1
|
Shu W, Shi W, Xie H, Wang S, Zhang Q, Ouyang K, Xiao F, Zhao Q. Non-covalent interaction of rice protein and polyphenols: The effects on their emulsions. Food Chem 2025; 479:143732. [PMID: 40073562 DOI: 10.1016/j.foodchem.2025.143732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
In this study, we investigated the non-covalent interaction mechanism between rice protein (RP) and three polyphenols with different concentrations (ferulic acid FA, gallic acid GA, and tannic acid TA) and their effects on the structure and emulsion stability of the proteins. Hydrophobic forces dominated the binding of RP to the polyphenols, and the reaction was heat-absorbing. The three polyphenols are bound to RP in the form of static quenching to form a non-covalent complex, and during the binding process, the RP provides one binding site. RP-polyphenol complexes, particularly RP-GA, enhanced ABTS scavenging and FRAP reduction. Polyphenols improved RP emulsion oxidative stability, inhibiting lipid oxidation and enhancing emulsion rheology and interfacial structure. RP-GA was most effective, maintaining low POV. These findings support the potential applications of RP-polyphenol noncovalent complexes in food processing.
Collapse
Affiliation(s)
- Weitong Shu
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China
| | - Wenyi Shi
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China
| | - Hexiang Xie
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Songyu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China
| | - Qin Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China
| | - Kefan Ouyang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China
| | - Fangjie Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China
| | - Qiang Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China.
| |
Collapse
|
2
|
Chen X, Han X, Chen M, Lu X, Zhou W, Li R. Fabrication of tannins and oat protein non-covalent complexes: Effect on the structure and in vitro digestion properties of oat proteins. Int J Biol Macromol 2025; 304:140481. [PMID: 39890002 DOI: 10.1016/j.ijbiomac.2025.140481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
This study explored the non-covalent interactions between oat protein isolate (OPI) and two tannic compounds-proanthocyanidins (PA) and tannic acid (TA)-and examined their impact on the structural and digestive properties of oat proteins. The combination of OPI with tannic compounds formed granular complexes with particle sizes ranging from 126 to 240 nm and zeta potentials between -35 and -44 mV. Compared to OPI alone, the α-helix and β-turn contents decreased, while the β-sheet and random coil contents increased in both OPI-tannin complexes. Fluorescence spectra analysis indicated that hydrogen bonding was the main interaction force in OPI-PA complexes, while OPI and TA were primarily bound by hydrophobic interactions. The simulated digestion analysis showed that the protein digestibility was delayed in the OPI-tannin complexes, likely due to the inhibition of digestive enzyme activity by tannic compounds, which slowed OPI digestibility. Additionally, the oxidation resistance of the OPI-tannin complexes significantly improved after in vitro digestion, indicating that the non-covalent complexes provided superior protection for the tannic compounds. These findings offer theoretical support for the design and utilization of oat- and tannin-rich foods.
Collapse
Affiliation(s)
- Xi Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Xue Han
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Mianhong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Xuli Lu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China.
| |
Collapse
|
3
|
He Y, Sun H, Han B, Olajide TM, Yang M, Miao Q, Liao X, Huang J. Effects of preheat treatment and syringic acid binding on the physicochemical, antioxidant, and antibacterial properties of black soybean protein isolate before and after in vitro digestion. J Food Sci 2024; 89:7534-7548. [PMID: 39366776 DOI: 10.1111/1750-3841.17380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 10/06/2024]
Abstract
This study investigated the effects of preheat treatment (70-100 °C) and syringic acid (SA) grafting on the antioxidant, antibacterial, and physicochemical properties of black soybean protein isolate (BSPI) before and after in vitro digestion. The results revealed that both preheat treatment and SA grafting increased the digestibility and the absolute zeta potential value of BSPI. However, as the preheating temperature increased, the antioxidant ability of BSPI decreased, which was improved by SA grafting. During in vitro digestion, the absolute zeta potential and antioxidant activities of preheated BSPI and preheated BSPI-SA complex followed the order: intestine > gastric > before digestion. Compared with before digestion, preheated BSPI with its SA complex after in vitro digestion exhibited excellent antibacterial activities. Importantly, the preheated BSPI-SA complex enhanced the SA recovery rate during digestion and SA stability, with the highest recovery rate observed for the SA-grafted BSPI with preheat treatment at 100°C (BSPI100-SA). The principal component analysis sufficiently distinguished preheated BSPI and preheated BSPI-SA complexes. There were partitions between BSPI and BSPI-SA treated at different preheating temperatures. This study contributes to expanding the potential applications of BSPI with its SA complex in food products and offers guidance for designing SA delivery systems. PRACTICAL APPLICATION: Preheated BSPI-SA complexes could serve as functional ingredients in food or health products. Besides, preheated BSPI has application potential as a carrier for SA delivery.
Collapse
Affiliation(s)
- Yiqing He
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Haiwen Sun
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Bingyao Han
- College of Sciences, Shanghai University, Shanghai, China
| | - Tosin Michael Olajide
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai, China
| | - Minxin Yang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qianqian Miao
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xianyan Liao
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Junyi Huang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
4
|
Jiang B, Yue H, Fu X, Wang J, Feng Y, Li D, Liu C, Feng Z. One-step high efficiency separation of prolyl endopeptidase from Aspergillus niger and its application. Int J Biol Macromol 2024; 271:132582. [PMID: 38801849 DOI: 10.1016/j.ijbiomac.2024.132582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Prolyl endopeptidase from Aspergillus niger (An-PEP) is an enzyme that recognizes C-terminal peptide bonds of amino acid chains and cleaves them by hydrolysis. An aqueous two-phase system (ATPS) was used to separate An-PEP from fermentation broth. Through single factor experiments, the ATPS containing 16 % (w/w) PEG2000 and 15 % (w/w) (NH4)2SO4 at pH 6.0 obtained the recovery of 79.74 ± 0.16 % and the purification coefficient of 7.64 ± 0.08. It was then used to produce soy protein isolate peptide (SPIP) by hydrolysis of soy protein isolate (SPI), and SPIP-Ferrous chelate (SPIP-Fe) was prepared with SPIP and Fe2+. The chelation conditions were optimized by RSM, as the chelation time was 30 min, chelation temperature was 25 °C, SPIP mass to VC mass was two to one and pH was 6.0. The obtained chelation rate was 82.56 ± 2.30 %. The change in the structures and functional features of SPIP before and after chelation were investigated. The FTIR and UV-Vis results indicated that the chelation of Fe2+ and SPIP depended mainly on the formation of amide bonds. The fluorescence, SEM and amino acid composition analysis results indicated that Fe2+ could induce and stabilize the surface conformation and change the amino acid distribution on the surfaces of SPIP. The chelation of SPIP and Fe2+ resulted in the enhancement of radical scavenging activities and ACE inhibitory activities. This work provided a new perspective for the further development of peptide-Fe chelates for iron supplement.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Hongshen Yue
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Xinhao Fu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Jiaming Wang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Yu Feng
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Dongmei Li
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Chunhong Liu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Zhibiao Feng
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Li D, Zhu L, Wu Q, Chen Y, Wu G, Zhang H. Tartary buckwheat protein-phenol conjugate prepared by alkaline-based environment: Identification of covalent binding sites of phenols and alterations in protein structural and functional characteristics. Int J Biol Macromol 2024; 257:127504. [PMID: 37858650 DOI: 10.1016/j.ijbiomac.2023.127504] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/17/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Tartary buckwheat protein-rutin/quercetin covalent complex was synthesized in alkaline oxygen-containing environment, and its binding sites, conformational changes and functional properties were evaluated by multispectral technique and proteomics. The determination of total sulfhydryl and free amino groups showed that rutin/quercetin can form a covalent complex with BPI and could significantly reduce the group content. Ultraviolet-visible spectrum analysis showed that protein could form new characteristic peaks after binding with rutin/quercetin. Circular dichroism spectrum analysis showed that rutin and quercetin caused similar changes in the secondary structure of proteins, both promoting β-sheet to α-helix, β-ture and random coil transformation. The fluorescence spectrometry results showed that the combination of phenols can cause the fluorescence quenching, and the combination of rutin was stronger than the quercetin. Proteomics showed that there were multiple covalent binding sites between phenols and protein. Rutin had a high affinity for arginine, and quercetin and cysteine had high affinity. Meanwhile, the combination of rutin/quercetin and protein had reduced the surface hydrophobic ability of the protein, and improved the foaming, stability and antioxidant properties of the protein. This study expounded the mechanism of the combination of BPI and rutin/quercetin, and analysed the differences of the combination of protein and phenols in different structures. The findings can provide a theoretical basis for the development of complexes in the area of food.
Collapse
Affiliation(s)
- Dongze Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, China
| | - Ling Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, China
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, China
| | - Yiling Chen
- Amway (China) Botanical R&D Centre, Wuxi 214115, China
| | - Gangcheng Wu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, China
| | - Hui Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, China.
| |
Collapse
|
6
|
Liao G, Kang J, Zhang H, Cui Y, Xiong S, Liu Y. Covalent and non-covalent interaction of myofibrillar protein and cyanidin-3-O-glucoside: focus on structure, binding sites and in vitro digestion properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:905-915. [PMID: 37699084 DOI: 10.1002/jsfa.12978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND The aim of this study was to investigate the effects of covalent and non-covalent interactions between myofibrillar protein (MP) and cyanidin-3-O-glucoside (C3G) on protein structure, binding sites, and digestion properties. Four methods of inducing covalent cross-linking were used in the preparation of MP-C3G conjugates, including tyrosinase-catalyzed oxidation, alkaline pH shift treatment, free radical grafting, and ultrasonic treatment. A comparison was made between MP-C3G conjugates and complexes, and the analysis included sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), C3G binding ratio, liquid chromatography-tandem mass spectrometry (LC-MS/MS), protein side-chain amino acids, circular dichroism spectroscopy, three-dimensional fluorescence, particle size, and in vitro simulated digestion. RESULTS Covalent bonding between C3G and amino acid side chains in MP was confirmed by LC-MS/MS. In covalent bonding, tryptophan residues, free amino groups and sulfhydryl groups were all implicated. Among the 22 peptides covalently modified by C3G, 30 modification sites were identified, located in lysine, histidine, tryptophan, arginine and cysteine. In vitro simulated digestion experiments showed that the addition of C3G significantly reduced the digestibility of MP, with the covalent conjugate showing lower digestibility than the non-covalent conjugate. Moreover, the digestibility of protein decreased more during intestinal digestion, possibly because covalent cross-linking of C3G and MP further inhibited trypsin targeting sites (lysine and arginine). CONCLUSION Covalent cross-linking of C3G with myofibrillar proteins significantly affected protein structure and reduced protein digestibility by occupying more trypsin binding sites. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangming Liao
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, People's Republic of China
| | - Jiajia Kang
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, People's Republic of China
| | - Haiping Zhang
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, People's Republic of China
| | - Ying Cui
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, People's Republic of China
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, People's Republic of China
| | - Youming Liu
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, People's Republic of China
| |
Collapse
|
7
|
Li D, Zhu L, Wu Q, Chen Y, Wu G, Zhang H. Comparative study of dietary phenols with Tartary buckwheat protein (2S/13S): impact on structure, binding sites and functionality of protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:698-706. [PMID: 37653274 DOI: 10.1002/jsfa.12960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/24/2023] [Accepted: 09/01/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND This research was to investigate the interaction mechanism between 2S albumin and 13S globulin (2S and 13S, the most important storage proteins in Tartary buckwheat seeds) and three phenols (rutin, quercetin and myricetin) regarding the structural and antioxidant properties of their complexes. RESULTS There are differences in the binding affinity of phenols for 2S and 13S. Rutin had a higher binding affinity for 2S, myricetin had a higher binding affinity for 13S, and 13S exhibited a higher affinity toward phenols than did 2S. Binding with phenols significantly changed the secondary and tertiary structures of 2S and 13S, decreased the surface hydrophobic value and enhanced the antioxidant capacity. Molecular docking and isothermal titration calorimetry showed that the binding processes were spontaneous and that there were hydrogen bonds, hydrophobic bonds and van der Waals force interactions between phenols and proteins. CONCLUSION These findings could provide meaningful guidance for the further application of buckwheat protein complex. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongze Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Wuxi, China
| | - Ling Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Wuxi, China
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, China
| | - Yiling Chen
- Amway (China) Botanical R&D Centre, Wuxi, China
| | - Gangcheng Wu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Wuxi, China
| | - Hui Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Wuxi, China
| |
Collapse
|
8
|
Cao W, Chen J, Ma S, Chen X, Dai X, Zhang L, Guo M, Li L, Liu W, Ren G, Duan X, Xie Q. Structure Characterization and Functional Properties of Flaxseed Protein-Chlorogenic Acid Complex. Foods 2023; 12:4449. [PMID: 38137253 PMCID: PMC10743109 DOI: 10.3390/foods12244449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to investigate the effects of the covalent binding of flaxseed protein (FP) and chlorogenic acid (CA) on the structure and functional properties of FP-CA complexes fabricated using the alkali method. The results suggested that the encapsulation efficiency of CA encapsulated by FP ranged from 66.11% to 72.20% and the loading capacity of CA increased with an increasing addition ratio of CA with a dose-dependent relationship, which increased from 2.34% to 10.19%. The particle size, turbidity, zeta potential and PDI of FP and the FP-CA complexes had no significant discrepancy. UV-Vis and fluorescence spectra showed the existence of the interaction between FP and CA. SEM images showed that the surface of the FP-0.35%CA complex had more wrinkles compared to FP. Differential scanning calorimetry analysis indicated the decomposition temperature of FP at 198 °C was higher than that (197 °C) of the FP-0.35%CA complex, implying that the stability of the FP-CA complexes was lower than FP. The functional properties suggested that the FP-CA complex with 1.40% CA had a higher water holding capacity (500.81%), lower oil holding capacity (273.495%) and lower surface hydrophobicity. Moreover, the FP-CA complexes had better antioxidant activities than that of FP. Therefore, this study provides more insights for the potential application of FP-CA covalent complexes in functional food processing.
Collapse
Affiliation(s)
- Weiwei Cao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (W.C.); (M.G.)
| | - Junliang Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (W.C.); (M.G.)
| | - Shuhua Ma
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (W.C.); (M.G.)
| | - Xin Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (W.C.); (M.G.)
| | - Xin Dai
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (W.C.); (M.G.)
| | - Li Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (W.C.); (M.G.)
| | - Mengyao Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (W.C.); (M.G.)
| | - Linlin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (W.C.); (M.G.)
| | - Wenchao Liu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (W.C.); (M.G.)
| | - Guangyue Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (W.C.); (M.G.)
| | - Xu Duan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (W.C.); (M.G.)
| | - Qinggang Xie
- Heilongjiang Feihe Dairy Co., Ltd., Beijing 100015, China
| |
Collapse
|
9
|
Lemnaru (Popa) GM, Motelica L, Trusca RD, Ilie CI, Croitoru AM, Ficai D, Oprea O, Stoica-Guzun A, Ficai A, Ditu LM, Tihăuan BM. Antimicrobial Wound Dressings based on Bacterial Cellulose and Independently Loaded with Nutmeg and Fir Needle Essential Oils. Polymers (Basel) 2023; 15:3629. [PMID: 37688255 PMCID: PMC10490137 DOI: 10.3390/polym15173629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of the present study was to obtain antimicrobial dressings from bacterial cellulose loaded with nutmeg and of fir needle essential oils. The attractive properties of BC, such as biocompatibility, good physicochemical and mechanical stability, and high water absorption, led to the choice of this material to be used as a support. Essential oils have been added to provide antimicrobial properties to these dressings. The results confirmed the presence of oils in the structure of the bacterial cellulose membrane and the ability of the materials to inhibit the adhesion of Staphylococcus aureus and Escherichia coli. By performing antibacterial tests on membranes loaded with fir needle essential oil, we demonstrated the ability of these membranes to inhibit bacterial adhesion to the substrate. The samples loaded with nutmeg essential oil exhibited the ability to inhibit the adhesion of bacteria to the surface of the materials, with the 5% sample showing a significant decrease. The binding of essential oils to the membrane was confirmed by thermal analysis and infrared characterization.
Collapse
Affiliation(s)
- Georgiana-Madalina Lemnaru (Popa)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 060042 Bucharest, Romania
| | - Ludmila Motelica
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 060042 Bucharest, Romania
| | - Roxana Doina Trusca
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Cornelia Ioana Ilie
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 060042 Bucharest, Romania
| | - Alexa-Maria Croitoru
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 060042 Bucharest, Romania
| | - Denisa Ficai
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 060042 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| | - Ovidiu Oprea
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Anicuta Stoica-Guzun
- Department of Chemical and Biochemical Engineering, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 060042 Bucharest, Romania
| | - Anton Ficai
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Lia-Mara Ditu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 060042 Bucharest, Romania
| | - Bianca-Maria Tihăuan
- Research Institute of the University of Bucharest—ICUB, 91-95 Spl. Independentei, 50567 Bucharest, Romania
- Research & Development for Advanced Biotechnologies and Medical Devices, SC Sanimed International Impex SRL, 087040 Călugăreni, Romania
| |
Collapse
|
10
|
Jiang B, Chen P, Guo J, Han B, Jin H, Li D, Liu C, Feng Z. Structural characteristics and biological activity of lactic acid bacteria exopolysaccharides separated by ethanol/(NH 4) 2SO 4 ATPS. Int J Biol Macromol 2023:125451. [PMID: 37331540 DOI: 10.1016/j.ijbiomac.2023.125451] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/13/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Exopolysaccharides (EPS) from lactic acid bacteria (LAB) as edible and safe bioproducts with health benefits have become an interesting topic. In this study, aqueous two-phase system (ATPS) was established using ethanol and (NH4)2SO4 as phase-forming substances to separate and purify LAB EPS from Lactobacillus plantarum 1.0665. The operating conditions were optimized by a single factor and response surface method (RSM). The results indicated that an effectively selective separation of LAB EPS was achieved by the ATPS consisted of 28 % (w/w) ethanol and 18 % (w/w) (NH4)2SO4 at pH 4.0. Under optimized conditions, the partition coefficient (K) and recovery rate (Y) were well matched with the predicted value of 3.83 ± 0.019 and 74.66 ± 1.05 %. The physicochemical properties of purified LAB EPS were characterized by various technologies. According to the results, LAB EPS was a complex polysaccharide with a triple helix structure mainly composed of mannose, glucose and galactose in the molar ratio of 1.00: 0.32: 0.14, and it proved that the ethanol/(NH4)2SO4 system had good selectivity for LAB EPS. In addition, LAB EPS displayed excellent antioxidant activity, antihypertension activity, anti-gout capacity and hypoglycemic activity in vitro analysis. The results suggested that LAB EPS could be a dietary supplement applied in functional foods.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Peifeng Chen
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jiaxuan Guo
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Bing Han
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Hongwei Jin
- Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen 518107, People's Republic of China
| | - Dongmei Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Chunhong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhibiao Feng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
11
|
Han B, Chen P, Guo J, Yu H, Zhong S, Li D, Liu C, Feng Z, Jiang B. A Novel Intelligent Indicator Film: Preparation, Characterization, and Application. Molecules 2023; 28:molecules28083384. [PMID: 37110618 PMCID: PMC10143919 DOI: 10.3390/molecules28083384] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The development of intelligent indicator film that can detect changes in food quality is a new trend in the food packaging field. The WPNFs-PU-ACN/Gly film was prepared based on whey protein isolate nanofibers (WPNFs). Anthocyanin (ACN) and glycerol (Gly) were used as the color indicator and the plasticizer, respectively, while pullulan (PU) was added to enhance mechanical properties of WPNFs-PU-ACN/Gly edible film. In the study, the addition of ACN improved the hydrophobicity and oxidation resistance of the indicator film; with an increase in pH, the color of the indicator film shifted from dark pink to grey, and its surface was uniform and smooth. Therefore, the WPNFs-PU-ACN/Gly edible film would be suitable for sensing the pH of salmon, which changes with deterioration, as the color change of ACN was completely consistent with fish pH. Furthermore, the color change after being exposed to grey was evaluated in conjunction with hardness, chewiness, and resilience of salmon as an indication. This shows that intelligent indicator film made of WPNFs, PU, ACN, and Gly could contribute to the development of safe food.
Collapse
Affiliation(s)
- Bing Han
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Peifeng Chen
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxuan Guo
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Hongliang Yu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shaojing Zhong
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Dongmei Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Chunhong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zhibiao Feng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Bin Jiang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
12
|
Enhancement of the Antioxidant Capacity of Thyme and Chestnut Honey by Addition of Bee Products. Foods 2022; 11:foods11193118. [PMID: 36230193 PMCID: PMC9564292 DOI: 10.3390/foods11193118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
Honey consumption and imports have increased in recent years, and it is considered by consumers to be a healthy alternative to more commonly used sweeteners. Honey contains a mixture of polyphenols and antioxidant compounds, and the botanical origin and geographical area of collection play an important role on its chemical composition. The present study investigated the physicochemical properties, total phenolic content and antioxidant capacity of Spanish thyme honey and chestnut honey, and their mixtures with royal jelly (2% and 10%) and propolis (2% and 10%). The analysis of the physicochemical parameters of both honey samples showed values within the established limits. Propolis showed the highest value of total phenolic content (17.21–266.83 mg GAE/100 g) and antioxidant capacity (DPPH, ORAC and ABTS assays; 0.63–24.10 µg eq. Tx/g, 1.61–40.82 µg eq. Tx/g and 1.89–68.54 µg eq. Tx/g, respectively), and significantly reduced ROS production in human hepatoma cells. In addition, mixtures of honey with 10% of propolis improved the results obtained with natural honey, increasing the value of total phenolic content and antioxidant capacity. A significant positive correlation was observed between total phenolic compounds and antioxidant capacity. Therefore, the antioxidant capacity could be attributed to the phenolic compounds present in the samples, at least partially. In conclusion, our results indicated that thyme and chestnut honey supplemented with propolis can be an excellent natural source of antioxidants and could be incorporated as a potential food ingredient with biological properties of technological interest, added as a preservative. Moreover, these mixtures could be used as natural sweeteners enriched in antioxidants and other bioactive compounds.
Collapse
|