1
|
Wang Y, Hu Y, Ren H, Zhao X, Yuan Z. Integrated transcriptomic, metabolomic, and functional analyses unravel the mechanism of bagging delaying fruit cracking of pomegranate (Punica granatum L.). Food Chem 2024; 451:139384. [PMID: 38692235 DOI: 10.1016/j.foodchem.2024.139384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/29/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
The economic impact of fruit cracking in pomegranate products is substantial. In this study, we present the inaugural comprehensive analysis of transcriptome and metabolome in the outermost pericarp of pomegranate fruit in bagging conditions. Our investigation revealed a notable upregulation of differentially expressed genes (DEGs) associated with the calcium signaling pathway (76.92%) and xyloglucan endotransglucosylase/hydrolase (XTH) genes (87.50%) in the fruit peel of non-cracking fruit under bagging. Metabolomic analysis revealed that multiple phenolics, flavonoids, and tannins were identified in pomegranate. Among these, calmodulin-like 23 (PgCML23) exhibited a significant correlation with triterpenoids and demonstrated a marked upregulation under bagging treatment. The transgenic tomatoes overexpressing PgCML23 exhibited significantly higher cellulose content and xyloglucan endotransglucosylase (XET) enzyme activity in the pericarp at the red ripening stage compared to the wild type. Conversely, water-soluble pectin content, polygalacturonase (PG), and β-galactosidase (β-GAL) enzyme activities were significantly lower in the transgenic tomatoes. Importantly, the heterologous expression of PgCML23 led to a substantial reduction in the fruit cracking rate in tomatoes. Our findings highlight the reduction of fruit cracking in bagging conditions through the manipulation of PgCML23 expression.
Collapse
Affiliation(s)
- Yuying Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yaping Hu
- Key Laboratory of Plant Innovation and Utilization, Institute of Subtropical Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China
| | - Hongfang Ren
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Xueqing Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaohe Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Malacarne G, Lagreze J, Rojas San Martin B, Malnoy M, Moretto M, Moser C, Dalla Costa L. Insights into the cell-wall dynamics in grapevine berries during ripening and in response to biotic and abiotic stresses. PLANT MOLECULAR BIOLOGY 2024; 114:38. [PMID: 38605193 PMCID: PMC11009762 DOI: 10.1007/s11103-024-01437-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 04/13/2024]
Abstract
The cell wall (CW) is the dynamic structure of a plant cell, acting as a barrier against biotic and abiotic stresses. In grape berries, the modifications of pulp and skin CW during softening ensure flexibility during cell expansion and determine the final berry texture. In addition, the CW of grape berry skin is of fundamental importance for winemaking, controlling secondary metabolite extractability. Grapevine varieties with contrasting CW characteristics generally respond differently to biotic and abiotic stresses. In the context of climate change, it is important to investigate the CW dynamics occurring upon different stresses, to define new adaptation strategies. This review summarizes the molecular mechanisms underlying CW modifications during grapevine berry fruit ripening, plant-pathogen interaction, or in response to environmental stresses, also considering the most recently published transcriptomic data. Furthermore, perspectives of new biotechnological approaches aiming at modifying the CW properties based on other crops' examples are also presented.
Collapse
Affiliation(s)
- Giulia Malacarne
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy.
| | - Jorge Lagreze
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
- Centre Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, 38098, Trento, Italy
| | - Barbara Rojas San Martin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
- Centre Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, 38098, Trento, Italy
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| | - Marco Moretto
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| | - Claudio Moser
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| | - Lorenza Dalla Costa
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| |
Collapse
|
3
|
Gunaseelan K, Schröder R, Rebstock R, Ninan AS, Deng C, Khanal BP, Favre L, Tomes S, Dragulescu MA, O'Donoghue EM, Hallett IC, Schaffer RJ, Knoche M, Brummell DA, Atkinson RG. Constitutive expression of apple endo-POLYGALACTURONASE1 in fruit induces early maturation, alters skin structure and accelerates softening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1413-1431. [PMID: 38038980 DOI: 10.1111/tpj.16571] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
During fruit ripening, polygalacturonases (PGs) are key contributors to the softening process in many species. Apple is a crisp fruit that normally exhibits only minor changes to cell walls and limited fruit softening. Here, we explore the effects of PG overexpression during fruit development using transgenic apple lines overexpressing the ripening-related endo-POLYGALACTURONASE1 gene. MdPG1-overexpressing (PGox) fruit displayed early maturation/ripening with black seeds, conversion of starch to sugars and ethylene production occurring by 80 days after pollination (DAP). PGox fruit exhibited a striking, white-skinned phenotype that was evident from 60 DAP and most likely resulted from increased air spaces and separation of cells in the hypodermis due to degradation of the middle lamellae. Irregularities in the integrity of the epidermis and cuticle were also observed. By 120 DAP, PGox fruit cracked and showed lenticel-associated russeting. Increased cuticular permeability was associated with microcracks in the cuticle around lenticels and was correlated with reduced cortical firmness at all time points and extensive post-harvest water loss from the fruit, resulting in premature shrivelling. Transcriptomic analysis suggested that early maturation was associated with upregulation of genes involved in stress responses, and overexpression of MdPG1 also altered the expression of genes involved in cell wall metabolism (e.g. β-galactosidase, MD15G1221000) and ethylene biosynthesis (e.g. ACC synthase, MD14G1111500). The results show that upregulation of PG not only has dramatic effects on the structure of the fruit outer cell layers, indirectly affecting water status and turgor, but also has unexpected consequences for fruit development.
Collapse
Affiliation(s)
- Kularajathevan Gunaseelan
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Roswitha Schröder
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Ria Rebstock
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Annu S Ninan
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Bishnu P Khanal
- Institute for Horticultural Production Systems, Leibniz-University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Laurie Favre
- Plant and Food Research, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Sumathi Tomes
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Monica A Dragulescu
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Erin M O'Donoghue
- Plant and Food Research, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Ian C Hallett
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | | | - Moritz Knoche
- Institute for Horticultural Production Systems, Leibniz-University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - David A Brummell
- Plant and Food Research, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| |
Collapse
|
4
|
Yu J, Yang J, Dai S, Xie N, Tang Y, Pi S, Zhu M. PpAmy1 Plays a Role in Fruit-Cracking by Regulating Mesocarp Starch Hydrolysis of Nectarines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2667-2677. [PMID: 38287914 DOI: 10.1021/acs.jafc.3c07985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Nectarine [Prunus persica (L.) Batsch var.] fruits are highly susceptible to cracking during the ripening process, which significantly decreases their commercial value. In this study, we investigated the underlying mechanism of nectarine fruit-cracking using two nectarine varieties, namely, "Qiannianhong" (cracking-susceptible) and "CR1012" (cracking-resistant). Our findings indicate that nectarine fruit-cracking occurs during the second stage of fruit expansion. Despite no differences in epicarp cell size between "Qiannianhong" and "CR1012", the mesocarp cells of "Qiannianhong" were larger than those of "CR1012". Moreover, a comparison of starch hydrolysis between the two varieties revealed that "CR1012" had higher starch content in the mesocarp but lower soluble sugar content compared to "Qiannianhong". Additionally, by testing the α-amylase and β-amylase activity of the mesocarp, our results showed a difference only in α-amylase activity between the two varieties. Furthermore, qRT-PCR detection indicated a higher expression level of the PpAmy1 (α-amylase synthesis gene) in "Qiannianhong" compared to "CR1012". To further investigate the role of PpAmy1, we employed RNAi technology to suppress its expression in "Qiannianhong" fruits. The results showed a significant reduction in α-amylase activity, starch hydrolysis, soluble sugar content, cell size of the mesocarp, and fruit-cracking. These findings underscore the pivotal role of PpAmy1 in the occurrence of nectarine fruit cracking.
Collapse
Affiliation(s)
- Jun Yu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiangheng Yang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Shuoyue Dai
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Ningzhen Xie
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Yuenan Tang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Shuiqin Pi
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Mingtao Zhu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|