1
|
Li T, Lv M, Yang Y, Xu H. Discovery of Cholesterol-Type Oxime Ester/Ether Derivatives as Aphicidal Candidates against Aphis citricola Van der Goot and Hyalopterus arundimis Fabricius. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12156-12165. [PMID: 40331782 DOI: 10.1021/acs.jafc.4c13297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The exploration of natural bioactive products as leads for high-value-added applications in crop protection has emerged as one of the prominent research focuses. Based on cholesterol as a lead molecule, herein oxime ester/ether derivatives of cholesterol at the C-3 position were semisynthesized via five successive chemical reactions. The steric configuration of derivative Ip was determined by a single-crystal analysis. Against Aphis citricola Van der Goot (Hemiptera: Aphididae), compounds Id, Iq-Is, Iv, Iw, Iy, IIb, IIc, IIf, and IIi (LC50: 0.074-0.171 mg/mL) exhibited better aphicidal activity compared with cholesterol. Notably, derivative IIc displayed 130.2-fold aphicidal activity compared to cholesterol and good control efficiency on the fifth day in the field. Against Hyalopterus arundimis Fabricius (Homoptera: Aphididae), compounds Ii, Im, IId, and IIg depicted 59.2-66.7 times aphicidal activity compared to that of cholesterol. In addition, it demonstrated that the hydroxyl at the C-3 position of cholesterol is a vital modification site. Furthermore, the severe destruction of the superficial layers of treated A. citricola and H. arundimis was unveiled by scanning electron microscope (SEM). Hopefully, these results can lay the foundation for further optimization of cholesterol-type compounds as resultful aphicides.
Collapse
Affiliation(s)
- Tianze Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Lv
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanli Yang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Xu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
2
|
Chen K, Wang S, Fu S, Kim J, Park P, Liu R, Lei K. 4(3 H)-Quinazolinone: A Natural Scaffold for Drug and Agrochemical Discovery. Int J Mol Sci 2025; 26:2473. [PMID: 40141117 PMCID: PMC11941892 DOI: 10.3390/ijms26062473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
4(3H)-quinazolinone is a functional scaffold that exists widely both in natural products and synthetic organic compounds. Its drug-like derivatives have been extensively synthesized with interesting biological features including anticancer, anti-inflammatory, antiviral, antimalarial, antibacterial, antifungal, and herbicidal, etc. In this review, we highlight the medicinal and agrochemical versatility of the 4(3H)-quinazolinone scaffold according to the studies published in the past six years (2019-2024), and comprehensively give a summary of the target recognition, structure-activity relationship, and mechanism of its analogs. The present review is expected to provide valuable guidance for discovering novel lead compounds containing 4(3H)-quinazolinone moiety in both drug and agrochemical research.
Collapse
Affiliation(s)
- Ke Chen
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Shumin Wang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| | - Shuyue Fu
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| | - Junehyun Kim
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Phumbum Park
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Rui Liu
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Kang Lei
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| |
Collapse
|
3
|
Ren Z, Lv M, Yang Y, Gu S, Li L, Liu H, Xu H. Structural Optimization of Natural Plant Products: Construction, Pesticidal Activities, and Toxicology Study of New 2-Isopropanol-4-methoxy-7-alkyl/aryloxycarbonyl-( E)-vinyl-2,3-dihydrobenzofurans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1804-1812. [PMID: 39787271 DOI: 10.1021/acs.jafc.3c08020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Recently, the structural optimization of natural bioactive products has been one of the important ways to discover new pesticide candidates. Based on osthole as a lead compound, herein, a series of new 2-isopropanol-4-methoxy-7-alkyl/aryloxycarbonyl-(E)-vinyl-2,3-dihydrobenzofuran derivatives were synthesized. Steric configurations of compounds 3, 4, 6, 9, 11, 29, and 31 were confirmed by X-ray monocrystallography. Notably, an efficient method for preparation of 2-isopropanol-2,3-dihydrobenzofurans from osthole by the epoxidation and rearrangement reactions was developed. Against Plutella xylostella Linnaeus, compound 31 (R = CH2CH2Ph; LC50: 0.759 mg/mL) displayed a 1.9-fold insecticidal activity compared to that of osthole; against Tetranychus cinnabarinus Boisduval, compound 34 (R = (CH2)9CH3; LC50: 0.401 mg/mL) exhibited a 3.3-fold acaricidal activity and good control effects compared to those of osthole. By the scanning electron microscope (SEM) imaging method, it was demonstrated that the acaricidal activity of compound 34 may be related to the damage of the cuticle layer crest of T. cinnabarinus. Compound 34 could be further studied as a potential acaricide.
Collapse
Affiliation(s)
- Zili Ren
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yanli Yang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siyan Gu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lulu Li
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huqi Liu
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
4
|
Hao M, Jiang L, Lv M, Ding H, Zhou Y, Xu H. Plant natural product-based pesticides in crop protection: semi-synthesis, mono-crystal structures and agrochemical activities of osthole ester derivatives, and study of their toxicology against Tetranychus cinnabarinus (Boisduval). PEST MANAGEMENT SCIENCE 2024; 80:6356-6365. [PMID: 39118390 DOI: 10.1002/ps.8364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Owing to large amounts of synthetic pesticides being extensively and unreasonably used for crop protection, currently, resistance and negative impacts on human health and environment safety have appeared. Therefore, development of potential pesticide candidates is highly urgent. Herein, a series of ester derivatives of osthole were designed and synthesized as pesticidal agents. RESULTS Six spatial configurations of 4'-(p-toluenoyloxy)osthole (4b), 4'-(m-fluorobenzoyloxy)osthole (4f), 4'-(p-fluorophenylacetyloxy)osthole (4m), 4'-(3'',4''-methylenedioxybenzoyloxy)osthole (4q), 4'-formyloxyosthole (4u) and 4'-acetyloxyosthole (4v) were determined by X-ray mono-crystal diffraction. Compounds 4b, 4'-(p-chlorobenzoyloxy)osthole (4g), 4'-(m-chlorobenzoyloxy)osthole (4h), 4'-(p-bromobenzoyloxy)osthole (4i) and 4'-(2''-chloropyridin-3''-ylcarbonyloxy)osthole (4p) showed higher insecticidal activity than toosendanin against Mythimna separata Walker; notably, compound 4b displayed 1.8 times insecticidal activity of the precursor osthole. Against Tetranychus cinnabarinus Boisduval, compounds 4g and 4h showed 3.3 and 2.6 times acaricidal activity of osthole, and good control effects in the glasshouse. Scanning electron microscopy assay demonstrated that compound 4g can damage the cuticle layer of T. cinnabarinus resulting in death. CONCLUSION Compounds 4g and 4h can be further studied as lead pesticidal agents for the management of M. separata and T. cinnabarinus. These results will pave the way for application of osthole derivatives as agrochemicals. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meng Hao
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Linlin Jiang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Haixia Ding
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yimeng Zhou
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Wang Y, Lv M, Gu S, Hao C, Zhou Y, Chen L, Xu H. Synthesis and Pesticidal Activities of Ester Derivatives of the Labdane Diterpenoid Andrographolide at the C-3 Position Containing the Isoxazoline Fragment and Their Toxicology Study against Tetranychus cinnabarinus Boisduval. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25023-25033. [PMID: 39447173 DOI: 10.1021/acs.jafc.4c07412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Due to the long-term overuse of chemical pesticides, serious resistance and negative problems on human health and the ecological environment have appeared. To develop plant-product-based pesticide candidates, a series of novel andrographolide ester derivatives containing the isoxazoline skeleton were prepared at the C-3 position. Their pesticidal activities were evaluated against three typical pests such as Mythimna separata Walker, Aphis citricola Van der Goot, and Tetranychus cinnabarinus Boisduval. Against M. separata, compounds Ik, IIf, IIg, and IIk showed 1.6-1.8 times insecticidal activity compared to that of andrographolide; against A. citricola, compounds 6, Ih, and IIh possessed 3.7-3.9-fold aphicidal activity compared to that of andrographolide; against T. cinnabarinus, compounds Ib, Ig, and IIk exhibited 7.4-9.1-fold promising acaricidal activity compared to that of andrographolide. It is worth mentioning that effects of IIk on morphological changes of the treated mite cuticle layer structures were observed by the scanning electron microscope imaging method. Compound IIk can be studied as a pesticidal lead for further structural modification.
Collapse
Affiliation(s)
- Yanyan Wang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Siyan Gu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunyang Hao
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yimeng Zhou
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lin Chen
- College of Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
6
|
Xu J, Dou Z, Zuo S, Lv M, Wang Y, Hao M, Chen L, Xu H. Semi-Preparation and X-ray Single-Crystal Structures of Sophocarpine-Based Isoxazoline Derivatives and Their Pesticidal Effects and Toxicology Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24198-24206. [PMID: 39460697 DOI: 10.1021/acs.jafc.3c08101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Recently, research and development of novel pesticides from natural plant products have received much attention. To accelerate the application of sophocarpine as the agrochemical candidate, a series of novel sophocarpine-based isoxazoline derivatives were prepared by the 1,3-dipolar [2 + 3] cycloaddition reaction of sophocarpine with different chloroximes. Their structures were well characterized by high-resolution mass spectra, infrared spectra, and proton/carbon-13 nuclear magnetic resonance spectra. Eight steric configurations of compounds 5a, 5e', 5f, 5g, 5h, 5i, 5r, and 5u' were further determined by X-ray single-crystallography. Against Aphis citricola Van der Goot, compounds 5n (LD50: 0.032 μg/nymph) and 5o (LD50: 0.024 μg/nymph) exhibited greater than 3.7- and 4.9-fold potent aphicidal activity compared to sophocarpine (LD50: 0.118 μg/nymph). Against Tetranychus cinnabarinus Boisduval, derivative 5g displayed the most promising acaricidal activity with the LC50 value of 0.247 mg/mL, which was 14.2-fold that of sophocarpine. Compounds 5d and 5g also exhibited good control efficacy against T. cinnabarinus. Scanning electron microscopy images indicated that compound 5g can destroy the mite cuticle layer. These results will provide the foundation for the structural modification and use of sophocarpine derivatives as agrochemicals in the future.
Collapse
Affiliation(s)
- Jianwei Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zihan Dou
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sihui Zuo
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yanyan Wang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Meng Hao
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lin Chen
- College of Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
7
|
Joshi V, Bachhar V, Mishra SS, Shukla RK, Gangal A, Duseja M. GC-MS fingerprinting, nutritional composition, in vitro pharmacological activities and molecular docking studies of Piper chaba from Uttarakhand region. 3 Biotech 2024; 14:158. [PMID: 38766322 PMCID: PMC11101386 DOI: 10.1007/s13205-024-03996-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
This study aimed to evaluate the potential therapeutic effects of Piper chaba (PC) growing in the northern region of India, having differences in the phytochemicals, nutritional content, antimicrobial and antioxidant properties by reducing power assay (RPA), 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, phosphomolybdate assay, and antidiabetic potential by α-amylase assay with change in the geographical location. Outcomes of the gas chromatography-mass spectrometry (GC-MS) analysis revealed that phytochemicals such as piperine (46.69%), kusunokinin (8.9%), and sitostenone (7.57%) are the prominent compounds found in PC. The plant has also shown a good nutritional value, i.e., iron (11.25 mg), calcium (147 mg), and vitamin C (9.30 mg) per 100 g. PC has a higher phenolic content than other species (⁓ 13.75 g/100 g plant powder). Among the four tested bacterial strains, the extract is best responsive toward Escherichia coli (35 ± 0.68 mm) which is more than the standard ciprofloxacin (24 ± 0.8 mm). Similarly, among two tested fungal strains, Saccharomyces cerevisiae shows the best zone of inhibition (ZOI) (27.5 ± 0.8 mm), which is greater than tat of standard amphotericin (20.25 ± 0.28 mm). The DDPH method demonstrated the highest antioxidant activity (⁓ 42.61 ± 1.82 µg/ml). IC50 for the antidiabetic potential of PC was found to be 23.09 ± 0.3 µg/ml against α-amylase assay. A molecular docking study revealed that three compounds, piperine, sitostenone and kusunokinin, showed strong binding affinity toward bacterial tyrosyl-tRNA synthetases, fungal dihydrofolate reductase, and α-amylase, respectively. Therefore, the findings of the current study indicate that PC can be considered as a source of food and medicines, either in the form of traditional preparations or as pure active constituents. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03996-7.
Collapse
Affiliation(s)
- Vibha Joshi
- Analytical Chemistry Lab, Department of Chemistry, School of Physical Sciences, DIT University, Dehradun, Uttarakhand 248009 India
| | - Vishwajeet Bachhar
- Analytical Chemistry Lab, Department of Chemistry, School of Physical Sciences, DIT University, Dehradun, Uttarakhand 248009 India
| | - Shashank Shekher Mishra
- School of Pharmaceutical and Population Health Informatics, Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand 248009 India
| | - Ravi K. Shukla
- Advanced Functional Smart Materials Laboratory, Department of Physics, School of Physical Sciences, DIT University, Dehradun, Uttarakhand 248009 India
| | - Avinash Gangal
- Analytical Chemistry Lab, Department of Chemistry, School of Physical Sciences, DIT University, Dehradun, Uttarakhand 248009 India
| | - Manisha Duseja
- Analytical Chemistry Lab, Department of Chemistry, School of Physical Sciences, DIT University, Dehradun, Uttarakhand 248009 India
| |
Collapse
|
8
|
Wen H, Du J, Wang Y, Lv M, Ding H, Liu H, Xu H. Construction and Single-Crystal Structures of N-Isoxazolin-5-ylcarbonylindole Derivatives, and Their Pesticidal Activities and Toxicology Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6913-6920. [PMID: 38517181 DOI: 10.1021/acs.jafc.3c07015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
To explore natural product-based pesticide candidates, a series of indole derivatives containing the isoxazoline skeleton at the N-1 position were synthesized by 1,3-dipolar [2 + 3] cycloaddition reaction. Their structures were characterized by melting points (mp), infrared (IR) spectra, proton nuclear magnetic resonance spectra (1H NMR), carbon-13 nuclear magnetic resonance spectra (13C NMR), and high resolution mass spectrometry (HRMS). The single-crystal structures of five compounds were presented. Against Tetranychus cinnabarinus Boisduval, compound 3b showed greater than 3.8-fold acaricidal activity of indole and good control effects under glasshouse conditions. Against Aphis citricola Van der Goot, compounds 3b and 3q exhibited 48.3- and 36.8-fold aphicidal activity of indole and 6-methylindole, respectively. Particularly, compound 3b showed good bioactivities against T. cinnabarinus and A. citricola. Against Eriosoma lanigerum Hausmann, compound 3h and 3i showed 2.1 and 1.9 times higher aphicidal activity compared to indole. Furthermore, the construction of the epidermal cuticle layer of 3b-treated carmine spider mites was distinctly damaged, which ultimately led to their death.
Collapse
Affiliation(s)
- Houpeng Wen
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Jiawei Du
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Yanyan Wang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi China
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang China
| | - Haixia Ding
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Huqi Liu
- College of Life Science, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi China
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang China
| |
Collapse
|
9
|
Hao N, Qi Y, Zhao L, Liang S, Sun W, Zhang S, Tian X. Discovery of New Botanical Insecticides: Identification and Insecticidal Activity of Saponins from Clematis obscura Maxim and Insights into the Stress Response of Acyrthosiphon pisum Harris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4596-4609. [PMID: 38385330 DOI: 10.1021/acs.jafc.3c06557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
To discover new botanical products-based insecticide candidates, 14 triterpenoid saponins (1-14) including four new ones, obscurosides A-D (1-4), were isolated from Clematis obscura Maxim as potential agrochemicals against Acyrthosiphon pisum Harris and Plutella xylostella (L.). Compounds 1-3 were characterized by a rare ribose substitution at C-3, and 4 was a bidesmoside glycosylated at the rare C-23 and C-28 positions of the oleanane aglycone. Compounds 10 (median antifeeding concentration, AFC50 = 1.10 mg/mL; half-lethal concentration, LC50 = 1.21 mg/mL) and 13 (AFC50 = 1.09 mg/mL, LC50 = 1.37 mg/mL) showed significant insecticidal activities against third larvae of P. xylostella at 72 h. All saponins displayed antifeedant activities against A. pisum with the deterrence index of 0.20-1.00 at 400 μg/mL. Compound 8 showed optimal oral toxicity (LC50 = 50.09 μg/mL) against A. pisum, followed by compounds 1, 5-7, 9, and 14 (LC50 = 90.21-179.25 μg/mL) at 72 h. The shrinkage of the cuticle and the destruction of intestinal structures of microvilli, nucleus, endoplasmic reticulum, and mitochondria were toxic symptoms of 8-treated A. pisum. The significantly declined Chitinase activity in 8-treated A. pisum with an inhibition rate of 79.1% at LC70 (70% lethal concentration) could be the main reason for its significant oral toxicities. Molecular docking revealed favorable affinities of compounds 1 and 8 with group I Chitinase OfChtI (Group I Chitinase from Ostrinia furnacalis) through conventional hydrogen bonds and alkey/π-alkey interactions by different patterns. These results will provide valuable information for the development of novel botanical pesticides for the management of insect pests, especially against A. pisum.
Collapse
Affiliation(s)
- Nan Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Forestry, Northwest A&F University, Yangling 712100, PR China
- College of Plant Protection, Northwest A&F University, Yangling 712100, PR China
| | - Yinyin Qi
- College of Plant Protection, Northwest A&F University, Yangling 712100, PR China
| | - Long Zhao
- College of Plant Protection, Northwest A&F University, Yangling 712100, PR China
| | - Shuangshuang Liang
- College of Plant Protection, Northwest A&F University, Yangling 712100, PR China
| | - Wenjing Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Forestry, Northwest A&F University, Yangling 712100, PR China
| | - Sunao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Forestry, Northwest A&F University, Yangling 712100, PR China
| | - Xiangrong Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Forestry, Northwest A&F University, Yangling 712100, PR China
- College of Plant Protection, Northwest A&F University, Yangling 712100, PR China
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, Shaanxi 712100, China
| |
Collapse
|
10
|
Han J, Zhang S, He J, Li T. Piperine: Chemistry and Biology. Toxins (Basel) 2023; 15:696. [PMID: 38133200 PMCID: PMC10747706 DOI: 10.3390/toxins15120696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Piperine is a plant-derived promising piperamide candidate isolated from the black pepper (Piper nigrum L.). In the last few years, this natural botanical product and its derivatives have aroused much attention for their comprehensive biological activities, including not only medical but also agricultural bioactivities. In order to achieve sustainable development and improve survival conditions, looking for environmentally friendly pesticides with low toxicity and residue is an extremely urgent challenge. Fortunately, plant-derived pesticides are rising like a shining star, guiding us in the direction of development in pesticidal research. In the present review, the recent progress in the biological activities, mechanisms of action, and structural modifications of piperine and its derivatives from 2020 to 2023 are summarized. The structure-activity relationships were analyzed in order to pave the way for future development and utilization of piperine and its derivatives as potent drugs and pesticides for improving the local economic development.
Collapse
Affiliation(s)
- Jin Han
- School of Public Administration, Xi’an University of Finance and Economics, Xi’an 710061, China;
| | - Shaoyong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China;
| | - Jun He
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China;
| | - Tianze Li
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China;
| |
Collapse
|
11
|
Ren Z, Lv M, Liu H, Wen H, Zhang Y, Xu H. Optimization of Osthole as a Pesticide Candidate: Synthesis, Crystal Structures, and Agrochemical Properties of Acrylate Derivatives of Isopropenyl 2,3-Dihydrobenzofurans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18301-18311. [PMID: 37966481 DOI: 10.1021/acs.jafc.3c02213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
For high-value-added application of osthole derivatives as a pesticide candidate in crop protection, by the use of osthole as a lead compound, a series of novel acrylate derivatives of isopropenyl 2,3-dihydrobenzofurans were prepared by the successive bromination, rearrangement, and esterization reactions. Three-dimensional structures of four compounds were determined by single-crystal X-ray diffraction. The possible mechanism for construction of this new isopropenyl 2,3-dihydrobenzofuran skeleton from the osthole was presented. Against Plutella xylostella Linnaeus, compound 32 (R = PhCH2CH2) displayed 3.5-fold potent insecticidal activity of osthole. Against Tetranychus cinnabarinus Boisduval, compound 40 (LC50: 0.165 mg/mL; R = (CH2)13CH3) showed 8.3-fold pronounced acaricidal activity of osthole (LC50: 1.367 mg/mL); notably, its control effect can be comparable to that of the commercial acaricide spirodiclofen. Additionally, the scanning electron microscopy imaging method demonstrated that compound 40 can destroy the stratum corneum of T. cinnabarinus. Compound 40 can be further explored as a lead acaricidal agent.
Collapse
Affiliation(s)
- Zili Ren
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huqi Liu
- College of Life Science, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Houpeng Wen
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuling Zhang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
12
|
Lv M, Li S, Wen H, Wang Y, Du J, Xu H. Expedient discovery of novel oxime ester derivatives of piperine/piperine analogs as potent pesticide candidates and their mode of action against Tetranychus cinnabarinus Boisduval. PEST MANAGEMENT SCIENCE 2023; 79:3459-3470. [PMID: 37139821 DOI: 10.1002/ps.7521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Nowadays, pest infestation and resistance have appeared as a consequence of repeated and extensive use of pesticides. Thus, development of new effective pesticide candidates in crop protection is highly desirable. Herein, a series of new piperine derivatives containing oxime ester scaffolds were regioselectively and stereoselectively prepared as pesticidal agents. RESULTS Steric configurations of compounds 2, 5z and 13e were definitively determined by single-crystal X-ray diffraction. Against Tetranychus cinnabarinus, notably, compounds 5f [median lethal concentration (LC50 ) = 0.14 mg mL-1 ] and 5v (LC50 = 0.13 mg mL-1 ) showed >107-fold greater acaricidal activity than piperine (LC50 = 15.02 mg mL-1 ), which were comparable to the commercial acaricide spirodiclofen. Against Aphis citricola, compound 5d (LD50 = 19.12 ng aphid-1 ) exhibited 6.1-fold more potent aphicidal activity than piperine (LD50 = 116.06 ng aphid-1 ). Additionally, through scanning electron microscopy, the toxicology study suggested that the acaricidal activity of piperine derivatives may be related to damage of the cuticle layer crest of T. cinnabarinus. CONCLUSION The structure-activity relationships suggested that 3,4-dioxymethylene of piperine was crucial for its acaricidal activity; and introduction of a certain length of aliphatic chain at the C-2 position was beneficial to the aphicidal and acaricidal activities. Compounds 5f and 5v are potential leads for further structural modification as acaricidal agents. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Lv
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shaochen Li
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Houpeng Wen
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yanyan Wang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jiawei Du
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
13
|
Wang Y, Xu S, Tang L, Gong J, Su D, Yang H. Piperine as a Potential Nutraceutical Agent for Managing Diabetes and Its Complications: A Literature Review. J Med Food 2023. [PMID: 37725004 DOI: 10.1089/jmf.2023.k.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
The global prevalence of diabetes and its related complications has increased drastically and is currently a worldwide health challenge. There is still an urgent need for safe and effective natural products and supplements as alternative and/or adjunctive therapeutic interventions. Nowadays, people pay more and more attention to the nutritional and medicinal value of food ingredients. As one of the most widely employed spices in cooking, pepper also has novel medicinal values attributed to its main component, piperine (Pip). Pip is an amide alkaloid with pleiotropic properties such as anti-inflammatory, antioxidant, anti-cancer, and other related activities. Recently, Pip has received increasing scientific attention due to its antidiabetic and related complication properties. However, the values of existing studies are limited due to being scattered and unsystematic. The present study reviewed the therapeutic potential and possible mechanisms of Pip in diabetes and related complications, with the aim of providing promising candidates for the development of novel and effective alternative and/or adjunctive nutraceutical agents for the management of diabetes.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Pharmacy, the Third Affiliated Hospital of Soochow University, the First Peoples's Hospital of Changzhou, Changzhou, China
| | - Shan Xu
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Lidan Tang
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jinhong Gong
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Dan Su
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Hao Yang
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
14
|
Zhong M, Chen L, Tao Y, Zhao J, Chang B, Zhang F, Tu J, Cai W, Zhang B. Synthesis and evaluation of Piperine analogs as thioredoxin reductase inhibitors to cause oxidative stress-induced cancer cell apoptosis. Bioorg Chem 2023; 138:106589. [PMID: 37320912 DOI: 10.1016/j.bioorg.2023.106589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 06/17/2023]
Abstract
Inhibiting thioredoxin reductase (TrxR) to disrupt the redox equilibrium and induce tumor cell apoptosis is a significant tumor therapeutic strategy. Piperine, a natural product from black pepper, has been demonstrated to suppress tumor cell proliferation by enhancing reactive oxygen species (ROS), subsequently leading to cell death. However, the development of Piperine as an active molecule is hampered by its weak cytotoxicity. To develop a compound with higher activity, we synthesized 22 Piperine analogs and evaluated their pharmacological properties. Ultimately, B5 was screened by the results of cytotoxicity and inhibition of TrxR activity. In contrast to Piperine, B5 had significant cytotoxicity with a 4-fold increase. The structure-activity relationship demonstrated that the introduction of an electron-withdrawing group into the benzene ring adjacent to the amino group, particularly in the meta-position, was positive and that shortening the olefin double bond had no appreciable impact on cytotoxicity. Further investigating the physiological activity of B5 in HeLa cells, we found that B5 selectively inhibits the activity of TrxR by binding to Sec residues on TrxR. B5 then induces cellular oxidative stress and finally leads to apoptosis. As a result, the study of B5 paved the way for further investigation into the modification and function of Piperine analogs as TrxR inhibitors.
Collapse
Affiliation(s)
- Miao Zhong
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Lingzhen Chen
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yue Tao
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jintao Zhao
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bingbing Chang
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Fang Zhang
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingwen Tu
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wenqing Cai
- Regor Therapeutics Inc, 1206 Zhangjiang Road, Building C, Pu Dong New District, Shanghai 201210, China.
| | - Baoxin Zhang
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
15
|
Xu J, Lv M, Fang S, Wang Y, Wen H, Zhang S, Xu H. Exploration of Synergistic Pesticidal Activities, Control Effects and Toxicology Study of a Monoterpene Essential Oil with Two Natural Alkaloids. Toxins (Basel) 2023; 15:toxins15040240. [PMID: 37104178 PMCID: PMC10142011 DOI: 10.3390/toxins15040240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
With the increasing development of pest resistances, it is not easy to achieve satisfactory control effects by using only one agrochemical. Additionally, although the alkaloid matrine (MT) isolated from Sophora flavescens is now utilized as a botanical pesticide in China, in fact, its pesticidal activities are much lower in magnitude than those of commercially agrochemicals. To improve its pesticidal activities, here, the joint pesticidal effects of MT with another alkaloid oxymatrine (OMT) (isolated from S. flavescens) and the monoterpene essential oil 1,8-cineole (CN) (isolated from the eucalyptus leaves) were investigated in the laboratory and greenhouse conditions. Moreover, their toxicological properties were also studied. Against Plutella xylostella, when the mass ratio of MT and OMT was 8/2, good larvicidal activity was obtained; against Tetranychus urticae, when the mass ratio of MT and OMT was 3/7, good acaricidal activity was obtained. Especially when MT and OMT were combined with CN, the significant synergistic effects were observed: against P. xylostella, the co-toxicity coefficient (CTC) of MT/OMT (8/2)/CN was 213; against T. urticae, the CTC of MT/OMT (3/7)/CN was 252. Moreover, the activity changes over time of two detoxification enzymes, carboxylesterase (CarE) and glutathione S-transferase (GST) of P. xylostella treated with MT/OMT (8/2)/CN, were observed. In addition, by scanning electron microscope (SEM), the toxicological study suggested that the acaricidal activity of MT/OMT (3/7)/CN may be related to the damage of the cuticle layer crest of T. urticae.
Collapse
Affiliation(s)
- Jianwei Xu
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Correspondence: author: (M.L.); (H.X.)
| | - Shanshan Fang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Yanyan Wang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Houpeng Wen
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Shaoyong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Correspondence: author: (M.L.); (H.X.)
| |
Collapse
|
16
|
Li T, Lv M, Wen H, Du J, Wang Z, Zhang S, Xu H. Natural products in crop protection: thiosemicarbazone derivatives of 3-acetyl-N-benzylindoles as antifungal agents and their mechanism of action. PEST MANAGEMENT SCIENCE 2023. [PMID: 36929618 DOI: 10.1002/ps.7457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Phytopathogenic fungi can cause a direct loss in economic value of agriculture. Especially Valsa mali Miyabe et Yamada, a devastating phytopathogenic disease especially threatening global apple production, is very difficult to control and manage. To discover new potential antifungal agents, a series of thiosemicarbazone derivatives of 3-acetyl-N-benzylindoles were prepared. Their antifungal activities were first tested against six typically phytopathogenic fungi including Curvularia lunata, Valsa mali, Alternaria alternate, Fusarium graminearum, Botrytis cinerea and Fusarium solani. Then their mechanism of action against V. mali was investigated. RESULTS Derivatives displayed potent antifungal activity against V. mali. Notably, 3-acetyl-N-benzylindole thiosemicarbazone (IV-1: EC50 : 0.59 μg mL-1 ), whose activity was comparable to that of a commercial fungicide carbendazim (EC50 : 0.33 μg mL-1 ), showed greater than 98-fold antifungal activity of the precursor indole. Moreover, compound IV-1 displayed good protective and therapeutic effects on apple Valsa canker disease. By scanning electron microscope (SEM) and RNA-Seq analysis, it was demonstrated that compound IV-1 can destroy the hyphal structure and regulate the homeostasis of metabolism of V. mali via the ergosterol biosynthesis and autophagy pathways. CONCLUSION 3-Acetyl-N-(un)substituted benzylindoles thiosemicarbazones (IV-1-IV-5) can be studied as leads for further structural modification as antifungal agents against V. mali. Particularly, these ergosterol biosynthesis and autophagy pathways can be used as target receptors for design of novel green pesticides for management of congeneric phytopathogenic fungi. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tianze Li
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Houpeng Wen
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jiawei Du
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhen Wang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shaoyong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
17
|
Li T, Lv M, Wen H, Wang Y, Thapa S, Zhang S, Xu H. Synthesis of Piperine-Based Ester Derivatives with Diverse Aromatic Rings and Their Agricultural Bioactivities against Tetranychus cinnabarinus Boisduval, Aphis citricola Van der Goot, and Eriosoma lanigerum Hausmann. INSECTS 2022; 14:40. [PMID: 36661967 PMCID: PMC9862344 DOI: 10.3390/insects14010040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Exploration of plant secondary metabolites or by using them as leads for development of new pesticides has become one of the focal research topics nowadays. Herein, a series of new ester derivatives of piperine were prepared via the Vilsmeier−Haack−Arnold (VHA) reaction, and their structures were characterized by infrared spectroscopy (IR), melting point (mp), proton nuclear magnetic resonance spectroscopy (1H NMR), and carbon nuclear magnetic resonance spectroscopy (13C NMR). Notably, the steric configurations of compounds 6 and 7 were confirmed by single-crystal analysis. Against T. cinnabarinus, compounds 9 and 11 exhibited 47.6- and 45.4-fold more pronounced acaricidal activity than piperine. In particular, compounds 9 and 11 also showed 2.6-fold control efficiency on the fifth day of piperine. In addition, compound 6 (>10−fold higher than piperine) displayed the most potent aphicidal activity against A. citricola. Furthermore, some derivatives showed good aphicidal activities against E. lanigerum. Moreover, the effects of compounds on the cuticles of T. cinnabarinus were investigated by the scanning electron microscope (SEM) imaging method. This study will pave the way for future high value added application of piperine and its derivatives as botanical pesticides.
Collapse
Affiliation(s)
- Tianze Li
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Houpeng Wen
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Yanyan Wang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Sunita Thapa
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Shaoyong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|