1
|
Yang Y, Zhong W, Wang Y, Yue Z, Zhang C, Sun M, Wang Z, Xue X, Gao Q, Wang D, Zhang Y, Zhang J. Isolation, identification, degradation mechanism and exploration of active enzymes in the ochratoxin A degrading strain Acinetobacter pittii AP19. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133351. [PMID: 38150759 DOI: 10.1016/j.jhazmat.2023.133351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Ochratoxin A (OTA) is a polyketide mycotoxin that commonly contaminates agricultural products and causes significant economic losses. In this study, the efficient OTA-degrading strain AP19 was isolated from vineyard soil and was identified as Acinetobacter pittii. Compared with growth in nutrient broth supplemented with OTA (OTA-NB), strain AP19 grew faster in nutrient broth (NB), but the ability of the resulting cell lysates to remove OTA was weaker. After cultivation in NB, the cell lysate of strain AP19 was able to remove 100% of 1 mg/L OTA within 18 h. The cell lysate fraction > 30 kDa degraded 100% of OTA within 12 h, while the fractions < 30 kDa were practically unable to degrade OTA. Further anion exchange chromatography of the > 30 kDa fraction yielded two peaks exhibiting significant OTA degradation activity. The degradation product was identified as OTα. Amino acid metabolism exhibited major transcriptional trends in the response of AP19 to OTA. The dacC gene encoding carboxypeptidase was identified as one of the contributors to OTA degradation. Soil samples inoculated with strain AP19 showed significant OTA degradation. These results provide significant insights into the discovery of novel functions in A. pittii, as well as its potential as an OTA decomposer.
Collapse
Affiliation(s)
- Yan Yang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Weitong Zhong
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanning Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhiwen Yue
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chen Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mi Sun
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhao Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xianli Xue
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiang Gao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Depei Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ying Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jian Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Wu C, Yue Y, Huang B, Ji H, Wu L, Huang H. CRISPR-powered microfluidic biosensor for preamplification-free detection of ochratoxin A. Talanta 2024; 269:125414. [PMID: 37992484 DOI: 10.1016/j.talanta.2023.125414] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
The CRISPR technology, which does not require complex instruments, expensive reagents or professional operators, has attracted a lot of attention. When utilizing the CRISPR-Cas system for detection, the pre-amplification step is often necessary to enhance sensitivity. However, this approach tends to introduce complexity and prolong the time required. To address this issue, we employed Pd@PCN-222 nanozyme to label single-stranded DNA, referred to as Pd@PCN-222 CRISPR nanozyme, which serves as the reporter of the CRISPR system. Pd@PCN-222 nanozyme possess exceptional catalytic activity for the reduction of H2O2. Compared with traditional electrochemical probe ferrocene and methylene blue without catalytic activity, there is a significant amplification of the electrochemical signal. So the need for pre-amplification was eliminated. In this study, we constructed a CRISPR-Cas system for ochratoxin A, utilizing the Pd@PCN-222 CRISPR nanozyme to amplified signal avoiding pre-amplification with outstanding detection of 1.21 pg/mL. Furthermore, we developed a microfluidic electrochemical chip for the on-site detection of ochratoxin A. This achievement holds significant promise in establishing a practical on-site detection platform for identifying food safety hazards.
Collapse
Affiliation(s)
- Chengyuan Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yuanyuan Yue
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | | | - Hanxu Ji
- Key Laboratory of Biotoxin Analysis & Assessment for State Market Regulation, Nanjing Institute of Product Quality Inspection & Testing, Nanjing, 210019, China
| | - Lina Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| | - He Huang
- Food Laboratory of Zhongyuan, Luohe, 462300, Henan, China.
| |
Collapse
|
3
|
Lu T, Fu C, Xiong Y, Zeng Z, Fan Y, Dai X, Huang X, Ge J, Li X. Biodegradation of Aflatoxin B 1 in Peanut Oil by an Amphipathic Laccase-Inorganic Hybrid Nanoflower. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3876-3884. [PMID: 36791339 DOI: 10.1021/acs.jafc.2c08148] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aflatoxin B1 (AFB1) contamination is an important issue for the safety of edible oils. Enzymatic degradation is a promising approach for removing mycotoxins in a specific, efficient, and green manner. However, enzymatic degradation of mycotoxins in edible oil is challenging as a result of the low activity and stability of the enzyme. Herein, a novel strategy was proposed to degrade AFB1 in peanut oil using an amphipathic laccase-inorganic hybrid nanoflower (Lac NF-P) as a biocatalyst. Owing to the improved microenvironment of the enzymatic reaction and the enhanced stability of the enzyme structure, the proposed amphipathic Lac NF-P showed 134- and 3.2-fold increases in the degradation efficiency of AFB1 in comparison to laccase and Lac NF, respectively. AFB1 was removed to less than 0.96 μg/kg within 3 h when using Lac NF-P as a catalyst in the peanut oil, with the AFB1 concentration ranging from 50 to 150 μg/kg. Moreover, the quality of the peanut oil had no obvious change, and no leakage of catalyst was observed after the treatment of Lac NF-P. In other words, our study may open an avenue for the development of a novel biocatalyst for the detoxification of mycotoxins in edible oils.
Collapse
Affiliation(s)
- Tianying Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Caicai Fu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Zheling Zeng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Yunkai Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Xiao Dai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Jun Ge
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaoyang Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| |
Collapse
|