1
|
Dai P, Ma Z, Yi G, Li Y, Xie K, Sun Y, Xia Q, Liu Z, Zhang W. Rational design and discovery of novel hydrazide derivatives as potent succinate dehydrogenase inhibitors inspired by natural d/l-camphor. PEST MANAGEMENT SCIENCE 2025; 81:786-797. [PMID: 39424965 DOI: 10.1002/ps.8481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Succinate dehydrogenase inhibitors (SDHIs) have rapidly become one of the fastest-growing categories of fungicides used against plant pathogenic fungi. Recent research advancements have emphasized that structural modifications of SDHIs using naturally sourced scaffolds represent an innovative strategy for developing new, highly effective, broad-spectrum fungicides. A novel series of d/l-camphorhydrazide derivatives potentially targeting fungal succinate dehydrogenase (SDH) were designed, synthesized and evaluated for their antifungal effects against Rhizoctonia solani, Fusarium graminearum, Valsa mali and Botrytis cinerea. RESULTS Amongst them, compounds A1-7 (d-camphor) and A2-7 (l-camphor) displayed excellent in vitro activity against R. solani with median effective concentration (EC50) values of 0.38 and 0.48 μg mL-1, which were obviously superior to that of boscalid (0.87 μg mL-1). A2-5 (l-camphor, EC50 = 3.27 μg mL-1) exhibited good activity against V. mali. A2-7 (2.13 μg mL-1), A2-21 (5.2 μg mL-1) and A1-5 (5.15 μg mL-1) showed good antifungal activity against F. graminearum with EC50 values below that of boscalid (5.85 μg mL-1). Preliminary mechanistic studies, using scanning and transmission electron microscopy, indicated that compound A1-7 induced disordered entanglement of hyphae, shrinkage of hyphal surfaces, and vacuole swelling and rupture, which disrupted normal hyphal growth. Additionally, compound A1-7 induced the production and accumulation of reactive oxygen species, disrupted mitochondrial membrane potential, and effectively inhibited the germination and formation of sclerotia in R. solani. Moreover, the molecular docking results and SDH enzyme assays yielded promising outcomes. CONCLUSION In this study, the designed and optimized compounds A1-7 and A2-7 emerged as promising candidates for SDH-targeting fungicides, demonstrating strong antifungal activity. These compounds hold potential as new antifungal agents for further research. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peng Dai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zihua Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guangfu Yi
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yufei Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kaili Xie
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yafang Sun
- College of Economics and Management, Huaibei Institute of Technology, Huaibei, China
| | - Qing Xia
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Hao F, Wang X, Ma F, Wang R, Dong F, Pan X, Wu X, Zheng Y, Xu J. Transfer of pesticides and metabolites in corn: Production, processing, and livestock dietary burden. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176932. [PMID: 39447904 DOI: 10.1016/j.scitotenv.2024.176932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
Corn stover is widely used in livestock feed but has received limited attention regarding its potential risks. In this study, pesticide residues were monitored across 12 provinces in China, and terminal residues of four pesticides, chlorantraniliprole, thiamethoxam, epoxiconazole, and pyraclostrobin, were tested. In addition, the silage processing experiment was conducted. All processing factors (PF) were <1, indicating pesticide degradation. The physicochemical properties of pesticides, especially log P, were related to degradation efficiency. Pesticides with higher log P values showed higher PFs (0.43 to 0.85), indicating lower degradation efficiency. The dietary burden of livestock before and after silage processing was calculated using OECD livestock dietary burden calculator. Results showed that after silage fermentation, the dietary burden was reduced by 28.8 % to 79.2 %. Throughout the entire production and processing process, the fastest degradation of all pesticides in whole corn was primarily observed from the pesticide application time to the harvest time, with some pesticides also showing accelerated degradation during subsequent processing stages. Therefore, in actual production, especially for pesticides which are difficult to degrade, appropriate extension of the safety interval or selection of suitable processing methods can be taken to further reduce pesticide residues in agricultural products.
Collapse
Affiliation(s)
- Fengjiao Hao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feixiang Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ran Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Hao F, Luo Y, Dong F, Pan X, Wu X, Zheng Y, Xu J. Simultaneous determination of 27 pesticides in corn and cow matrices by ultra-performance liquid chromatography-tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6202-6208. [PMID: 37937968 DOI: 10.1039/d3ay01473h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
In this paper, we developed a sensitive UPLC-MS/MS method to determine pesticide residues in plant matrices (corn, fresh corn, fresh corn stover, old corn stover, and corn silage) and animal matrices (beef, fat, milk, milk fat, kidney, liver, and cow stomach) quantitatively. Twenty-seven pesticides were extracted with acetonitrile from all plant and animal matrices separately and purified with a mixture of primary secondary amine (PSA) and graphitized carbon black (GCB) or octadecylsilane (C18). The average recoveries of these compounds ranged from 60.7% to 118.2%, and the relative standard deviations were less than 20.0%. The limit of quantitation for all compounds was 0.01 mg kg-1 (for cyhalothrin and beta cypermethrin the LOQ was 0.02 mg kg-1). The establishment of multi-residue analysis methods for a variety of matrices can be used as a database for future method research. The results of this study are essential for calculating the transfer of pesticide residues from feed to animal products and for monitoring food safety, which will protect people's health and safety.
Collapse
Affiliation(s)
- Fengjiao Hao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, People's Republic of China.
| | - Yuanyuan Luo
- Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute for the Control of Agrochemicals, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, People's Republic of China.
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, People's Republic of China.
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, People's Republic of China.
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, People's Republic of China.
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, People's Republic of China.
| |
Collapse
|
4
|
Ohoro CR, Wepener V. Review of scientific literature on available methods of assessing organochlorine pesticides in the environment. Heliyon 2023; 9:e22142. [PMID: 38045185 PMCID: PMC10692828 DOI: 10.1016/j.heliyon.2023.e22142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Organochlorine pesticides (OCPs) are persistent organic pollutants (POPs) widely used in agriculture and industry, causing serious health and ecological consequences upon exposure. This review offers a thorough overview of OCPs analysis emphasizing the necessity of ongoing work to enhance the identification and monitoring of these POPs in environmental and human samples. The benefits and drawbacks of the various OCPs analysis techniques including gas chromatography-mass spectrometry (GC-MS), gas chromatography-electron capture detector (GC-ECD), and liquid chromatography-mass spectrometry (LC-MS) are discussed. Challenges associated with validation and optimization criteria, including accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ), must be met for a method to be regarded as accurate and reliable. Suitable quality control measures, such as method blanks and procedural blanks, are emphasized. The LOD and LOQ are critical quality control measure for efficient quantification of these compounds, and researchers have explored various techniques for their calculation. Matrix interference, solubility, volatility, and partition coefficient influence OCPs occurrences and are discussed in this review. Validation experiments, as stated by European Commission in document SANTE/11813/2017, showed that the acceptance criteria for method validation of OCP analytes include ≤20 % for high precision, and 70-120 % for recovery. This may ultimately be vital for determining the human health risk effects of exposure to OCP and for formulating sensible environmental and public health regulations.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
5
|
Jiang C, Zhong H, Zou J, Zhu G, Huang Y. CuCeTA nanoflowers as an efficient peroxidase candidate for direct colorimetric detection of glyphosate. J Mater Chem B 2023; 11:9630-9638. [PMID: 37750214 DOI: 10.1039/d3tb01455j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Conventional nanozyme-based pesticide detection often requires the assistance of acetylcholinesterase. In this work, a CuCeTA nanozyme was successfully designed for the direct colorimetric detection of glyphosate. Direct detection can effectively avoid the problems caused by cascading with natural enzymes such as acetylcholinesterase. By assembling tannic acid, copper sulfate pentahydrate and cerium(III) nitrate hexahydrate, CuCeTA nanoflowers were prepared. The obtained CuCeTA possessed excellent peroxidase-like activity that could catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB in the presence of hydrogen peroxide. Glyphosate could effectively inhibit the peroxidase-like activity of CuCeTA while other pesticides (fenthion, chlorpyrifos, profenofos, phosmet, bromoxynil and dichlorophen) did not show significant inhibitory effects on the catalytic activity of CuCeTA. In this way, CuCeTA could be used for the colorimetric detection of glyphosate with a low detection limit of 0.025 ppm. Combined with a smartphone and imageJ software, a glyphosate test paper was designed with a detection limit of 3.09 ppm. Fourier transform infrared spectroscopy demonstrated that glyphosate and CuCeTA might be bound by coordination, which could affect the catalytic activity of CuCeTA. Our CuCeTA-based nanozyme system exhibited unique selectivity and sensitivity for glyphosate detection and this work may provide a new strategy for rapid and convenient detection of pesticides.
Collapse
Affiliation(s)
- Cong Jiang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Huimin Zhong
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Jiahui Zou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Guancheng Zhu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanyan Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|