1
|
Zhang K, Gao M, Cao C, Zhang M, Ahmad W, Rady A, Aldahmash B, Zhu T, Khan SS, Liu L. Intensification of 2'-Fucosyllactose biosynthesis pathway by using a novel fucosyltransferase from Bacillus cereus. Front Bioeng Biotechnol 2025; 13:1569597. [PMID: 40370597 PMCID: PMC12075129 DOI: 10.3389/fbioe.2025.1569597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/14/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction 2'-Fucosyllactose (2'-FL) is an oligosaccharide that can be synthesized in the human body and is known for its health-promoting and prebiotic effects. The biosynthesis of 2'-FL using microorganisms has received attention recently due to its increased application in nutritional and medical infant formulations. Methods This work attempts the new application of Bacillus cereus α-1,2-fucosyltransferase (FutCB) in the de novo synthesis of 2'-FL in Escherichia coli (E. coli). Additionally, knocking out the LacZ and WaaF genes alongside overexpression of the key gmd, manB, wcaG, and manC genes enhances the availability of the necessary precursors GDP-L-fucose and lactose for the synthesis of 2'-FL. Results and discussion The use of constitutive promoters achieved better control over the production of 2'-FL during fed-batch fermentation. After 64 h of fermentation, the modified E. coli strains produced 121.4 g/L 2'-FL with a yield of 1.90 g/L/h, resulting in an impressive 2'-FL output. These results together indicate the potential of large-scale, high-yield production of 2'-FL and form a basis of much more refinement to be done. The next step will focus on maximum substrate utilization, alteration of gene regulation, and improvement of commercial-scale synthesis.
Collapse
Affiliation(s)
- Kainuo Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Miaomiao Gao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Chenqi Cao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Mengxin Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Waqar Ahmad
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Badr Aldahmash
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tianze Zhu
- Beijing Zeno Biotechnology Development Co. Ltd., Beijing, China
| | - Shahin Shah Khan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Luo Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
2
|
Fan B, Liang X, Li Y, Li M, Yu T, Qin Y, Li B, An T, Wang G. Biosynthesis and metabolic engineering of natural sweeteners. AMB Express 2025; 15:50. [PMID: 40100508 PMCID: PMC11920521 DOI: 10.1186/s13568-025-01864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
Natural sweeteners have attracted widespread attention because they are eco-friendly, healthy, low in calories, and tasty. The demand for natural sweeteners is increasing together with the popularity of green, low-carbon, sustainable development. With the development of synthetic biology, microbial cell factories have emerged as an effective method to produce large amounts of natural sweeteners. This technology has significantly progressed in recent years. This review summarizes the pathways and the enzymes related to the biosynthesis of natural sweeteners, such as mogrosides, steviol glycosides, glycyrrhizin, glycyrrhetinic acid, phlorizin, trilobatin, erythritol, sorbitol, mannitol, thaumatin, monellin, and brazzein. Moreover, it focuses on the research about the microbial production of these natural sweeteners using synthetic biology methods, aiming to provide a reference for future research on the production of natural sweeteners.
Collapse
Affiliation(s)
- Bengui Fan
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Yichi Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Tongle Yu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Yuan Qin
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Bohan Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
3
|
Lu S, Lao C, Wang J, Yuan L, Yao J, Li H, Fan X, Zhang Q, Wu J, Chen X. Multistrategy Optimization for High-Yield 3-Fucosyllactose Production in Escherichia coli BL21 Star (DE3). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5385-5394. [PMID: 39967241 DOI: 10.1021/acs.jafc.4c11761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
3-Fucosyllactose (3-FL), an essential component of human milk oligosaccharides, is crucial for infant health. However, the extraction of 3-FL from milk presents a significant challenge. In this study, E. coli BL21 Star (DE3) was engineered for 3-FL biosynthesis, and the gene combinations and metabolic pathways were optimized to obtain a high-yield 3-FL production strain. First, the 3-FL production module was integrated into E. coli. Second, an efficient alpha-1,3-fucosyltransferase was screened. Then, different integration sites were used to optimize the precursor synthesis gene cluster and the transferase genes and to screen for transporter proteins and glycerol utilization genes that could enhance 3-FL production. The 3FL05-1 strain yielded a 3-FL titer of 11.26 g/L in shake flasks. Further amplification in a 5 L bioreactor resulted in a 3-FL titer of 60.24 g/L, which represents the highest reported titer to date.
Collapse
Affiliation(s)
- Shujie Lu
- University of Science and Technology of China, Hefei 230026, China
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Caiwen Lao
- Hefei CAS Health Bio-Industrial Technology Institute Co., Ltd., Hefei 230031, China
| | - Jin Wang
- University of Science and Technology of China, Hefei 230026, China
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Lixia Yuan
- University of Science and Technology of China, Hefei 230026, China
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jianming Yao
- University of Science and Technology of China, Hefei 230026, China
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - He Li
- Hefei CAS Health Bio-Industrial Technology Institute Co., Ltd., Hefei 230031, China
| | - Xijie Fan
- Hefei CAS Health Bio-Industrial Technology Institute Co., Ltd., Hefei 230031, China
| | - Qihong Zhang
- Hefei CAS Health Bio-Industrial Technology Institute Co., Ltd., Hefei 230031, China
| | - Jinyong Wu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiangsong Chen
- University of Science and Technology of China, Hefei 230026, China
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
4
|
Li N, Yan S, Xia H, Fang Y, Niu K, Li G, Xu Z, Sun Y, Xu H, Xu X. Metabolic Engineering of Escherichia coli BL21(DE3) for 2'-Fucosyllactose Synthesis in a Higher Productivity. ACS Synth Biol 2025; 14:441-452. [PMID: 39815725 DOI: 10.1021/acssynbio.4c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
2'-Fucosyllactose (2'-FL) is the most abundant human milk oligosaccharides (HMOs). 2'-FL exhibits great benefits for infant health, such as preventing infantile diarrhea and promoting the growth of intestinal probiotics. The microbial cell factory technique has shown promise for the massive production of 2'-FL. Here, we aimed to construct a recombinant E. coli BL21(DE3) strain for the hyperproduction of 2'-FL. Initially, multicopy genomic integration and expression of the lactose permease gene lacY reduced the formation of byproducts. Furthermore, a more efficient Shine-Dalgarno sequence was used to replace the wild-type sequence in the manC-manB and gmd-wcaG gene clusters, which significantly increased the 2'-FL titer. Based on these results, we overexpressed the sugar efflux transporter SetA and knocked out the pgi gene. This further improved 2'-FL synthesis when glycerol was used as the sole carbon source. Finally, a new α-1,2-fucosyltransferase was identified in Neisseria sp., which exhibited a higher capacity for 2'-FL production. Fed-batch fermentation produced 141.27 g/L 2'-FL in 45 h with a productivity of 3.14 g/L × h. This productivity rate achieved the highest recorded 2'-FL levels, indicating the potential of engineered E. coli BL21 (DE3) strains for use in the industrial production of 2'-FL.
Collapse
Affiliation(s)
- Na Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Saifeng Yan
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hongzhi Xia
- Nantong Licheng Biological Engineering Co., Ltd, Shanghai 200000, China
| | - Yin Fang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Kun Niu
- Nantong Licheng Biological Engineering Co., Ltd, Shanghai 200000, China
| | - Guyue Li
- Nantong Licheng Biological Engineering Co., Ltd, Shanghai 200000, China
| | - Zheng Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoqi Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
5
|
Liang S, Quan Q, Liu D, Yang S, Yan Q, Jiang Z. Regulation of Metabolic Pathways to Enhance Difucosyllactose Biosynthesis in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:727-734. [PMID: 39699992 DOI: 10.1021/acs.jafc.4c09796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Difucosyllactose (DFL), an important kind of fucosylated human milk oligosaccharides (HMOs), has garnered considerable attention due to its excellent physiological activities in infants. Previously, we achieved de novo biosynthesis of DFL; however, substantial residual intermediates of fucosyllactoses (FL) were detected. In this study, DFL biosynthesis was optimized, and residual FL were reduced by regulating metabolic pathways. Different plasmid combinations were used to regulate gene expression, achieving an optimal flux balance between 2'-FL and DFL. The expression level of key enzyme α-1,3-fucosyltransferase (α-1,3-FT, FucTa) was then enhanced by increasing plasmid copy number and integrating fucTa gene into the chromosome. Exocytosis of 2'-FL was reduced by deleting the sugar efflux transporter setA gene, thereby minimizing residual FL. Finally, strain BSF41 produced 55.3 g/L of DFL with only 2.59 g/L of residual FL in a 5 L fermentor, representing the highest reported titer to date. This study provides an important foundation for advancing the biosynthesis of fucosylated HMOs.
Collapse
Affiliation(s)
- Shanquan Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Qi Quan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Dan Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| |
Collapse
|
6
|
Ji M, Yao B, Zhou J, Wang Y, Ding Q. Engineering a Silk Protein-Mediated Customizable Compartment for Modular Metabolic Synthesis. ACS Synth Biol 2024; 13:4180-4190. [PMID: 39630051 DOI: 10.1021/acssynbio.4c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Microbial cell factories provide a nontoxic, economical way for the synthesis of various chemicals and drugs, garnering significant attention from researchers. However, excessive dispersion of enzymes and accumulation of intermediate metabolites in the production process will weaken the reaction efficiency of the pathway enzyme. In this study, a cellular compartment was constructed to isolate the enzyme reaction space and optimize the modular metabolic synthesis. First, a special spider silk protein was designed and constructed to form protein condensates in microbial cells, and its synthetic microcompartment effects were investigated. Second, the interaction of short peptide pairs or direct fusion based on the silk protein was used to recruit a variety of enzymes to improve the efficiency of enzyme catalysis. Third, the 2'-fucosyllactose (2'-FL) de novo synthesis pathway and its modular optimization were carried out to verify the mode. Finally, a synthetic compartment was introduced into the pathway to directly aggregate the 2'-FL synthesis pathway, thus obtaining synthetic-compartment-mediated multienzyme aggregates. The experimental results showed that the titer of 2'-FL was significantly improved compared with those of wild-type and modular-optimized free enzymes. The utilization of this cell microcompartment offers a novel avenue for the aggregation of diverse enzymes, thereby offering an innovative approach for enhancing the efficiency of the microbial modular metabolic pathway.
Collapse
Affiliation(s)
- Mengqi Ji
- School of Life Sciences, Anhui University, Hefei 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
- Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei 230061, China
- Anhui Healcurer Health Biotech Co., Ltd. - Anhui University Joint Postgraduate Training Base of Anhui Province, Hefei 230061, China
- Institute of Biochemistry and Microbiology, Anhui University, Hefei 230061, China
| | - Buhan Yao
- School of Life Sciences, Anhui University, Hefei 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
- Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei 230061, China
- Anhui Healcurer Health Biotech Co., Ltd. - Anhui University Joint Postgraduate Training Base of Anhui Province, Hefei 230061, China
- Institute of Biochemistry and Microbiology, Anhui University, Hefei 230061, China
| | - Jingyu Zhou
- School of Life Sciences, Anhui University, Hefei 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
- Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei 230061, China
- Anhui Healcurer Health Biotech Co., Ltd. - Anhui University Joint Postgraduate Training Base of Anhui Province, Hefei 230061, China
- Institute of Biochemistry and Microbiology, Anhui University, Hefei 230061, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
- Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei 230061, China
- Anhui Healcurer Health Biotech Co., Ltd. - Anhui University Joint Postgraduate Training Base of Anhui Province, Hefei 230061, China
- Institute of Biochemistry and Microbiology, Anhui University, Hefei 230061, China
| | - Qiang Ding
- School of Life Sciences, Anhui University, Hefei 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
- Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei 230061, China
- Anhui Healcurer Health Biotech Co., Ltd. - Anhui University Joint Postgraduate Training Base of Anhui Province, Hefei 230061, China
- Institute of Biochemistry and Microbiology, Anhui University, Hefei 230061, China
| |
Collapse
|
7
|
Li Z, Zhu Y, Zhang W, Mu W. Rcs signal transduction system in Escherichia coli: Composition, related functions, regulatory mechanism, and applications. Microbiol Res 2024; 285:127783. [PMID: 38795407 DOI: 10.1016/j.micres.2024.127783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
The regulator of capsule synthesis (Rcs) system, an atypical two-component system prevalent in numerous gram-negative bacteria, serves as a sophisticated regulatory phosphorylation cascade mechanism. It plays a pivotal role in perceiving environmental stress and regulating the expression of downstream genes to ensure host survival. During the signaling transduction process, various proteins participate in phosphorylation to further modulate signal inputs and outputs. Although the structure of core proteins related to the Rcs system has been partially well-defined, and two models have been proposed to elucidate the intricate molecular mechanisms underlying signal sensing, a systematic characterization of the signal transduction process of the Rcs system remains challenging. Furthermore, exploring its corresponding regulator outputs is also unremitting. This review aimed to shed light on the regulation of bacterial virulence by the Rcs system. Moreover, with the assistance of the Rcs system, biosynthesis technology has developed high-value target production. Additionally, via this review, we propose designing chimeric Rcs biosensor systems to expand their application as synthesis tools. Finally, unsolved challenges are highlighted to provide the basic direction for future development of the Rcs system.
Collapse
Affiliation(s)
- Zeyu Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
8
|
Huang H, Yu W, Xu X, Liu Y, Li J, Du G, Lv X, Liu L. Combinatorial Engineering of Escherichia coli for Enhancing 3-Fucosyllactose Production. ACS Synth Biol 2024; 13:1866-1878. [PMID: 38836566 DOI: 10.1021/acssynbio.4c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
3-Fucosyllactose (3-FL) is an important fucosylated human milk oligosaccharide (HMO) with biological functions such as promoting immunity and brain development. Therefore, the construction of microbial cell factories is a promising approach to synthesizing 3-FL from renewable feedstocks. In this study, a combinatorial engineering strategy was used to achieve efficient de novo 3-FL production in Escherichia coli. α-1,3-Fucosyltransferase (futM2) from Bacteroides gallinaceum was introduced into E. coli and optimized to create a 3-FL-producing chassis strain. Subsequently, the 3-FL titer increased to 5.2 g/L by improving the utilization of the precursor lactose and down-regulating the endogenous competitive pathways. Furthermore, a synthetic membraneless organelle system based on intrinsically disordered proteins was designed to spatially regulate the pathway enzymes, producing 7.3 g/L 3-FL. The supply of the cofactors NADPH and GTP was also enhanced, after which the 3-FL titer of engineered strain E26 was improved to 8.2 g/L in a shake flask and 10.8 g/L in a 3 L fermenter. In this study, we developed a valuable approach for constructing an efficient 3-FL-producing cell factory and provided a versatile workflow for other chassis cells and HMOs.
Collapse
Affiliation(s)
- Huiyuan Huang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wenwen Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food Biotechnology Co., Ltd., Yixing 214200, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Zhang W, Zhu Y, Wang H, Huang Z, Liu Y, Xu W, Mu W. Highly efficient biosynthesis of 3'-sialyllactose in engineered Escherichia coli. Int J Biol Macromol 2024; 269:132081. [PMID: 38705330 DOI: 10.1016/j.ijbiomac.2024.132081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
3'-Sialyllactose (3'-SL), one of the abundant and important sialylated human milk oligosaccharides, is an emerging food ingredient used in infant formula milk. We previously developed an efficient route for 3'-SL biosynthesis in metabolically engineered Escherichia coli BL21(DE3). Here, several promising α2,3-sialyltransferases were re-evaluated from the byproduct synthesis perspective. The α2,3-sialyltransferase from Neisseria meningitidis MC58 (NST) with great potential and the least byproducts was selected for subsequent molecular modification. Computer-assisted mutation sites combined with a semi-rational modification were designed and performed. A combination of two mutation sites (P120H/N113D) of NST was finally confirmed as the best one, which significantly improved 3'-SL biosynthesis, with extracellular titers of 24.5 g/L at 5-L fed-batch cultivations. When NST-P120H/N113D was additionally integrated into the genome of host EZAK (E. coli BL21(DE3)ΔlacZΔnanAΔnanT), the final strain generated 32.1 g/L of extracellular 3'-SL in a 5-L fed-batch fermentation. Overall, we underscored the existence of by-products and improved 3'-SL production by engineering N. meningitidis α2,3-sialyltransferase.
Collapse
Affiliation(s)
- Wenbo Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuanlin Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
10
|
Zhu Y, Chen R, Wang H, Chen Y, Huang Z, Du Z, Meng J, Zhou J, Mu W. De Novo Biosynthesis of Difucosyllactose by Artificial Pathway Construction and α1,3/4-Fucosyltransferase Rational Design in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38598361 DOI: 10.1021/acs.jafc.4c01691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Difucosyllactose (DFL) is a significant and plentiful oligosaccharide found in human breast milk. In this study, an artificial metabolic pathway of DFL was designed, focusing on the de novo biosynthesis of GDP-fucose from only glycerol. This was achieved by engineering Escherichia coli to endogenously overexpress genes manB, manC, gmd, and wcaG and heterologously overexpress a pair of fucosyltransferases to produce DFL from lactose. The introduction of α-1,2-fucosyltransferase from Helicobacter pylori (FucT2) along with α-1,3/4-fucosyltransferase (HP3/4FT) addressed rate-limiting challenges in enzymatic catalysis and allowed for highly efficient conversion of lactose into DFL. Based on these results, molecular modification of HP3/4FT was performed based on computer-assisted screening and structure-based rational design. The best-performing mutant, MH5, containing a combination of five mutated sites (F49K/Y131D/Y197N/E338D/R369A) of HP3/4FT was obtained. The best strain BLC09-58 harboring MH5 yielded 45.81 g/L of extracellular DFL in 5-L fed-batch cultures, which was the highest titer reported to date.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Roulin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhihui Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jiawei Meng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
11
|
Liang S, He Z, Liu D, Yang S, Yan Q, Jiang Z. Construction of an engineered Escherichia coli for effective synthesis of 2'-fucosyllactose via the salvage pathway. Synth Syst Biotechnol 2024; 9:108-114. [PMID: 38292762 PMCID: PMC10825923 DOI: 10.1016/j.synbio.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
2'-Fucosyllactose (2'-FL) is one of the important functional oligosaccharides in breast milk. So far, few attempts on biosynthesis of 2'-FL by the salvage pathway have been reported. Herein, the salvage pathway enzyme genes were introduced into the E. coli BL21star(DE3) for synthesis of 2'-FL. The 2'-FL titer increased from 1.56 to 2.13 g/L by deleting several endogenous genes on competitive pathways. The α-1,2-fucosyltransferase (WbgL) was selected, and improved the 2'-FL titer to 2.88 g/L. Additionally, the expression level of pathway enzyme genes was tuned through optimizing the plasmid copy number. Furthermore, the spatial distribution of WbgL was enhanced by fusing with the MinD C-tag. After optimizing the fermentation conditions, the 2'-FL titer reached to 7.13 g/L. The final strain produced 59.22 g/L of 2'-FL with 95% molar conversion rate of lactose and 92% molar conversion rate of fucose in a 5 L fermenter. These findings will contribute to construct a highly efficient microbial cell factory to produce 2'-FL or other HMOs.
Collapse
Affiliation(s)
- Shanquan Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Food Laboratory of Zhongyuan, Luohe, 462300, Henan, China
| | - Zi He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Dan Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Food Laboratory of Zhongyuan, Luohe, 462300, Henan, China
| |
Collapse
|
12
|
You R, Wang L, Hu M, Tao Y. Efficient production of 2'-fucosyllactose from fructose through metabolically engineered recombinant Escherichia coli. Microb Cell Fact 2024; 23:38. [PMID: 38303005 PMCID: PMC10835893 DOI: 10.1186/s12934-024-02312-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND The biosynthesis of human milk oligosaccharides (HMOs) using several microbial systems has garnered considerable interest for their value in pharmaceutics and food industries. 2'-Fucosyllactose (2'-FL), the most abundant oligosaccharide in HMOs, is usually produced using chemical synthesis with a complex and toxic process. Recombinant E. coli strains have been constructed by metabolic engineering strategies to produce 2'-FL, but the low stoichiometric yields (2'-FL/glucose or glycerol) are still far from meeting the requirements of industrial production. The sufficient carbon flux for 2'-FL biosynthesis is a major challenge. As such, it is of great significance for the construction of recombinant strains with a high stoichiometric yield. RESULTS In the present study, we designed a 2'-FL biosynthesis pathway from fructose with a theoretical stoichiometric yield of 0.5 mol 2'-FL/mol fructose. The biosynthesis of 2'-FL involves five key enzymes: phosphomannomutase (ManB), mannose-1-phosphate guanylytransferase (ManC), GDP-D-mannose 4,6-dehydratase (Gmd), and GDP-L-fucose synthase (WcaG), and α-1,2-fucosyltransferase (FucT). Based on starting strain SG104, we constructed a series of metabolically engineered E. coli strains by deleting the key genes pfkA, pfkB and pgi, and replacing the original promoter of lacY. The co-expression systems for ManB, ManC, Gmd, WcaG, and FucT were optimized, and nine FucT enzymes were screened to improve the stoichiometric yields of 2'-FL. Furthermore, the gene gapA was regulated to further enhance 2'-FL production, and the highest stoichiometric yield (0.498 mol 2'-FL/mol fructose) was achieved by using recombinant strain RFL38 (SG104ΔpfkAΔpfkBΔpgi119-lacYΔwcaF::119-gmd-wcaG-manC-manB, 119-AGGAGGAGG-gapA, harboring plasmid P30). In the scaled-up reaction, 41.6 g/L (85.2 mM) 2'-FL was produced by a fed-batch bioconversion, corresponding to a stoichiometric yield of 0.482 mol 2'-FL/mol fructose and 0.986 mol 2'-FL/mol lactose. CONCLUSIONS The biosynthesis of 2'-FL using recombinant E. coli from fructose was optimized by metabolic engineering strategies. This is the first time to realize the biological production of 2'-FL production from fructose with high stoichiometric yields. This study also provides an important reference to obtain a suitable distribution of carbon flux between 2'-FL synthesis and glycolysis.
Collapse
Affiliation(s)
- Ran You
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Wang
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Microcyto Biotechnology (Beijing) Co., Ltd., Beijing, 102200, China.
| | - Meirong Hu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong Tao
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Microcyto Biotechnology (Beijing) Co., Ltd., Beijing, 102200, China.
| |
Collapse
|
13
|
Zhang Y, Zhang X, Liu H, Hou J, Liu M, Qi Q. Efficient production of 2'-fucosyllactose in unconventional yeast Yarrowia lipolytica. Synth Syst Biotechnol 2023; 8:716-723. [PMID: 38053583 PMCID: PMC10694633 DOI: 10.1016/j.synbio.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
2'-Fucosyllactose (2'-FL) has great application value as a nutritional component and the whole cell biosynthesis of 2'-FL has become the focus of current research. Yarrowia lipolytica has great potential in oligosaccharide synthesis and large-scale fermentation. In this study, systematic engineering of Y. lipolytica for efficient 2'-FL production was performed. By fusing different protein tags, the synthesis of 2'-FL was optimized and the ubiquitin tag was demonstrated to be the best choice to increase the 2'-FL production. By iterative integration of the related genes, increasing the precursor supply, and promoting NADPH regeneration, the 2'-FL synthesis was further improved. The final 2'-FL titer, 41.10 g/L, was obtained in the strain F5-1. Our work reports the highest 2'-FL production in Y. lipolytica, and demonstrates that Y. lipolytica is an efficient microbial chassis for the synthesis of oligosaccharides.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xuejing Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Haiyan Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Mengmeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
14
|
Chen R, Zhu Y, Wang H, Liu Y, Meng J, Chen Y, Mu W. Engineering Escherichia coli MG1655 for Highly Efficient Biosynthesis of 2'-Fucosyllactose by De Novo GDP-Fucose Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14678-14686. [PMID: 37773050 DOI: 10.1021/acs.jafc.3c05052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
2'-Fucosyllactose (2'-FL), the most typical human milk oligosaccharide, is used as an additive in premium infant formula. Herein, we constructed two highly effective 2'-FL synthesis producers via a de novo GDP-fucose pathway from engineered Escherichia coli MG1655. First, lacZ and wcaJ, two competitive pathway genes, were disrupted to block the invalid consumption of lactose and GDP-fucose, respectively. Next, the lacY gene was strengthened by switching its native promoter to PJ23119. To enhance the supply of endogenous GDP-fucose, the promoters of gene clusters manC-manB and gmd-fcl were strengthened individually or in combination. Subsequently, chromosomal integration of a constitutive PJ23119 promoter-based BKHT expression cassette (PJ23119-BKHT) was performed in the arsB and recA loci. The most productive plasmid-based and plasmid-free strains produced 76.9 and 50.1 g/L 2'-FL by fed-batch cultivation, respectively. Neither of them generated difucosyl lactose nor 3-fucosyllactose as byproducts.
Collapse
Affiliation(s)
- Roulin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan 250010, Shandong, People's Republic of China
| | - Yuanlin Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Jiawei Meng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| |
Collapse
|
15
|
Li Z, Zhu Y, Huang Z, Zhang P, Zhang W, Mu W. Engineering Escherichia coli for high-level production of lacto-N-fucopentaose I by stepwise de novo pathway construction. Carbohydr Polym 2023; 315:121028. [PMID: 37230628 DOI: 10.1016/j.carbpol.2023.121028] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Lacto-N-fucopentaose I (LNFP I) is an abundant and important fucosylated human milk oligosaccharide (HMO). Here, an efficient LNFP I-producing strain without by-product 2'-fucosyllactose (2'-FL) was developed by advisable stepwise de novo pathway construction in Escherichia coli. Specifically, the genetically stable lacto-N-triose II (LNTri II)-producing strains were constructed by the multicopy integration of β1,3-N-acetylglucosaminyltransferase. LNTri II can be further converted to lacto-N-tetraose (LNT) by LNT-producing β1,3-galactosyltransferase. The de novo and salvage pathways of GDP-fucose were introduced into highly efficient LNT-producing chassis. Specific α1,2-fucosyltransferase was verified to eliminate by-product 2'-FL, and binding free energy of the complex was analyzed to explain the product distribution. Subsequently, further attempts aiming to improve α1,2-fucosyltransferase activity and the supply of GDP-fucose were carried out. Our engineering strategies enabled the stepwise de novo construction of strains that produced up to 30.47 g/L of extracellular LNFP I, without accumulation of 2'-FL, and with only minor intermediates residue.
Collapse
Affiliation(s)
- Zeyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Pan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, People's Republic of China.
| |
Collapse
|
16
|
Zhao M, Zhu Y, Wang H, Xu W, Zhang W, Mu W. An Overview of Sugar Nucleotide-Dependent Glycosyltransferases for Human Milk Oligosaccharide Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12390-12402. [PMID: 37552889 DOI: 10.1021/acs.jafc.3c02895] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Human milk oligosaccharides (HMOs) have received increasing attention because of their special effects on infant health and commercial value as the new generation of core components in infant formula. Currently, large-scale production of HMOs is generally based on microbial synthesis using metabolically engineered cell factories. Introduction of the specific glycosyltransferases is essential for the construction of HMO-producing engineered strains in which the HMO-producing glycosyltransferases are generally sugar nucleotide-dependent. Four types of glycosyltransferases have been used for typical glycosylation reactions to synthesize HMOs. Soluble expression, substrate specificity, and regioselectivity are common concerns of these glycosyltransferases in practical applications. Screening of specific glycosyltransferases is an important research topic to solve these problems. Molecular modification has also been performed to enhance the catalytic activity of various HMO-producing glycosyltransferases and to improve the substrate specificity and regioselectivity. In this article, various sugar nucleotide-dependent glycosyltransferases for HMO synthesis were overviewed, common concerns of these glycosyltransferases were described, and the future perspectives of glycosyltransferase-related studies were provided.
Collapse
Affiliation(s)
- Mingli Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
17
|
Chen Y, Wen Y, Zhu Y, Chen Z, Mu W, Zhao C. Synthesis of bioactive oligosaccharides and their potential health benefits. Crit Rev Food Sci Nutr 2023; 64:10319-10331. [PMID: 37341126 DOI: 10.1080/10408398.2023.2222805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Oligosaccharides, a low polymerization degree of carbohydrate, possess various physiological activities, such as anti-diabetes, anti-obesity, anti-aging, anti-viral, and gut microbiota regulation, having a widely used in food and medical fields. However, due to the limited natural oligosaccharides, many un-natural oligosaccharides from complex polysaccharides are being studied for amplifying the available pool of oligosaccharides. More recently, various oligosaccharides were developed by using several artificial strategies, such as chemical degradation, enzyme catalysis, and biosynthesis, then they can be applied in various sectors. Moreover, it has gradually become a trend to use biosynthesis to realize the synthesis of oligosaccharides with clear structure. Emerging research has found that un-natural oligosaccharides exert more comprehensive effects against various human diseases through multiple mechanisms. However, these oligosaccharides from various routes have not been critical reviewed and summarized. Therefore, the purpose of this review is to present the various routes of oligosaccharides preparations and healthy effects, with a focus on diabetes, obesity, aging, virus, and gut microbiota. Additionally, the application of multi-omics for these natural and un-natural oligosaccharides has also been discussed. Especially, the multi-omics are needed to apply in various disease models to find out various biomarkers to respond to the dynamic change process of oligosaccharides.
Collapse
Affiliation(s)
- Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Ourense, Spain
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Zhengxin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
18
|
Chen Y, Zhu Y, Wang H, Chen R, Liu Y, Zhang W, Mu W. De novo biosynthesis of 2'-fucosyllactose in a metabolically engineered Escherichia coli using a novel ɑ1,2-fucosyltransferase from Azospirillum lipoferum. BIORESOURCE TECHNOLOGY 2023; 374:128818. [PMID: 36868425 DOI: 10.1016/j.biortech.2023.128818] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Human milk oligosaccharides are complex, indigestible oligosaccharides that provide ideal nutrition for infant development. Here, 2'-fucosyllactose was efficiently produced in Escherichia coli by using a biosynthetic pathway. For this, both lacZ and wcaJ (encoding β-galactosidase and UDP-glucose lipid carrier transferase, respectively) were deleted to enhance the 2'-fucosyllactose biosynthesis. To further enhance 2'-fucosyllactose production, SAMT from Azospirillum lipoferum was inserted into the chromosome of the engineered strain, and the native promoter was replaced with a strong constitutive promoter (PJ23119). The titer of 2'-fucosyllactose was increased to 8.03 g/L by introducing the regulators rcsA and rcsB into the recombinant strains. Compared to wbgL-based strains, only 2'-fucosyllactose was produced in SAMT-based strains without other by-products. Finally, the highest titer of 2'-fucosyllactose reached 112.56 g/L in a 5 L bioreactor by fed-batch cultivation, with a productivity of 1.10 g/L/h and a yield of 0.98 mol/mol lactose, indicating a strong potential in industrial production.
Collapse
Affiliation(s)
- Yihan Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Roulin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuanlin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
19
|
Zhu Y, Chen R, Wang H, Chen Y, Liu Y, Zhou J, Mu W. Elimination of Byproduct Generation and Enhancement of 2'-Fucosyllactose Synthesis by Expressing a Novel α1,2-Fucosyltransferase in Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4915-4923. [PMID: 36876899 DOI: 10.1021/acs.jafc.3c00139] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
2'-Fucosyllactose (2'-FL) is a kind of fucosylated human milk oligosaccharide (HMO), representing the most abundant oligosaccharide in breast milk. We conducted systematic studies on three canonical α1,2-fucosyltransferases (WbgL, FucT2, and WcfB) to quantify the byproducts in a lacZ- and wcaJ-deleted Escherichia coli BL21(DE3) basic host strain. Further, we screened a highly active α1,2-fucosyltransferase from Helicobacter sp. 11S02629-2 (BKHT), which exhibits high in vivo 2'-FL productivity without the formation of byproducts difucosyl lactose (DFL) and 3-FL. The maximum 2'-FL titer and yield reached 11.13 g/L and 0.98 mol/mol of lactose, respectively, in shake-flask cultivation, both approaching the theoretical maximum value. In a 5 L fed-batch cultivation, the maximum 2'-FL titer reached 94.7 g/L extracellularly with a yield of 0.98 mol of 2'-FL/mol of lactose and productivity of 1.14 g L-1 h-1. Our reported 2'-FL yield is the highest from lactose reported to date.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Roulin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corporation, Limited, Jinan, Shandong 250010, People's Republic of China
| | - Yihan Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuanlin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
20
|
Meng J, Zhu Y, Wang H, Cao H, Mu W. Biosynthesis of Human Milk Oligosaccharides: Enzyme Cascade and Metabolic Engineering Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2234-2243. [PMID: 36700801 DOI: 10.1021/acs.jafc.2c08436] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Human milk oligosaccharides (HMOs) have unique beneficial effects for infants and are considered as the new gold standard for premium infant formula. They are a collection of unconjugated glycans, and more than 200 distinct structures have been identified. Generally, HMOs are enzymatically produced by elongation and/or modification from lactose via stepwise glycosylation. Each glycosylation requires a specific glycosyltransferase (GT) and the corresponding nucleotide sugar donor. In this review, the typical HMO-producing GTs and the one-pot multienzyme modules for generating various nucleotide sugar donors are introduced, the principles for designing the enzyme cascade routes for HMO synthesis are described, and the important metabolic engineering strategies for mass production of HMOs are also reviewed. In addition, the future research directions in biotechnological production of HMOs were prospected.
Collapse
Affiliation(s)
- Jiawei Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corporation, Limited, Jinan, Shandong 250010, People's Republic of China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
21
|
Meng J, Zhu Y, Chen R, Liu Y, Zhang W, Mu W. Microbial Synthesis of l-Fucose with High Productivity by a Metabolically Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2464-2471. [PMID: 36700831 DOI: 10.1021/acs.jafc.2c08906] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
l-Fucose is a natural deoxy hexose found in a variety of organisms. It possesses many physiological effects and has potential applications in pharmaceutical, cosmetic, and food industries. Microbial synthesis via metabolic engineering attracts increasing attention for efficient production of important chemicals. Previously, we reported the construction of a metabolically engineered Escherichia coli strain with high 2'-fucosyllactose productivity. Herein, we further introduced Bifidobacterium bifidum α-l-fucosidase via both plasmid expression and genomic integration and blocked the l-fucose assimilation pathway by deleting fucI, fucK, and rhaA. The highest l-fucose titers reached 6.31 and 51.05 g/L in shake-flask and fed-batch cultivation, respectively. l-Fucose synthesis was little affected by lactose added, and there was almost no 2'-fucosyllactose residue throughout the cultivation processes. The l-fucose productivity reached 0.76 g/L/h, indicating significant potential for large-scale industrial applications.
Collapse
Affiliation(s)
- Jiawei Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Roulin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuanlin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
22
|
Microbial Production of Human Milk Oligosaccharides. Molecules 2023; 28:molecules28031491. [PMID: 36771155 PMCID: PMC9921495 DOI: 10.3390/molecules28031491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Human milk oligosaccharides (HMOs) are complex nonnutritive sugars present in human milk. These sugars possess prebiotic, immunomodulatory, and antagonistic properties towards pathogens and therefore are important for the health and well-being of newborn babies. Lower prevalence of breastfeeding around the globe, rising popularity of nutraceuticals, and low availability of HMOs have inspired efforts to develop economically feasible and efficient industrial-scale production platforms for HMOs. Recent progress in synthetic biology and metabolic engineering tools has enabled microbial systems to be a production system of HMOs. In this regard, the model organism Escherichia coli has emerged as the preferred production platform. Herein, we summarize the remarkable progress in the microbial production of HMOs and discuss the challenges and future opportunities in unraveling the scope of production of complex HMOs. We focus on the microbial production of five HMOs that have been approved for their commercialization.
Collapse
|
23
|
Chen R, Wan L, Zhu Y, Liu Y, Zhang W, Mu W. Spatial organization of pathway enzymes via self-assembly to improve 2'-fucosyllactose biosynthesis in engineered Escherichia coli. Biotechnol Bioeng 2023; 120:524-535. [PMID: 36326175 DOI: 10.1002/bit.28279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
Abstract
As one of the most abundant components in human milk oligosaccharides, 2'-fucosyllactose (2'-FL) possesses versatile beneficial health effects. Although most studies focused on overexpressing or fine-tuning the expression of pathway enzymes and achieved a striking increase of 2'-FL production, directly facilitating the metabolic flux toward the key intermediate GDP-l-fucose seems to be ignored. Here, multienzyme complexes consisting of sequential pathway enzymes were constructed by using specific peptide interaction motifs in recombinant Escherichia coli to achieve a higher titer of 2'-FL. Specifically, we first fine-tuned the expression level of pathway enzymes and balanced the metabolic flux toward 2'-FL synthesis. Then, two key enzymes (GDP-mannose 4,6-dehydratase and GDP- l-fucose synthase) were self-assembled into enzyme complexes in vivo via a short peptide interaction pair RIAD-RIDD (RI anchoring disruptor-RI dimer D/D domains), resulting in noticeable improvement of 2'-FL production. Next, to further strengthen the metabolic flux toward 2'-FL, three pathway enzymes were further aggregated into multienzyme assemblies by using another orthogonal protein interaction motif (Spycatcher-SpyTag or PDZ-PDZlig). Intracellular multienzyme assemblies remarkably enlarged the flux toward 2'-FL biosynthesis and showed a 2.1-fold increase of 2'-FL production compared with a strain expressing free-floating and unassembled enzymes. The optimally engineered strain EZJ23 accumulated 4.8 g/L 2'-FL in shake flask fermentation and was capable of producing 25.1 g/L 2'-FL by fed-batch cultivation. This work provides novel approaches for further improvement and large-scale production of 2'-FL and demonstrates the effectiveness of spatial assembly of pathway enzymes to improve the production of valuable products in the engineered host strain.
Collapse
Affiliation(s)
- Roulin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Li Wan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuanlin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
24
|
Zhu Y, Cao H, Wang H, Mu W. Biosynthesis of human milk oligosaccharides via metabolic engineering approaches: current advances and challenges. Curr Opin Biotechnol 2022; 78:102841. [PMID: 36371892 DOI: 10.1016/j.copbio.2022.102841] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022]
Abstract
Human milk oligosaccharides (HMOs) are structurally complex unconjugated glycans that are the third largest solid component in human milk. HMOs have drawn increasing attention because of their beneficial effects to infant health. Of the more than 200 HMOs, only less than 10 have been used in medical or food industries. Although HMO research has been becoming increasingly intensive and booming, the limited availability of HMOs still cannot meet the demand in health effect research and large-scale application. Therefore, efficient synthetic approaches and strategies for HMO production are urgently needed. The goal of this review is to highlight recent advances in microbial cell factory development for HMO biosynthesis. Key challenges in representative HMO production are also highlighted. The further perspectives in general HMO biosynthesis are discussed.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
25
|
Li M, Luo Y, Hu M, Li C, Liu Z, Zhang T. Module-Guided Metabolic Rewiring for Fucosyllactose Biosynthesis in Engineered Escherichia coli with Lactose De Novo Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14761-14770. [PMID: 36375030 DOI: 10.1021/acs.jafc.2c05909] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fucosyllactose (FL) has garnered considerable attention for its benefits on infant health. In this study, we report an efficient E. coli cell factory to produce 2'/3-fucosyllactose (2'/3-FL) with lactose de novo pathway through metabolic network remodeling, including (1) modification of the PTSGlc system to enhance glucose internalization efficiency; (2) screening for β-1,4-galactosyltransferase (β-1,4-GalT) and introduction of lactose synthesis pathway; (3) eliminating inhibition of byproduct pathways; (4) constructing antibiotic-free and inducer-free FL strains; and (5) up-regulating the expression of genes in the GDP-l-fucose module. The final engineered strains BP10-3 and BP11-3 produced 4.36 g/L for 2'-FL and 3.23 g/L for 3-FL in shake flasks. In 3 L bioreactors, fed-batch cultivations of the two strains produced 40.44 g/L for 2'-FL and 30.42 g/L for 3-FL, yielding 0.63 and 0.69 g/g glucose, respectively. The strategy described in this work will help to engineer E. coli as a safe chassis for other lactose-independent HMOs production.
Collapse
Affiliation(s)
- Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yejiao Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Miaomiao Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chenchen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhu Liu
- Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Science and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
26
|
Xu Y, Wu Y, Liu Y, Li J, Du G, Chen J, Lv X, Liu L. Sustainable bioproduction of natural sugar substitutes: Strategies and challenges. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Production of colanic acid hydrolysate and its use in the production of fucosylated oligosaccharides by engineered Saccharomyces cerevisiae. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|