1
|
Rocha P, Rebelo P, Pacheco JG, Geraldo D, Bento F, Leão-Martins JM, Delerue-Matos C, Nouws HPA. Electrochemical molecularly imprinted polymer sensor for simple and fast analysis of tetrodotoxin in seafood. Talanta 2025; 282:127002. [PMID: 39383719 DOI: 10.1016/j.talanta.2024.127002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Tetrodotoxin (TTX) is a marine biotoxin whose biosynthesis is associated with the pufferfish. Its distribution is primarily focused in Asian and tropical marine areas. Currently, this group of toxins is classified as emerging in Europe, and its presence could be related to climate change. This incidence has prompted the European Union, with the European Food Safety Authority, to establish control and monitoring mechanisms for TTX in marine products in Europe. In this context, the development of analytical tools capable of ensuring the safety of food products, especially seafood and fish, is a crucial task. This study describes the development of a molecularly imprinted polymer (MIP) based electrochemical sensor for the analysis of TTX. The MIP was synthesized through the electropolymerization of a functional monomer, ortho-phenylenediamine in the presence of a dummy template, voglibose. The MIP sensor was constructed on a screen-printed gold electrode and characterized by cyclic voltammetry. Differential pulse voltammetry, using a redox probe ([Fe(CN)6]3-/4-), was used in the analysis protocol. The developed sensor exhibited a linear response between 5.0 μg mL-1 and 25.0 μg mL-1, with a limit of detection of 1.14 μg mL-1. Its high imprinting efficiency conferred outstanding selectivity towards TTX. The sensor's applicability was confirmed through recovery assays on spiked mussel samples, achieving recoveries of 81.0 %, 110.2 %, and 102.5 % for external standard addition at 30.0, 44.0, and 60.0 μg kg-1, respectively, with relative standard deviations below 15 %. These results are comparable to those obtained using Hydrophilic Interaction Liquid Chromatography coupled with Tandem Mass Spectrometry, a validated method carried out by the European Reference Laboratory for Marine Biotoxins. Thus, the MIP sensor represents a portable, simple, and fast tool with essential analytical functionalities for the sampling phase and pre-selection of laboratory samples for analysis.
Collapse
Affiliation(s)
- P Rocha
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Departamento de Química Analítica y Alimentaria, Faculdade de Química, Campus Universitario de Vigo As Lagoas Marcosende, Universidade de Vigo, 36310 Vigo, Spain
| | - P Rebelo
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - J G Pacheco
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - D Geraldo
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - F Bento
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - J M Leão-Martins
- Departamento de Química Analítica y Alimentaria, Faculdade de Química, Campus Universitario de Vigo As Lagoas Marcosende, Universidade de Vigo, 36310 Vigo, Spain
| | - C Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - H P A Nouws
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal.
| |
Collapse
|
2
|
Peng L, Zhu A, Ahmad W, Adade SYSS, Chen Q, Wei W, Chen X, Wei J, Jiao T, Chen Q. A three-channel biosensor based on stimuli-responsive catalytic activity of the Fe 3O 4@Cu for on-site detection of tetrodotoxin in fish. Food Chem 2024; 460:140566. [PMID: 39067423 DOI: 10.1016/j.foodchem.2024.140566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/10/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Tetrodotoxin (TTX), a lethal neurotoxin, poses a grave threat to human health. The available spectroscopic methods suffer from limitations such as complex procedures and inadequate on-site capabilities. In this study, we proposed a method using Fe3O4@Cu as a catalytic biosensor combined with SERS, colorimetry and image processing for TTX detection. Integrating the aptamer amplifies the specificity of the system and masks the catalytic activity of Fe3O4@Cu. The catalytic efficiency of Fe3O4@Cu in the H2O2-TMB reaction can quantify the concentration of TTX in the system. Consequently, oxidation of TMB (oxTMB) led to the generation and change of signals for SERS, colorimetry and image processing, enabling a three-channel quantitative detection of TTX. Under the optimal conditions, the detection limit of established SERS, colorimetry and image processing were 0.055, 2.127 and 0.243 ng/mL, respectively. This three-channel biosensor was applied to real samples, providing an accurate, stable and adaptable alternative for on-site TTX detection.
Collapse
Affiliation(s)
- Lijie Peng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Afang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | | | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Wenya Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Tianhui Jiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
3
|
Mi W, Liu S. Tetrodotoxin and the state-of-the-art progress of its associated analytical methods. Front Microbiol 2024; 15:1413741. [PMID: 39290516 PMCID: PMC11407752 DOI: 10.3389/fmicb.2024.1413741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Tetrodotoxin (TTX), which is found in various marine organisms, including pufferfish, shellfish, shrimp, crab, marine gastropods, and gobies, is an effective marine toxin and the cause of many seafood poisoning incidents. Owing to its toxicity and threat to public health, the development of simple, rapid, and efficient analytical methods to detect TTX in various food matrices has garnered increasing interest worldwide. Herein, we reviewed the structure and properties, origin and sources, toxicity and poisoning, and relevant legislative measures of TTX. Additionally, we have mainly reviewed the state-of-the-art progress of analytical methods for TTX detection in the past five years, such as bioassays, immunoassays, instrumental analysis, and biosensors, and summarized their advantages and limitations. Furthermore, this review provides an in-depth discussion of the most advanced biosensors, including cell-based biosensors, immunosensors, and aptasensors. Overall, this study provides useful insights into the future development and wide application of biosensors for TTX detection.
Collapse
Affiliation(s)
- Wei Mi
- School of Public Health, Binzhou Medical University, Yantai, China
| | - Sha Liu
- School of Public Health, Binzhou Medical University, Yantai, China
| |
Collapse
|
4
|
Ji Y, Wang R, Zhao H. Toward Sensitive and Reliable Immunoassays of Marine Biotoxins: From Rational Design to Food Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16076-16094. [PMID: 39010820 DOI: 10.1021/acs.jafc.4c01865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Marine biotoxins are metabolites produced by algae that can accumulate in shellfish or fish and enter organisms through the food chain, posing a serious threat to biological health. Therefore, accurate and rapid detection is an urgent requirement for food safety. Although various detection methods, including the mouse bioassay, liquid chromatography-mass spectrometry, and cell detection methods, and protein phosphatase inhibition assays have been developed in the past decades, the current detection methods cannot fully meet these demands. Among these methods, the outstanding immunoassay virtues of high sensitivity, reliability, and low cost are highly advantageous for marine biotoxin detection in complex samples. In this work, we review the recent 5-year progress in marine biotoxin immunodetection technologies such as optical immunoassays, electrochemical immunoassays, and piezoelectric immunoassays. With the assistance of immunoassays, the detection of food-related marine biotoxins can be implemented for ensuring public health and preventing food poisoning. In addition, the immunodetection technique platforms including lateral flow chips and microfluidic chips are also discussed. We carefully investigate the advantages and disadvantages for each immunoassay, which are compared to demonstrate the guidance for selecting appropriate immunoassays and platforms for the detection of marine biotoxins. It is expected that this review will provide insights for the further development of immunoassays and promote the rapid progress and successful translation of advanced immunoassays with food safety detection.
Collapse
Affiliation(s)
- Yuxiang Ji
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Liu S, Huo Y, Yin S, Chen C, Shi T, Mi W, Hu Z, Gao Z. A smartphone-based fluorescent biosensor with metal-organic framework biocomposites and cotton swabs for the rapid determination of tetrodotoxin in seafood. Anal Chim Acta 2024; 1311:342738. [PMID: 38816159 DOI: 10.1016/j.aca.2024.342738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Tetrodotoxin (TTX) is a potent neurovirulent marine biotoxin that is present in puffer fish and certain marine animals. It is capable of causing severe neurotoxic symptoms and even death when consumed through contaminated seafood. Due to its high toxicity, developing an effective assay for TTX determination in seafood has significant benefits for food safety and human health. Currently, it remains challenging to achieve on-site determination of TTX in seafood. To facilitate mass on-site assays, more affordable technologies utilizing accessible equipment that require no skilled personnel are needed. RESULTS A smartphone-based portable fluorescent biosensor is proposed for TTX determination by using metal-organic framework (MOF) biocomposites and cotton swabs. Oriented antibody (Ab)-decorated and fluorescent quantum dot (QD)-loaded MOF biocomposites (QD@MOF*Ab) are rapidly synthesized for binding targets and fluorescent responses by utilizing the tunability of zinc-based MOF. Moreover, facile Ab-immobilized household cotton swabs are utilized as TTX capture tools. TTX forms sandwich immune complexes with QD@MOF*Ab probes, achieving signal amplification. These probes are excited by a portable device to generate bright fluorescent signals, which can be detected by the naked eye, and TTX quantitative results are obtained using a smartphone. When observed with the naked eye, the limit of detection (LOD) is 0.4 ng/mL, while intelligent quantitation presents an LOD of 0.13 ng/mL at logarithmic concentrations of 0.2-400 ng/mL. SIGNIFICANCE This biosensor is convenient to use, and an easy-to-operate analysis is completed within 15 min, thus demonstrating excellent performance in terms of detection speed and portability. Furthermore, it successfully determines TTX contents in puffer fish and clam samples, demonstrating its potential for monitoring seafood. Herein, this work provides a favorable rapid sensing platform that is easily portable.
Collapse
Affiliation(s)
- Sha Liu
- School of Public Health, Binzhou Medical University, Yantai, 264003, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yapeng Huo
- Yantai Center for Disease Control and Prevention, Yantai, 264003, China
| | - Shuying Yin
- School of Public Health, Binzhou Medical University, Yantai, 264003, China
| | - Caiyun Chen
- School of Public Health, Binzhou Medical University, Yantai, 264003, China
| | - Tala Shi
- School of Public Health, Binzhou Medical University, Yantai, 264003, China
| | - Wei Mi
- School of Public Health, Binzhou Medical University, Yantai, 264003, China.
| | - Zhiyong Hu
- School of Public Health, Binzhou Medical University, Yantai, 264003, China.
| | - Zhixian Gao
- School of Public Health, Binzhou Medical University, Yantai, 264003, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
6
|
Zhang X, Li Z, Wang X, Hong L, Yin X, Zhang Y, Hu B, Zheng Q, Cao J. CRISPR/Cas12a integrated electrochemiluminescence biosensor for pufferfish authenticity detection based on NiCo 2O 4 NCs@Au as a coreaction accelerator. Food Chem 2024; 445:138781. [PMID: 38401312 DOI: 10.1016/j.foodchem.2024.138781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Meat adulteration has brought economic losses, health risks, and religious concerns, making it a pressing global issue. Herein, combining the high amplification efficiency of polymerase chain reaction (PCR) and the accurate recognition of CRISPR/Cas12, a sensitive and reliable electrochemiluminescence (ECL) biosensor was developed for the detection of pufferfish authenticity using NiCo2O4 NCs@Au-ABEI as nanoemitters. In the presence of target DNA, the trans-cleavage activity of CRISPR/Cas12a is activated upon specific recognition by crRNA, and then it cleaves dopamine-modified single stranded DNA (ssDNA-DA), triggering the ECL signal from the "off" to "on" state. However, without target DNA, the trans-cleavage activity of CRISPR/Cas12a is silenced. By rationally designing corresponding primers and crRNA, the biosensor was applied to specific identification of four species of pufferfish. Furthermore, as low as 0.1 % (w/w) adulterate pufferfish in mixture samples could be detected. Overall, this work provides a simple, low-cost and sensitive approach to trace pufferfish adulteration.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Zhiru Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Xiuwen Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Lin Hong
- Dalian Inspection and Testing Certification Technical Service Center, Dalian 116021, China
| | - Xinying Yin
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yan Zhang
- Standards and Quality Center of National Food and Strategic Reserves Administration, Beijing 100834, China
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Qiuyue Zheng
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
7
|
Qian MR, Wu HZ, Cai ZX, Xu MJ, Han JL, Xu XM. Determination of tetrodotoxin in bivalve mollusks by hydrophilic interaction liquid chromatography-triple quadrupole mass spectrometry with internal standard calibration and its contamination in Zhejiang province, China. Food Chem 2024; 434:137493. [PMID: 37741232 DOI: 10.1016/j.foodchem.2023.137493] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
A method was established for determining tetrodotoxin (TTX) in bivalve mollusks by hydrophilic interaction liquid chromatography-triple quadrupole mass spectrometry (HILIC-MS/MS) using kasugamycin as the internal standard for quantification. Samples were subjected to ultrasonic extraction with methanol-water (1:1, v/v) containing 0.5% acetic acid, protein precipitation with acetonitrile, clean-up using a cation exchange solid phase extraction cartridge, elution with acetonitrile:water (1:1, v/v) containing 0.3% hydrochloric acid, neutralization with ammonia before HILIC-MS/MS analysis. The average recovery of the samples spiked at 3 levels ranged in 84.6%-98.1% with the relative standard deviation less than 7.2%. Using this method, the contamination of TTX in 429 bivalve mollusk samples collected in the local markets during 2018 and 2020 was investigated. The detection rates were 12.0-18.8%, following the order of oyster > mussel > clam > scallop. High contaminated oysters and mussels with TTX were found in July to August. Moreover, TTX analogs found in bivalve mollusks included 4-epiTTX, 5,6,11-trideoxyTTX, 4,9-anhydroTTX, and 5-deoxyTTX/11-deoxyTTX.
Collapse
Affiliation(s)
- Ming-Rong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, PR China
| | - Hui-Zhen Wu
- College of Chemical Engineering, Zhejiang Shuren University, Hangzhou, PR China
| | - Zeng-Xuan Cai
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Mei-Jia Xu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Jian-Long Han
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Xiao-Min Xu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| |
Collapse
|
8
|
Hu C, Feng J, Cao Y, Chen L, Li Y. Deep eutectic solvents in sample preparation and determination methods of pesticides: Recent advances and future prospects. Talanta 2024; 266:125092. [PMID: 37633040 DOI: 10.1016/j.talanta.2023.125092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
This review summarizes recent advances of deep eutectic solvents (DESs) in sample preparation and determination methods of pesticides in food, environmental, and biological matrices since 2019. Emphasis is placed on new DES categories and emerging microextraction techniques. The former incorporate hydrophobic deep eutectic solvents, magnetic deep eutectic solvents, and responsive switchable deep eutectic solvents, while the latter mainly include dispersive liquid-liquid microextraction, liquid-liquid microextraction based on in-situ formation/decomposition of DESs, single drop microextraction, hollow fiber-liquid phase microextraction, and solid-phase microextraction. The principles, applications, advantages, and limitations of these microextraction techniques are presented. Besides, the use of DESs in chromatographic separation, electrochemical biosensors, fluorescent sensors, and surface-enhanced Raman spectroscopy are discussed. This review is expected to provide a valuable reference for extracting and detecting pesticides or other hazardous contaminants in the future.
Collapse
Affiliation(s)
- Cong Hu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jianan Feng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yiqing Cao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Lizhu Chen
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201203, China.
| |
Collapse
|
9
|
Han JL, Zhang L, Zhou PP, Xu JJ, Pan XD, Cao P, Xu XM. Analytical Method Optimization of Tetrodotoxin and Its Contamination in Gastropods. Foods 2023; 12:3103. [PMID: 37628101 PMCID: PMC10453083 DOI: 10.3390/foods12163103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Tetrodotoxin (TTX) is an extremely potent marine biotoxin. An analytical method was developed for both trace contamination and extremely high levels of TTX in gastropods by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with clean-up of cation exchange solid phase extraction (SPE) in this study. The limit of detection (LOD) in the sample matrix was 0.5 μg/kg. With the calibration of a screened internal standard (validamycin, IS), the linear range was 0.1-100 ng/mL (1.5-1500 μg/kg in sample matrix) with a correlation coefficient of r2 > 0.999. The average recoveries at three spiking levels (1.5 μg/kg, 44 μg/kg, and 1500 μg/kg) were 82.6-94.4% with relative standard deviations (RSDs) less than 8.4%. TTX levels in seven gastropods (741 samples) were studied. The contamination and analogues in Neverita didyma (N. didyma, 565 samples collected in Zhejiang province, China, from 2016 to 2022) were first reported. The detection rate of TTX in N. didyma was 34.2%. The average concentration was 23.1 μg/kg, and the maximum value was 2327 μg/kg. The time distribution study indicated that high contaminations of TTX occurred from May to August for N. didyma.
Collapse
Affiliation(s)
- Jian-Long Han
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (J.-L.H.); (J.-J.X.); (X.-D.P.)
| | - Lei Zhang
- China National Center for Food Safety Risk Assessment, Beijing 100026, China; (L.Z.); (P.-P.Z.)
| | - Ping-Ping Zhou
- China National Center for Food Safety Risk Assessment, Beijing 100026, China; (L.Z.); (P.-P.Z.)
| | - Jiao-Jiao Xu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (J.-L.H.); (J.-J.X.); (X.-D.P.)
| | - Xiao-Dong Pan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (J.-L.H.); (J.-J.X.); (X.-D.P.)
| | - Pei Cao
- China National Center for Food Safety Risk Assessment, Beijing 100026, China; (L.Z.); (P.-P.Z.)
| | - Xiao-Min Xu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (J.-L.H.); (J.-J.X.); (X.-D.P.)
| |
Collapse
|
10
|
Fuentes-Monteverde JC, Núñez MJ, Amaya-Monterosa O, Martínez ML, Rodríguez J, Jiménez C. Multistage Detection of Tetrodotoxin Traces in Diodon hystrix Collected in El Salvador. Toxins (Basel) 2023; 15:409. [PMID: 37505678 PMCID: PMC10467132 DOI: 10.3390/toxins15070409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023] Open
Abstract
This study describes a multistage methodology to detect minute amounts of tetrodotoxin in fishes, a plan that may be broadened to include other marine organisms. This methodology was applied to porcupinefish (Diodon hystrix) collected in Punta Chiquirín, El Salvador. A three-stage approach along with post-acquisition processing was employed, to wit: (a) Sample screening by selected reaction monitoring (HPLC-MS/MS-SRM) analyses to quickly identify possible toxin presence via a LC/MS/MS API 3200 system with a triple quadrupole; (b) HPLC-HRFTMS-full scan analyses using an ion trap-Orbitrap spectrometer combined with an MZmine 2-enhanced dereplication-like workflow to collect high-resolution mass spectra; and (c) HPLC-HRMS2 analyses. This is the first time tetrodotoxin has been reported in D. hystrix specimens collected in El Salvador.
Collapse
Affiliation(s)
- Juan Carlos Fuentes-Monteverde
- CICA—Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain;
- NMR Based Structural Biology, MPI for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Marvin J. Núñez
- Laboratorio de Investigación en Productos Naturales, Facultad de Química y Farmacia, Universidad de El Salvador, San Salvador 01101, El Salvador; (M.J.N.); (M.L.M.)
| | - Oscar Amaya-Monterosa
- Laboratorio de Toxinas Marinas, Escuela de Física, Facultad de Ciencias Naturales y Matemática, Universidad de El Salvador, San Salvador 01101, El Salvador;
| | - Morena L. Martínez
- Laboratorio de Investigación en Productos Naturales, Facultad de Química y Farmacia, Universidad de El Salvador, San Salvador 01101, El Salvador; (M.J.N.); (M.L.M.)
| | - Jaime Rodríguez
- CICA—Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain;
| | - Carlos Jiménez
- CICA—Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain;
| |
Collapse
|