)
- Haoran Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Ranqin Fan
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Rui Fang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Shanshan Shen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jialin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Rui Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Runchen Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Shinuo Bao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Pengxiang Yue
- Damin Foodstuff (Zhangzhou) Co., Ltd., Zhangzhou, Fujian 363000, China
| | - Xueling Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|
13
|
Liu Y, Sun G, Li J, Cheng P, Song Q, Lv W, Wang C. Starter molds and multi-enzyme catalysis in koji fermentation of soy sauce brewing: A review. Food Res Int 2024; 184:114273. [PMID: 38609250 DOI: 10.1016/j.foodres.2024.114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Soy sauce is a traditional fermented food produced from soybean and wheat under the action of microorganisms. The soy sauce brewing process mainly involves two steps, namely koji fermentation and moromi fermentation. In the koji fermentation process, enzymes from starter molds, such as protease, aminopeptidase, carboxypeptidase, l-glutaminase, amylase, and cellulase, hydrolyze the protein and starch in the raw ingredients to produce short-chain substances. However, the enzymatic reactions may be diminished after being subjected to moromi fermentation due to its high NaCl concentration. These enzymatically hydrolyzed products are further metabolized by lactic acid bacteria and yeasts during the moromi fermentation process into organic acids and aromatic compounds, giving soy sauce a unique flavor. Thus, the starter molds, such as Aspergillus oryzae, Aspergillus sojae, and Aspergillus niger, and their secreted enzymes play crucial roles in soy sauce brewing. This review comprehensively covers the characteristics of the starter molds mainly used in soy sauce brewing, the enzymes produced by starter molds, and the roles of enzymes in the degradation of raw material. We also enumerate current problems in the production of soy sauce, aiming to offer some directions for the improvement of soy sauce taste.
Collapse
Affiliation(s)
- Yihao Liu
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300222, People Republic of China.
| | - Guangru Sun
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300222, People Republic of China
| | - Jingyao Li
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300222, People Republic of China
| | - Peng Cheng
- Tianjin Limin Condiment Co., Ltd., Tianjin Food Group, Tianjin Airport Economic Zone, No. 226, 14th West Road, Tianjin, People Republic of China
| | - Qian Song
- Tianjin Limin Condiment Co., Ltd., Tianjin Food Group, Tianjin Airport Economic Zone, No. 226, 14th West Road, Tianjin, People Republic of China
| | - Wen Lv
- Tianjin Limin Condiment Co., Ltd., Tianjin Food Group, Tianjin Airport Economic Zone, No. 226, 14th West Road, Tianjin, People Republic of China
| | - Chunling Wang
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300222, People Republic of China.
| |
Collapse
|
14
|
Pijning T, Vujičić‐Žagar A, van der Laan J, de Jong RM, Ramirez‐Palacios C, Vente A, Edens L, Dijkstra BW. Structural and time-resolved mechanistic investigations of protein hydrolysis by the acidic proline-specific endoprotease from Aspergillus niger. Protein Sci 2024; 33:e4856. [PMID: 38059672 PMCID: PMC10731622 DOI: 10.1002/pro.4856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023]
Abstract
Proline-specific endoproteases have been successfully used in, for example, the in-situ degradation of gluten, the hydrolysis of bitter peptides, the reduction of haze during beer production, and the generation of peptides for mass spectroscopy and proteomics applications. Here we present the crystal structure of the extracellular proline-specific endoprotease from Aspergillus niger (AnPEP), a member of the S28 peptidase family with rarely observed true proline-specific endoprotease activity. Family S28 proteases have a conventional Ser-Asp-His catalytic triad, but their oxyanion-stabilizing hole shows a glutamic acid, an amino acid not previously observed in this role. Since these enzymes have an acidic pH optimum, the presence of a glutamic acid in the oxyanion hole may confine their activity to an acidic pH. Yet, considering the presence of the conventional catalytic triad, it is remarkable that the A. niger enzyme remains active down to pH 1.5. The determination of the primary cleavage site of cytochrome c along with molecular dynamics-assisted docking studies indicate that the active site pocket of AnPEP can accommodate a reverse turn of approximately 12 amino acids with proline at the S1 specificity pocket. Comparison with the structures of two S28-proline-specific exopeptidases reveals not only a more spacious active site cavity but also the absence of any putative binding sites for amino- and carboxyl-terminal residues as observed in the exopeptidases, explaining AnPEP's observed endoprotease activity.
Collapse
Affiliation(s)
- Tjaard Pijning
- Biomolecular X‐ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of GroningenGroningenThe Netherlands
| | - Andreja Vujičić‐Žagar
- Biomolecular X‐ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of GroningenGroningenThe Netherlands
| | | | | | | | - Andre Vente
- Taste, Texture and HealthDSM‐FirmenichDelftThe Netherlands
| | - Luppo Edens
- Taste, Texture and HealthDSM‐FirmenichDelftThe Netherlands
| | - Bauke W. Dijkstra
- Biomolecular X‐ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of GroningenGroningenThe Netherlands
| |
Collapse
|
15
|
Zhang Z, Shan P, Zhang ZH, He R, Xing L, Liu J, He D, Ma H, Wang Z, Gao X. Efficient degradation of soybean protein B 3 subunit in soy sauce by ultrasound-assisted prolyl endopeptidase and its primary mechanism. Food Chem 2023; 429:136972. [PMID: 37506662 DOI: 10.1016/j.foodchem.2023.136972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Prolyl endopeptidase can partially degrade soybean protein B3 subunit and alleviate soy sauce secondary precipitate. In this study, the influences of ultrasound-assisted prolyl endopeptidase on the degradation of soybean protein B3 subunit of soy sauce and primary mechanism were investigated using SDS-PAGE, MALDI-TOF-MS, circular dichromatic spectrometer, fluorescence spectra, etc. Results showed that ultrasound-assisted prolyl endopeptidase enhanced 72% degradation rate of B3 subunit and reduced soy sauce secondary precipitate remarkably, meanwhile significantly increased content of organic taste compounds of soy sauce compared with control (p < 0.05). Sonication markedly reduced percentage of α-helix and increased percentage of random coil, made hydrophobic amino acids inside prolyl endopeptidase exposed to its surface and enhanced its flexibility, which facilitated the binding of prolyl endopeptidase active center with B3 subunit and finally enhanced the latter's degradation rate and appearance quality of soy sauce. This work laid a foundation for solving soy sauce secondary precipitate.
Collapse
Affiliation(s)
- Zhankai Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Pei Shan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhi-Hong Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Limin Xing
- Honworld Group Limited, 299 Zhongxing Avenue, Huzhou 313000, China
| | - Jianbin Liu
- Honworld Group Limited, 299 Zhongxing Avenue, Huzhou 313000, China
| | - Degui He
- Honworld Group Limited, 299 Zhongxing Avenue, Huzhou 313000, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
16
|
Gao X, Zhao X, Hu F, Fu J, Zhang Z, Liu Z, Wang B, He R, Ma H, Ho CT. The latest advances on soy sauce research in the past decade: Emphasis on the advances in China. Food Res Int 2023; 173:113407. [PMID: 37803742 DOI: 10.1016/j.foodres.2023.113407] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
As an indispensable soybean-fermented condiment, soy sauce is extensively utilized in catering, daily cooking and food industry in East Asia and Southeast Asia and is becoming popular in the whole world. In the past decade, researchers began to pay great importance to the scientific research of soy sauce, which remarkably promoted the advances on fermentation strains, quality, safety, function and other aspects of soy sauce. Of them, the screening and reconstruction of Aspergillus oryzae with high-yield of salt and acid-tolerant proteases, mechanism of soy sauce flavor formation, improvement of soy sauce quality through the combination of novel physical processing technique and microbial/enzyme, separation and identification of soy sauce functional components are attracting more attention of researchers, and related achievements have been reported continually. Meanwhile, we pointed out the drawbacks of the above research and the future research directions based on published literature and our knowledge. We believe that this review can provide an insightful reference for international related researchers to understand the advances on soy sauce research.
Collapse
Affiliation(s)
- Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xue Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Feng Hu
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 5284012, China.
| | - Jiangyan Fu
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 5284012, China.
| | - Zhankai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhan Liu
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 5284012, China.
| | - Bo Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
17
|
Hong KQ, Fu XM, Lei FF, Chen D, He DP. Selection of Salt-Tolerance and Ester-Producing Mutant Saccharomyces cerevisiae to Improve Flavour Formation of Soy Sauce during Co-Fermentation with Torulopsis globosa. Foods 2023; 12:3449. [PMID: 37761157 PMCID: PMC10529772 DOI: 10.3390/foods12183449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Soy sauce, as a traditional seasoning, is widely favoured by Chinese and other Asian people for its unique colour, smell, and taste. In this study, a salt-tolerance Saccharomyces cerevisiae strain HF-130 was obtained via three rounds of ARTP (Atmospheric and Room Temperature Plasma) mutagenesis and high-salt based screening. The ethanol production of mutant HF-130 was increased by 98.8% in very high gravity fermentation. Furthermore, ATF1 gene was overexpressed in strain HF-130, generating ester-producing strain HF-130-ATF1. The ethyl acetate concentration of strain HF-130-ATF1 was increased by 130% compared to the strain HF-130. Finally, the soy sauce fermentation performance of Torulopsis globosa and HF-130-ATF1 was compared with T. globosa, HF-130, HF-130-ATF1, and Torulopsis and HF-130. Results showed ethyl acetate and isoamyl acetate concentrations in co-fermentation of T. globosa and HF-130-ATF1 were increased by 2.8-fold and 3.3-fold, respectively. In addition, the concentrations of ethyl propionate, ethyl caprylate, phenylethyl acetate, ethyl caprate, isobutyl acetate, isoamyl alcohol, phenylethyl alcohol, and phenylacetaldehyde were also improved. Notably, other three important flavour components, trimethylsilyl decyl ester, 2-methylbutanol, and octanoic acid were also detected in the co-fermentation of T. globosa and HF-130-ATF1, but not detected in the control strain T. globosa. This work is of great significance for improving the traditional soy sauce fermentation mode, and thus improving the flavour formation of soy sauce.
Collapse
Affiliation(s)
- Kun-Qiang Hong
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China
| | - Xiao-Meng Fu
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Fen-Fen Lei
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China
| | - Dong Chen
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China
| | - Dong-Ping He
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China
| |
Collapse
|
18
|
Senba H, Nishikawa A, Kimura Y, Tanaka S, Matsumoto JI, Doi M, Takenaka S. Improvement in salt-tolerance of Aspergillus oryzae γ-glutamyl transpeptidase via protein chimerization with Aspergillus sydowii homolog. Enzyme Microb Technol 2023; 167:110240. [PMID: 37084614 DOI: 10.1016/j.enzmictec.2023.110240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
γ-Glutamyl transpeptidase is one of the key enzymes involved in glutamate production during high-salt fermentation of soy sauce and miso by koji mold, Aspergillus oryzae. However, the activity of γ-glutamyl transpeptidase from A. oryzae (AOggtA) is markedly reduced in the presence of NaCl, thus classifying it as a non-salt-tolerant enzyme. In contrast, the homologous protein from the xerophilic mold, A. sydowii (ASggtA) maintains its activity under high-salt conditions. Therefore, in this study, a chimeric enzyme, ASAOggtA, was designed and engineered to improve salt-tolerance in AOggtA by swapping the N-terminal region, based on sequence and structure comparisons between salt-tolerant ASggtA and non-salt-tolerant AOggtA. The parental AOggtA and ASggtA and their chimera, ASAOggtA, were heterologously expressed in A. oryzae and purified. The chimeric enzyme inherited the superior activity and stability from each of the two parent enzymes. ASAOggtA showed > 2-fold greater tolerance than AOggtA in the presence of 18% NaCl. In addition, the chimera showed a broader range of pH stability and greater thermostability than ASggtA. AOggtA and ASAOggtA were sy over the range pH 3.0 to pH 10.5. Thermal stability was found to be in the order AOggtA (57.5 °C, t1/2 = 32.5 min) > ASAOggtA (55 °C, t1/2 = 20.5 min) > ASggtA (50 °C, t1/2 = 12.5 min). The catalytic and structural characteristics indicated that non-salt-tolerant AOggtA would not undergo irreversible structural changes in the presence of NaCl, but rather a temporary conformational change, which might result in reducing the substrate binding and catalytic activity, on the basis of kinetic properties. In addition, the chimeric enzyme showed hydrolytic activity toward L-glutamine that was as high as that of AOggtA. The newly-designed chimeric ASAOggtA might have potential applications in high-salt fermentation, such as miso and shoyu, to increase the content of the umami-flavor amino acid, L-glutamate.
Collapse
Affiliation(s)
- Hironori Senba
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan; Ozeki Corp, Gen Res Lab, 4-9 Imazu, Nishinomiya, Hyogo 6638227, Japan
| | - Arisa Nishikawa
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Yukihiro Kimura
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Shinichi Tanaka
- Marutomo Co., Ltd, 1696 Kominato, Iyo, Ehime 799-3192, Japan
| | | | - Mikiharu Doi
- Marutomo Co., Ltd, 1696 Kominato, Iyo, Ehime 799-3192, Japan
| | - Shinji Takenaka
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan.
| |
Collapse
|
19
|
Zhao L, Wu Y, Zhao Y, Li X, Zhang M, Li X, Ma J, Gu S. Deciphering the intra- and inter-kingdom networks of microbiota in the pit mud of Chinese strong-flavor liquor. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|