1
|
Sabanci K, Gulec S, Buyukkileci AO. An ex vivo model for evaluation of prebiotic activity of xylan and xylooligosaccharides. Food Res Int 2025; 211:116461. [PMID: 40356186 DOI: 10.1016/j.foodres.2025.116461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/14/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
Ex vivo techniques can provide more physiologically significant insights into prebiotic activity and overcome some limitations of in vitro tests. In this study, an ex vivo model, formed of a large intestine of mice, was tested to assess the effects of the hydrocolloidal natural polymer, xylan (XY), and its hydrolysis product, xylooligosaccharides (XOS). XY and XOS were loaded separately into the cecum, proximal colon, and distal colon. Their utilization and short-chain fatty acid (SCFA) formation by the colonized microflora and levels of dominant phyla and key genera such as Bifidobacterium, Bacteroides, and Lactobacillus were followed. XY and XOS were metabolized in all sections, and SCFAs were released. The results suggest that the slower utilization of XY compared to XOS in the cecum can enable this polysaccharide to move towards distal parts of the large intestine and extend the sites of prebiotic activity. Unlike widely used in vitro models, the ex vivo model allowed testing the utilization pattern and effects of the prebiotics in the natural environment of the microflora and examining the intestinal sections separately.
Collapse
Affiliation(s)
- Kevser Sabanci
- Industrial Biotechnology Laboratory, Department of Food Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey.
| | - Sukru Gulec
- Molecular Nutrition and Human Physiology Laboratory, Department of Food Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey.
| | - Ali Oguz Buyukkileci
- Industrial Biotechnology Laboratory, Department of Food Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey.
| |
Collapse
|
2
|
Jung YS, Song NE, Oh SY, Park YK, Kim YJ, Seong H, You SM, Jung DH, Shin D, Lee MG, Lim MC, Han NS. Advances in in vitro cultivation techniques for comprehensive analysis of human gut microbiome. Biotechnol Adv 2025:108595. [PMID: 40374084 DOI: 10.1016/j.biotechadv.2025.108595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/17/2025]
Abstract
The role of gut microbiota in human health and disease is becoming increasingly recognized. Historically, the impact of human gut microbiota on health has been studied using clinical trials and animal models. However, clinical studies often struggle with controlling variables and pinpointing disease-causing factors, while animal models fall short of accurately replicating the human gut environment. Additionally, continuous sample collection for gut microbiota analysis in vivo presents significant ethical and technical challenges. To address these limitations, in vitro fermentation models have emerged as promising alternatives. These models aim to simulate the structural and functional characteristics of the human gut in a controlled setting, offering valuable insights into microbial behavior. This review highlights current knowledge and technological advances in in vitro cultivation systems for human gut microbiota, focusing on key elements such as three-dimensional scaffolds, culture media, fermentation systems, and analytical techniques. By examining these components, the review establishes a framework for improving methods to cultivate and study human gut microbiota, enhancing research methodologies for better understanding microbial interactions, behavior, and adaptation in diverse environments.
Collapse
Affiliation(s)
- Young Sung Jung
- Korea Food Research Institute, Wanju, Jeollabuk-do 55365, Republic of Korea; Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Nho-Eul Song
- Korea Food Research Institute, Wanju, Jeollabuk-do 55365, Republic of Korea
| | - Seo Yeong Oh
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Young Kyoung Park
- Microbial Institute for Fermentation Industry, Sunchang 56048, Republic of Korea
| | - Ye-Jin Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyunbin Seong
- Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sang-Mook You
- Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology, Ulsan 44429, Republic of Korea
| | - Dong-Hyun Jung
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Donghyun Shin
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Mi-Gi Lee
- Bio-Center, Gyeonggi-do Business and Science Accelerator, Suwon 16229, Republic of Korea
| | - Min-Cheol Lim
- Korea Food Research Institute, Wanju, Jeollabuk-do 55365, Republic of Korea.
| | - Nam Soo Han
- Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
3
|
Chen X, Zhang Z, Hsueh Y, Zhang C, Yu J, Zhu J, Niu J, Yin N, Zhang J, Cui X, Liu X, Xu K, Yuan C. Interactions between environmental pollutants and gut microbiota: A review connecting the conventional heavy metals and the emerging microplastics. ENVIRONMENTAL RESEARCH 2025; 269:120928. [PMID: 39855410 DOI: 10.1016/j.envres.2025.120928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Growing epidemiological evidence suggests that the diverse and functional gut microbiota plays a vital role in regulating the health and disease of organisms including human. However, organisms are inevitably exposed to widespread environmental pollutants, and the interactions between their gut microbiota and pollutants are relatively underreported. The present paper considers heavy metals (HMs) and microplastics (MPs) as representatives of traditional and emerging pollutants and systematically summarizes their effects on gut microbiota and the effects of gut microbiota on pollutants. The former refers to the alterations in the gut microbiota's abundance, diversity and composition caused by pollutants, whereas the latter focuses on the changes in the metabolism of pollutants by adjusting the dominant bacteria, specific enzymes, and key genes. In particular, some fields were found to be poorly studied, including extension of research to humans, mechanistic exploration of gut microbiota's changes, and the metabolism of pollutants by gut microbiota. Accordingly, we draw attention to the development and application of in vitro test models to more accurately explore the interactions between pollutants and gut microbiota when assessing human health risks. In addition, by combining state-of-the-art biological techniques with culturomics, more gut microbiota can be identified, isolated, and cultured, which helps to confirm the relationship between pollutants and gut microbiota and the potential function of gut microbiota in pollutant metabolism. Furthermore, the phenomenon of coexposure to HMs and MPs is becoming more frequent, and their interactions with gut microbiota and the influence on human health is expected to be one of the frontier research fields in the future. The key information presented in this review can stimulate further development of techniques and methodologies for filling the knowledge gaps in the relationships between combined pollutants (HMs and MPs), gut microbiota, and human health.
Collapse
Affiliation(s)
- Xiaochen Chen
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zengdi Zhang
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yushiang Hsueh
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China; Department of Civil and Environmental Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan, ROC
| | - Chunpeng Zhang
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), Jilin University, Changchun, 130021, China
| | - Jianying Yu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China; The Second Geological Exploration Institute, China Metallurgical Geology Bureau, Fuzhou, 350108, China
| | - Junyu Zhu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jia Niu
- Center of Safe and Energy-saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350118, China
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Jianyu Zhang
- Jiangsu Longchang Chemical Co., Ltd., Rugao, 226532, China
| | - Xiaoyu Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Kaiqin Xu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Ching Yuan
- Department of Civil and Environmental Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan, ROC.
| |
Collapse
|
4
|
Safarchi A, Al-Qadami G, Tran CD, Conlon M. Understanding dysbiosis and resilience in the human gut microbiome: biomarkers, interventions, and challenges. Front Microbiol 2025; 16:1559521. [PMID: 40104586 PMCID: PMC11913848 DOI: 10.3389/fmicb.2025.1559521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
The healthy gut microbiome is important in maintaining health and preventing various chronic and metabolic diseases through interactions with the host via different gut-organ axes, such as the gut-brain, gut-liver, gut-immune, and gut-lung axes. The human gut microbiome is relatively stable, yet can be influenced by numerous factors, such as diet, infections, chronic diseases, and medications which may disrupt its composition and function. Therefore, microbial resilience is suggested as one of the key characteristics of a healthy gut microbiome in humans. However, our understanding of its definition and indicators remains unclear due to insufficient experimental data. Here, we review the impact of key drivers including intrinsic and extrinsic factors such as diet and antibiotics on the human gut microbiome. Additionally, we discuss the concept of a resilient gut microbiome and highlight potential biomarkers including diversity indices and some bacterial taxa as recovery-associated bacteria, resistance genes, antimicrobial peptides, and functional flexibility. These biomarkers can facilitate the identification and prediction of healthy and resilient microbiomes, particularly in precision medicine, through diagnostic tools or machine learning approaches especially after antimicrobial medications that may cause stable dysbiosis. Furthermore, we review current nutrition intervention strategies to maximize microbial resilience, the challenges in investigating microbiome resilience, and future directions in this field of research.
Collapse
Affiliation(s)
- Azadeh Safarchi
- Microbiome for One Systems Health FSP, CSIRO, Westmead, NSW, Australia
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Ghanyah Al-Qadami
- Microbiome for One Systems Health FSP, CSIRO, Westmead, NSW, Australia
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Cuong D Tran
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Michael Conlon
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| |
Collapse
|
5
|
Xu Z, Li J, Hong L, Zhang Y, Wang C, Yang H, Zhao L, Qiu P, Du Z, Wang H. Characteristics of the effects of Polygonati Rhizoma on gut microbiota and metabolites in vitro associated with poor dietary habits in pregnant women. PLoS One 2024; 19:e0314335. [PMID: 39637062 PMCID: PMC11620700 DOI: 10.1371/journal.pone.0314335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Poor dietary habits have been associated with dysbiosis and microbial imbalance in pregnant women. Such imbalances can pose health risks during pregnancy. This study aimed to explore the impact of Polygonati Rhizoma on the gut microbiota of pregnant women through In vitro simulated fermentation. Interestingly, significant differences in microbial community richness and structure were found between the control and the treatment with Polygonati Rhizoma. Analysis of composition and variability indicated that the treatment with Polygonati Rhizoma group showed higher levels of Lactobacillus and Bifidobacterium, but lower levels of Parabacteroides and Lachnoclostridium. The study also investigated specific genera differences between groups using the co-occurrence network analysis and their correlations with microbial metabolites by the redundancy analysis (RDA), Mantel-test network heatmap, and heatmap highlighting the relationships among gut microbiota, short-chain fatty acids (SCFAs), and gases in the absence or presence of Polygonati Rhizoma supplementation. Functional predictions from BugBase phenotype prediction indicated changes in potentially pathogenic and aerobic bacteria in Polygonati Rhizoma supplementation. Overall, the findings provide valuable insights into the influence of Polygonati Rhizoma on the gut microbiota in pregnant women associated with poor dietary habits.
Collapse
Affiliation(s)
- Zhiwei Xu
- Jinhua Academy, Zhejiang Chinese Medical University, Jinhua, China
- Second Clinical Medical School, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiabin Li
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Lue Hong
- First Clinical Medical School, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yangli Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chunyu Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hailong Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lisha Zhao
- Analysis and Testing Center, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Ping Qiu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhi Du
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Hui Wang
- Jinhua Academy, Zhejiang Chinese Medical University, Jinhua, China
- Second Clinical Medical School, Zhejiang Chinese Medical University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Kondrashina A, Arranz E, Cilla A, Faria MA, Santos-Hernández M, Miralles B, Hashemi N, Rasmussen MK, Young JF, Barberá R, Mamone G, Tomás-Cobos L, Bastiaan-Net S, Corredig M, Giblin L. Coupling in vitro food digestion with in vitro epithelial absorption; recommendations for biocompatibility. Crit Rev Food Sci Nutr 2024; 64:9618-9636. [PMID: 37233192 DOI: 10.1080/10408398.2023.2214628] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
As food transits the gastrointestinal tract, food structures are disrupted and nutrients are absorbed across the gut barrier. In the past decade, great efforts have focused on the creation of a consensus gastrointestinal digestion protocol (i.e., INFOGEST method) to mimic digestion in the upper gut. However, to better determine the fate of food components, it is also critical to mimic food absorption in vitro. This is usually performed by treating polarized epithelial cells (i.e., differentiated Caco-2 monolayers) with food digesta. This food digesta contains digestive enzymes and bile salts, and if following the INFOGEST protocol, at concentrations that although physiologically relevant are harmful to cells. The lack of a harmonized protocol on how to prepare the food digesta samples for downstream Caco-2 studies creates challenges in comparing inter laboratory results. This article aims to critically review the current detoxification practices, highlight potential routes and their limitations, and recommend common approaches to ensure food digesta is biocompatible with Caco-2 monolayers. Our ultimate aim is to agree a harmonized consensus protocol or framework for in vitro studies focused on the absorption of food components across the intestinal barrier.
Collapse
Affiliation(s)
- Alina Kondrashina
- Global Research and Technology Centre, H&H Group, H&H Research, Fermoy, Ireland
| | - Elena Arranz
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, Spain
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Miguel A Faria
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, Portugal
| | - Marta Santos-Hernández
- Wellcome Trust - MRC Institute of Metabolic Science, Metabolic Research laboratories, Addenbrooke's Hospital, Cambridge, UK
| | - Beatriz Miralles
- Institute of Food Science Research CIAL (CSIC-UAM), Madrid, Spain
| | - Negin Hashemi
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus, Denmark
| | | | - Jette F Young
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus, Denmark
| | - Reyes Barberá
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Gianfranco Mamone
- Institute of Food Sciences - National Research Council, Avellino, Italy
| | - Lidia Tomás-Cobos
- In vitro preclinical studies department, AINIA, Avenida Benjamín Franklin 5-11, Parque Tecnológico de Valencia, Paterna, Spain
| | - Shanna Bastiaan-Net
- Wageningen Food & Biobased Research, Wageningen University & Research, WG Wageningen, The Netherlands
| | - Milena Corredig
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus, Denmark
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co Cork, Ireland
| |
Collapse
|
7
|
Wu Z, Zhang R, Wang J, Li T, Zhang G, Zhang C, Ye H, Zeng X. Characteristics of exopolysaccharides from Paecilomyces hepiali and their simulated digestion and fermentation in vitro by human intestinal microbiota. Int J Biol Macromol 2024; 266:131198. [PMID: 38552700 DOI: 10.1016/j.ijbiomac.2024.131198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
The metabolic process of polysaccharides in gastrointestinal digestions and the effects of the resulting carbohydrates on the composition of gut microbes are important to explore their prebiotic properties. Therefore, the purpose of this study was to investigate the simulated digestion and fecal fermentation in vitro of three fractions (PHEPSs-1, PHEPSs-2 and PHEPSs-3) purified from the crude exopolysaccharides of Paecilomyces hepiali HN1 (PHEPSs) and to explore the potential prebiotic mechanisms. The three purified fractions were characterized by HPLC, UV, FT-IR, SEM and AFM, and they were all of galactoglucomannan family with molecular weight of 178, 232 and 119 kDa, respectively. They could resist the simulated gastrointestinal digestions, but they were metabolized in fecal fermentation in vitro. Furthermore, the mannose in PHEPSs showed a higher utilization rate than that of glucose or galactose. The proliferation effects of PHEPSs on Bifidobacterium and Lactobacillus were weaker significantly than those of fructooligosaccharides before 12 h of fecal fermentation, but stronger after 24 h of fecal fermentation. Meanwhile, higher levels of short-chain fatty acids were found in PHEPSs groups when the fecal fermentation extended to 36 h. Therefore, PHEPSs are expected to have a potent gut healthy activity and can be explored as functional food ingredients.
Collapse
Affiliation(s)
- Zhongwei Wu
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang 453003, China
| | - Rongxian Zhang
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China; Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang 453003, China
| | - Jie Wang
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China; Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang 453003, China
| | - Tenglong Li
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China; Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang 453003, China
| | - Guang Zhang
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China; Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang 453003, China
| | - Chaohui Zhang
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China; Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang 453003, China
| | - Hong Ye
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Huangfu W, Cao S, Li S, Zhang S, Liu M, Liu B, Zhu X, Cui Y, Wang Z, Zhao J, Shi Y. In vitro and in vivo fermentation models to study the function of dietary fiber in pig nutrition. Appl Microbiol Biotechnol 2024; 108:314. [PMID: 38683435 PMCID: PMC11058960 DOI: 10.1007/s00253-024-13148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
The importance of dietary fiber (DF) in animal diets is increasing with the advancement of nutritional research. DF is fermented by gut microbiota to produce metabolites, which are important in improving intestinal health. This review is a systematic review of DF in pig nutrition using in vitro and in vivo models. The fermentation characteristics of DF and the metabolic mechanisms of its metabolites were summarized in an in vitro model, and it was pointed out that SCFAs and gases are the important metabolites connecting DF, gut microbiota, and intestinal health, and they play a key role in intestinal health. At the same time, some information about host-microbe interactions could have been improved through traditional animal in vivo models, and the most direct feedback on nutrients was generated, confirming the beneficial effects of DF on sow reproductive performance, piglet intestinal health, and growing pork quality. Finally, the advantages and disadvantages of different fermentation models were compared. In future studies, it is necessary to flexibly combine in vivo and in vitro fermentation models to profoundly investigate the mechanism of DF on the organism in order to promote the development of precision nutrition tools and to provide a scientific basis for the in-depth and rational utilization of DF in animal husbandry. KEY POINTS: • The fermentation characteristics of dietary fiber in vitro models were reviewed. • Metabolic pathways of metabolites and their roles in the intestine were reviewed. • The role of dietary fiber in pigs at different stages was reviewed.
Collapse
Affiliation(s)
- Weikang Huangfu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shuhang Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China.
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China.
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
9
|
Wang H, Kim R, Wang Y, Furtado KL, Sims CE, Tamayo R, Allbritton NL. In vitro co-culture of Clostridium scindens with primary human colonic epithelium protects the epithelium against Staphylococcus aureus. Front Bioeng Biotechnol 2024; 12:1382389. [PMID: 38681959 PMCID: PMC11045926 DOI: 10.3389/fbioe.2024.1382389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
A complex and dynamic network of interactions exists between human gastrointestinal epithelium and intestinal microbiota. Therefore, comprehending intestinal microbe-epithelial cell interactions is critical for the understanding and treatment of intestinal diseases. Primary human colonic epithelial cells derived from a healthy human donor were co-cultured with Clostridium scindens (C. scindens), a probiotic obligate anaerobe; Staphylococcus aureus (S. aureus), a facultative anaerobe and intestinal pathogen; or both bacterial species in tandem. The co-culture hanging basket platform used for these experiments possessed walls of controlled oxygen (O2) permeability to support the formation of an O2 gradient across the intestinal epithelium using cellular O2 consumption, resulting in an anaerobic luminal and aerobic basal compartment. Both the colonic epithelial cells and C. scindens remained viable over 48 h during co-culture. In contrast, co-culture with S. aureus elicited significant damage to colonic epithelial cells within 24 h. To explore the influence of the intestinal pathogen on the epithelium in the presence of the probiotic bacteria, colonic epithelial cells were inoculated sequentially with the two bacterial species. Under these conditions, C. scindens was capable of repressing the production of S. aureus enterotoxin. Surprisingly, although C. scindens converted cholic acid to secondary bile acids in the luminal medium, the growth of S. aureus was not significantly inhibited. Nevertheless, this combination of probiotic and pathogenic bacteria was found to benefit the survival of the colonic epithelial cells compared with co-culture of the epithelial cells with S. aureus alone. This platform thus provides an easy-to-use and low-cost tool to study the interaction between intestinal bacteria and colonic cells in vitro to better understand the interplay of intestinal microbiota with human colonic epithelium.
Collapse
Affiliation(s)
- Hao Wang
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Raehyun Kim
- Department of Bioengineering, University of Washington, Seattle, WA, United States
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Yuli Wang
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Kathleen L. Furtado
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Christopher E. Sims
- Department of Bioengineering, University of Washington, Seattle, WA, United States
- Department of Medicine/Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Nancy L. Allbritton
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
10
|
He X, Sun C, Zhao J, Zhang Y, Zhang X, Fang Y. High Viscosity Slows the Utilization of Rapidly Fermentable Dietary Fiber by Human Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19078-19087. [PMID: 38053507 DOI: 10.1021/acs.jafc.3c05652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In the present study, the influence of viscosity on the fermentation characteristics of fructooligosaccharides (FOS) by gut microbiota was examined. Different concentrations of methylcellulose (MC) were added to create varying viscosities and the mixture was fermented with FOS by gut microbiota. The results demonstrated that higher viscosity had a significant impact on slowing down the fermentation rate of FOS. Specifically, the addition of 2.5 wt% MC, which had the highest viscosity, resulted in the lowest and slowest production of gas and short-chain fatty acids (SCFAs), indicating that increased viscosity could hinder the breakdown of FOS by gut microbiota. Additionally, the slower fermentation of FOS did not significantly alter the structure of the gut microbiota community compared to that of FOS alone, suggesting that MC could be used in combination with FOS to achieve similar prebiotic effects and promote gut health while exhibiting a slower fermentation rate.
Collapse
Affiliation(s)
- Xiangxiang He
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Faculty of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
| | - Cuixia Sun
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingwen Zhao
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Xiaowei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Shintani T, Shintani H, Sato M, Ashida H. Calorie restriction mimetic drugs could favorably influence gut microbiota leading to lifespan extension. GeroScience 2023; 45:3475-3490. [PMID: 37389698 PMCID: PMC10643761 DOI: 10.1007/s11357-023-00851-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/03/2023] [Indexed: 07/01/2023] Open
Abstract
Calorie restriction (CR) can prolong human lifespan, but enforcing long-term CR is difficult. Thus, a drug that reproduces the effects of CR without CR is required. More than 10 drugs have been listed as CR mimetics (CRM), and some of which are conventionally categorized as upstream-type CRMs showing glycolytic inhibition, whereas the others are categorized as downstream-type CRMs that regulate or genetically modulate intracellular signaling proteins. Intriguingly, recent reports have revealed the beneficial effects of CRMs on the body such as improving the host body condition via intestinal bacteria and their metabolites. This beneficial effect of gut microbiota may lead to lifespan extension. Thus, CRMs may have a dual effect on longevity. However, no reports have collectively discussed them as CRMs; hence, our knowledge about CRM and its physiological effects on the host remains fragmentary. This study is the first to present and collectively discuss the accumulative evidence of CRMs improving the gut environments for healthy lifespan extension, after enumerating the latest scientific findings related to the gut microbiome and CR. The conclusion drawn from this discussion is that CRM may partially extend the lifespan through its effect on the gut microbiota. CRMs increase beneficial bacteria abundance by decreasing harmful bacteria rather than increasing the diversity of the microbiome. Thus, the effect of CRMs on the gut could be different from that of conventional prebiotics and seemed similar to that of next-generation prebiotics.
Collapse
Affiliation(s)
- Tomoya Shintani
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-Cho, Nada, Kobe, Hyogo, 657-8501, Japan.
- The Japanese Clinical Nutrition Association, 2-16-28 Ohashi, Meguro, Tokyo, 153-0044, Japan.
| | - Hideya Shintani
- Department of Internal Medicine, Towa Hospital, 4-13-15 Tanabe, Higashisumiyoshi, Osaka, 546-0031, Japan
- Department of Internal Medicine, Osaka Saiseikai Izuo Hospital, 3-4-5 Kitamura, Taisho, Osaka, 551-0032, Japan
| | - Masashi Sato
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0701, Japan
| | - Hisashi Ashida
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan
| |
Collapse
|
12
|
Kadyan S, Park G, Wang B, Nagpal R. Dietary fiber modulates gut microbiome and metabolome in a host sex-specific manner in a murine model of aging. Front Mol Biosci 2023; 10:1182643. [PMID: 37457834 PMCID: PMC10345844 DOI: 10.3389/fmolb.2023.1182643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Emerging evidence reveals the fundamental role of the gut microbiome in human health. Among various factors regulating our gut microbiome, diet is one of the most indispensable and prominent one. Inulin is one of the most widely-studied dietary fiber for its beneficial prebiotic effects by positively modulating the gut microbiome and microbial metabolites. Recent research underscores sexual dimorphism and sex-specific disparities in microbiome and also diet-microbiome interactions. However, whether and how the prebiotic effects of dietary fiber differ among sexes remain underexplored. To this end, we herein examine sex-specific differences in the prebiotic effects of inulin on gut microbiome and metabolome in a humanized murine model of aging i.e., aged mice carrying human fecal microbiota. The findings demonstrate that inulin exerts prebiotic effects, but in a sex-dependent manner. Overall, inulin increases the proportion of Bacteroides, Blautia, and glycine, while decreasing Eggerthella, Lactococcus, Streptococcus, trimethylamine, 3-hydroxyisobutyrate, leucine and methionine in both sexes. However, we note sex-specific effects of inulin including suppression of f_Enteroccaceae:_, Odoribacter, bile acids, malonate, thymine, valine, acetoin, and ethanol while promotion of Dubosiella, pyruvate, and glycine in males. Whereas, suppression of Faecalibaculum, Lachnoclostridium, Schaedlerella, phenylalanine and enhancement of Parasutterella, Phocaeicola, f_Lachnospiraceae;_, Barnesiella, Butyricimonas, glycine, propionate, acetate and glutamate are observed in females. Altogether, the study reveals that prebiotic mechanisms of dietary fiber vary in a sex-dependent manner, underscoring the importance of including both sexes in preclinical/clinical studies to comprehend the mechanisms and functional aspects of dietary interventions for effective extrapolation and translation in precision nutrition milieus.
Collapse
Affiliation(s)
- Saurabh Kadyan
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Gwoncheol Park
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Bo Wang
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
13
|
Effects of Dietary Fiber Compounds on Characteristic Human Flora and Metabolites Mediated by the Longevity Dietary Pattern Analyzed by In Vitro Fermentation. Nutrients 2022; 14:nu14235037. [PMID: 36501069 PMCID: PMC9739654 DOI: 10.3390/nu14235037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The purpose of this study was to investigate the effects of different dietary fiber compounds (DFCs) on characteristic human flora and their metabolites mediated by the longevity dietary pattern analyzed by in vitro fermentation. The results show that DFC1 (cereal fiber) increased the level of Lactobacillus (p < 0.05), DFC2 (fruit and vegetable and cereal fiber) promoted the growth of Lactobacillus and Bifidobacterium more significantly than DFC3 (fruit and vegetable fiber) (p < 0.01), and all three DFCs decreased the level of Escherichia coli (p < 0.05). The metabolomic analysis showed that there was variability in the metabolites and the metabolic pathways of different DFCs. The redundancy analysis revealed that the fiber content was positively correlated with Lactobacillus, Bifidobacterium, Bacteroides, acetic acid, butyric acid, propionic acid, lactic acid, and betaine, and negatively correlated with Escherichia coli, succinic acid, alanine, choline, aspartic acid, and α-glucose. Overall, this study found that different DFCs have different positive correlations on characteristic human flora and metabolites, and DFC2 is more favorable to the proliferation of the intestinal beneficial genera Lactobacillus and Bifidobacterium after in vitro fermentation, having a probiotic role in glucose, amino acid, and lipid metabolisms. This study may provide a theoretical reference for the search of optimal dietary fiber combination strategies mediated by longevity dietary pattern.
Collapse
|