1
|
Tong B, Yu Y, Shi S. Rhodotorula sp. as a promising host for microbial cell factories. Metab Eng 2025; 90:178-196. [PMID: 40139654 DOI: 10.1016/j.ymben.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/15/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Rhodotorula sp. is a red yeast that has emerged as a promising host for microbial cell factories. Under specific conditions, Rhodotorula sp. can accumulate lipids that constitute over 70% of its dry cell weight, underscoring its potential in lipid compound production. Additionally, it can utilize a variety of carbon sources, including glucose, xylose, and volatile fatty acids, and exhibits high tolerance to low-cost carbon sources and industrial by-products, showcasing its excellent performance in industrial processes. Furthermore, the native mevalonate pathway of Rhodotorula sp. enables its efficient synthesis of antioxidant carotenoids and other terpenoids, which are widely applied in the food, pharmaceutical, and cosmetic industries. Due to its excellent accumulation ability of lipophilic compounds, metabolic diversity, and environmental adaptability, this review summarizes recent advances in genetic elements and metabolic engineering technologies for Rhodotorula sp., emphasizing its potential as a chassis cell factory for the production of lipids, carotenoids, and other chemicals. It also highlights key factors influencing commercial fermentation processes and concludes with challenges and solutions for further developing Rhodotorula sp. as microbial chassis.
Collapse
Affiliation(s)
- Baisong Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, Beijing, China
| | - Yi Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, Beijing, China.
| |
Collapse
|
2
|
Gong X, Xu Y, Hou S, Li H, Chen X, Song Z. Metabarcoding insights into microbial drivers of flavor development and quality stability in traditional Chinese red pepper sauce: impacts of varietal selection and solar/shade fermentation. ENVIRONMENTAL MICROBIOME 2025; 20:59. [PMID: 40448237 PMCID: PMC12123998 DOI: 10.1186/s40793-025-00717-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 05/09/2025] [Indexed: 06/02/2025]
Abstract
BACKGROUND Red pepper sauce is a traditional Chinese condiment, which is rich in nutrients and popular worldwide. However, the changes in the microbial community of red pepper sauce during fermentation and the effects of such changes on quality stability have been under studied. In this study, we systematically analyzed the relationship between the microbial community composition of multiple red pepper sauces and the biochemical indexes. Moreover, we also explored the dynamics of changes in the microbial community composition using metabarcoding sequencing. RESULTS Our analysis revealed significant differences in amino acids (AA), lactate, pectin, reducing sugar, flavonoids, phenolics, pigments, and alcohol dehydrogenase (ADH) activity among the six red pepper sauces. Moreover, the relative abundance of bacteria and fungi showed significant differences among multiple red pepper sauces. Among these biochemical indexes, water content, pigment, and capsaicin showed a significant negative correlation with the abundance of multiple bacterial genera. ADH activity showed a significant positive correlation with the abundance of multiple bacterial genera. The content of AA, flavonoid, pectin, and gamma-aminobutyric acid (GABA) was significantly correlated with the relative abundance of multiple fungi such as Rhodotorula, Dipodascus, Leucosporidium, Hannaella, and Coniochaeta. CONCLUSIONS These results provide a basis for revealing the biological basis of the quality stability and flavor characteristics of red pepper sauce, which are of great significance for further investigation of the fermentation mechanism and control of the product quality of red pepper sauce.
Collapse
Grants
- 2021YFYZ0022 Breakthrough vegetable breeding materials, innovation methods and new variety breeding', Sichuan Provincial Vegetable Breeding Key project
- 2021YFYZ0022 Breakthrough vegetable breeding materials, innovation methods and new variety breeding', Sichuan Provincial Vegetable Breeding Key project
- 2021YFYZ0022 Breakthrough vegetable breeding materials, innovation methods and new variety breeding', Sichuan Provincial Vegetable Breeding Key project
- 2021YFYZ0022 Breakthrough vegetable breeding materials, innovation methods and new variety breeding', Sichuan Provincial Vegetable Breeding Key project
- 2021YFYZ0022 Breakthrough vegetable breeding materials, innovation methods and new variety breeding', Sichuan Provincial Vegetable Breeding Key project
- 2021YFYZ0022 Breakthrough vegetable breeding materials, innovation methods and new variety breeding', Sichuan Provincial Vegetable Breeding Key project
- 2023NSFSC1242 The Natural Science Foundation of Sichuan Province
- 2023NSFSC1242 The Natural Science Foundation of Sichuan Province
- 2023NSFSC1242 The Natural Science Foundation of Sichuan Province
- 2023NSFSC1242 The Natural Science Foundation of Sichuan Province
- 2023NSFSC1242 The Natural Science Foundation of Sichuan Province
- 2023NSFSC1240 The Natural Science Foundation of Sichuan Province Project
- 1 + 9KJGG03 The 1 + 9 Program of SAAS
- Breakthrough vegetable breeding materials, innovation methods and new variety breeding’, Sichuan Provincial Vegetable Breeding Key project
Collapse
Affiliation(s)
- Xuefeng Gong
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, 610066, China
| | - Yi Xu
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, 610066, China
| | - Sihao Hou
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, 610066, China
| | - Hong Li
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, 610066, China
| | - Xin Chen
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, 610066, China
| | - Zhanfeng Song
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China.
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, 610066, China.
| |
Collapse
|
3
|
Yu Y, Yuan Q, Dai J, Zhao H, Shi S. Engineering oleaginous yeast Rhodotorula toruloides for production of alkanes and alkenes. Metab Eng 2025; 91:242-253. [PMID: 40345319 DOI: 10.1016/j.ymben.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 05/04/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Due to limited reserves and excessive carbon emission of fossil fuels, there has been an increasing interest in developing advanced biofuels with high energy density such as alkanes and alkenes. Here we report the design and construction of three heterologous biosynthetic pathways of alkanes and alkenes in oleaginous yeast Rhodotorula toruloides, including the AAR/ADO, UndA/UndB and FAP pathways. The performance of various enzymes from different organisms was evaluated within R. toruloides for each pathway. Various metabolic engineering strategies were used to enhance the production of alkanes and alkenes across all three pathways, including enzyme screening, byproduct elimination, and precursor supply enhancement. Notably, the FAP pathway demonstrated significantly superior performance compared to the AAR/ADO and UndA/UndB pathway. As a result, 1.73 g/L alkanes and alkenes were produced from glucose, and 0.94 g/L alkanes and alkenes were produced from lignocellulosic hydrolysates, representing the highest alkanes and alkenes titers reported in yeast. This work establishes R. toruloides as a promising host for hydrocarbons production from glucose and CO2-neutral feedstocks and paves the way for further strain and process optimization towards industrial production of alkanes and alkenes.
Collapse
Affiliation(s)
- Yi Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Quan Yuan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jing Dai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
4
|
Li YZ, Wang Q, Cheng C, Chen C, Zhang FL, Zou Y, Li J, Zhao XQ. Genome mining of an endophytic natural yeast isolate Rhodotorula sp. Y090 and production of the potent antioxidant ergothioneine. J Biotechnol 2025; 404:18-26. [PMID: 40169100 DOI: 10.1016/j.jbiotec.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/19/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Endophytic yeast strains are promising sources of various valuable bioactive compounds. However, studies on endophytic strains derived from lichen samples remain limited. In this study, we isolated and characterized Rhodotorula sp. Y090 from a Usnea longissima lichen sample, and investigated its biosynthetic potential. Genome mining revealed distinct genetic features that differed from its closest relative strain R. graminis WP1. Ergothioneine (EGT) is a potent antioxidant and rare sulfur-containing histidine derivative. However, so far, the EGT biosynthetic enzymes by natural yeast strains have been limitedly studied. In this study, combining genome mining and transcriptomic analysis, genes encoding the potential enzymes for the production of EGT and xylose utilization were identified in Rhodotorula sp. Y090. Further studies demonstrated that Rhodotorula sp. Y090 was capable of producing EGT using xylose, glucose, glycerol, or sucrose as the sole carbon source, and the highest titer reached 363.6 mg/L in shake flask culture, which is significantly higher than that of the most reported levels in the other natural yeasts. Rhodotorula sp. Y090 also exhibited a good ability of EGT export, which could facilitate cost-effective production. These findings suggest that the lichen-derived endophytic yeast Rhodotorula sp. Y090 represents a promising natural candidate for bio-production of the potent antioxidant.
Collapse
Affiliation(s)
- Yu-Zhen Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Cheng
- School of Biotechnology and Food Engineering, Hefei Normal University, Hefei 230601, China
| | - Chao Chen
- College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Feng-Li Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Zou
- Shanghai CHANDO Group Co., Ltd, Shanghai 200233, China
| | - Jun Li
- Shanghai CHANDO Group Co., Ltd, Shanghai 200233, China.
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Reķēna A, Pals K, Gavrilović S, Lahtvee PJ. The role of ATP citrate lyase, phosphoketolase, and malic enzyme in oleaginous Rhodotorula toruloides. Appl Microbiol Biotechnol 2025; 109:77. [PMID: 40156749 PMCID: PMC11954720 DOI: 10.1007/s00253-025-13454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 04/01/2025]
Abstract
Rhodotorula toruloides is an oleaginous yeast recognized for its robustness and the production of high content of neutral lipids. Early biochemical studies have linked ATP citrate lyase (ACL), phosphoketolase (PK), and cytosolic malic enzyme (cMAE) with de novo lipid synthesis. In this study, we discovered that upon a CRISPR/Cas9-mediated knockout of the ACL gene, lipid content in R. toruloides IFO0880 decreased from 50 to 9% of its dry cell weight (DCW) in glucose medium and caused severe growth defects (reduced specific growth rate, changes in cell morphology). In xylose medium, the lipid content decreased from 43 to 38% of DCW. However, when grown on acetate as the sole carbon source, the lipid content decreased from 45 to 20% of DCW. Significant growth defects as a result of ACL knockout were observed on all substrates. In contrast, PK knockout resulted in no change in growth or lipid synthesis. Knocking out cMAE gene resulted in lipid increase of 2.9% of DCW and 23% increase in specific growth rate on glucose. In xylose or acetate medium, no change in lipid production as a result of cMAE gene knockout was observed. These results demonstrated that ACL plays a crucial role in lipid synthesis in R. toruloides IFO0880, as opposed to PK pathway or cMAE, whose presence in some conditions even disfavors lipid production. These results provided valuable information for future metabolic engineering of R. toruloides. KEY POINTS: • ACL is crucial for the fatty acid synthesis and growth in R. toruloides IFO0880. • Lipid production and cell growth is are unchanged as a result of PK knockout. • Cytosolic malic enzyme does not play a significant role in lipogenesis.
Collapse
Affiliation(s)
- Alīna Reķēna
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kristjan Pals
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Srðan Gavrilović
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Petri-Jaan Lahtvee
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| |
Collapse
|
6
|
Wang G, Li M, Ma M, Wu Z, Liang X, Zheng Q, Li D, An T. Increased accumulation of fatty acids in engineered Saccharomyces cerevisiae by co-overexpression of interorganelle tethering protein and lipases. N Biotechnol 2025; 85:1-8. [PMID: 39613152 DOI: 10.1016/j.nbt.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/27/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Fatty acids (FAs) and their derivatives are versatile chemicals widely used in various industries. Synthetic biology, using microbial cell factories, emerges as a promising alternative technology for FA production. To enhance the production capacity of these microbial chassis, additional engineering strategies are imperative. Based on the comparison of the morphological changes of lipid droplets (LDs) between oleaginous and non-oleaginous yeasts, we developed a new engineering strategy to increase the accumulation of FAs in Saccharomyces cerevisiae through manipulation of regulation factor and lipases related to LD. The increased biogenesis of LDs, achieved by overexpressing the interorganelle tethering protein Mdm1, coupled with the accelerated degradation of LDs through upregulated lipases, resulted in a 10.70-fold increase in total FAs production. Co-overexpression of Mdm1 and selected lipases significantly improved the biosynthesis of FAs and linoleic acid in the engineered S. cerevisiae. The efficient LD-based metabolic engineering strategy presented in this study holds the potential to advance the high-level production of FAs and their derivatives in microbial cell factories.
Collapse
Affiliation(s)
- Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Mengyu Ma
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Zhenke Wu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China.
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China.
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China.
| |
Collapse
|
7
|
Wang M, Zhang Z, Liu X, Liu Z, Liu R. Biosynthesis of Edible Terpenoids: Hosts and Applications. Foods 2025; 14:673. [PMID: 40002116 PMCID: PMC11854313 DOI: 10.3390/foods14040673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Microbial foods include microbial biomass, naturally fermented foods, and heterologously synthesized food ingredients derived from microbial fermentation. Terpenoids, using isoprene as the basic structure, possess various skeletons and functional groups. They exhibit diverse physicochemical properties and physiological activities, such as unique flavor, anti-bacterial, anti-oxidant, anti-cancer, and hypolipemic, making them extensively used in the food industry, such as flavor, fragrance, preservatives, dietary supplements, and medicinal health food. Compared to traditional strategies like direct extraction from natural species and chemical synthesis, microbial cell factories for edible terpenoids have higher titers and yields. They can utilize low-cost raw materials and are easily scaling-up, representing a novel green and sustainable production mode. In this review, we briefly introduce the synthetic pathway of terpenoids and the applications of microbial cell factories producing edible terpenoids. Secondly, we highlight several typical and non-typical microbial chassis in edible terpenoid-producing cell factories. In addition, we reviewed the recent advances of representative terpenoid microbial cell factories with a gram-scale titer in food flavor, food preservation, nutritional enhancers, and medicinal health foods. Finally, we predict the future directions of microbial cell factories for edible terpenoids and their commercialization process.
Collapse
Affiliation(s)
- Mengyu Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (Z.Z.); (X.L.); (Z.L.); (R.L.)
| | | | | | | | | |
Collapse
|
8
|
Yook S, Alper HS. Recent advances in genetic engineering and chemical production in yeast species. FEMS Yeast Res 2025; 25:foaf009. [PMID: 40082732 PMCID: PMC11963765 DOI: 10.1093/femsyr/foaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025] Open
Abstract
Yeasts have emerged as well-suited microbial cell factory for the sustainable production of biofuels, organic acids, terpenoids, and specialty chemicals. This ability is bolstered by advances in genetic engineering tools, including CRISPR-Cas systems and modular cloning in both conventional (Saccharomyces cerevisiae) and non-conventional (Yarrowia lipolytica, Rhodotorula toruloides, Candida krusei) yeasts. Additionally, genome-scale metabolic models and machine learning approaches have accelerated efforts to create a broad range of compounds that help reduce dependency on fossil fuels, mitigate climate change, and offer sustainable alternatives to petrochemical-derived counterparts. In this review, we highlight the cutting-edge genetic tools driving yeast metabolic engineering and then explore the diverse applications of yeast-based platforms for producing value-added products. Collectively, this review underscores the pivotal role of yeast biotechnology in efforts to build a sustainable bioeconomy.
Collapse
Affiliation(s)
- Sangdo Yook
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, United States
| |
Collapse
|
9
|
Zheng X, Liu Y, Li Y, Wang Y, Yang X. De Novo Biosynthesis of 2-Phenylethanol by Metabolic Engineering the Oleaginous Yeast Rhodotorula toruloides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39504411 DOI: 10.1021/acs.jafc.4c07705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Microbial production offers a sustainable route to plant- and chemical-based manufacturing. 2-Phenylethanol (2-PE) has been widely used in foods, flavors, and pharmaceuticals. Herein, de novo biosynthesis of 2-PE was achieved for the first time by rewiring the non-native producer Rhodotorula toruloides. Our results showed that the generation of phenylalanine (Phe) and the recycling of the amino group could be bypassed since the Ehrlich pathway outperformed the phenylacetaldehyde-dependent one in de novo biosynthesis of 2-PE when the adenosine 5'-triphosphate (ATP) citrate synthase (ACL) was inactivated. The 2-PE titer was enhanced to 151.7 mg/L in a shake flask by alleviating feedback inhibition, enhancing precursor availability and cofactor balance. Finally, the production of 2-PE was elevated to 1.06 g/L with a yield of 8.5 mg/g glucose and productivity of 8 mg/L/h in a 3 L bioreactor. Our results should shed light on the microbial production of other aromatic derivatives with R. toruloides.
Collapse
Affiliation(s)
- Xiaochun Zheng
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yijuan Liu
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yajun Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanan Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaobing Yang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
10
|
Gong G, Wu B, Liu L, Li J, He M. Engineering oleaginous red yeasts as versatile chassis for the production of oleochemicals and valuable compounds: Current advances and perspectives. Biotechnol Adv 2024; 76:108432. [PMID: 39163921 DOI: 10.1016/j.biotechadv.2024.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/04/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Enabling the transition towards a future circular bioeconomy based on industrial biomanufacturing necessitates the development of efficient and versatile microbial platforms for sustainable chemical and fuel production. Recently, there has been growing interest in engineering non-model microbes as superior biomanufacturing platforms due to their broad substrate range and high resistance to stress conditions. Among these non-conventional microbes, red yeasts belonging to the genus Rhodotorula have emerged as promising industrial chassis for the production of specialty chemicals such as oleochemicals, organic acids, fatty acid derivatives, terpenoids, and other valuable compounds. Advancements in genetic and metabolic engineering techniques, coupled with systems biology analysis, have significantly enhanced the production capacity of red yeasts. These developments have also expanded the range of substrates and products that can be utilized or synthesized by these yeast species. This review comprehensively examines the current efforts and recent progress made in red yeast research. It encompasses the exploration of available substrates, systems analysis using multi-omics data, establishment of genome-scale models, development of efficient molecular tools, identification of genetic elements, and engineering approaches for the production of various industrially relevant bioproducts. Furthermore, strategies to improve substrate conversion and product formation both with systematic and synthetic biology approaches are discussed, along with future directions and perspectives in improving red yeasts as more versatile biotechnological chassis in contributing to a circular bioeconomy. The review aims to provide insights and directions for further research in this rapidly evolving field. Ultimately, harnessing the capabilities of red yeasts will play a crucial role in paving the way towards next-generation sustainable bioeconomy.
Collapse
Affiliation(s)
- Guiping Gong
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| | - Bo Wu
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Linpei Liu
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Jianting Li
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| |
Collapse
|
11
|
Castillo-Patiño D, Rosas-Mejía HG, Albalate-Ramírez A, Rivas-García P, Carrillo-Castillo A, Morones-Ramírez JR. Transforming Agro-Industrial Waste into Bioplastic Coating Films. ACS OMEGA 2024; 9:42970-42989. [PMID: 39464469 PMCID: PMC11500142 DOI: 10.1021/acsomega.4c05924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024]
Abstract
Addressing the environmental impact of agro-industrial waste, this study explores the transformation of banana, potato, and orange peels into bioplastics suitable for thin coating films. We prepared six extracts at 100 g/L, encompassing individual (banana peel, BP; orange peel, OP; and potato peel, PP) and combined [BP/OP, BP/PP, and BP/OP/PP] formulations, with yeast mold (YM) medium serving as the control. Utilizing the spin-coating method, we applied 1 mL of each sample at 1000 rpm for 1 min to create the films. Notably, the OP extract demonstrated a twofold increase in bioplastic yield (860.33 mg/L) compared to the yields of BP (391.43 mg/L), PP (357.67 mg/L), BP/OP (469.40 mg/L), BP/PP (382.50 mg/L), BP/OP/PP (272.67 mg/L), and YM (416.33 mg/L) extracts. Atomic force microscopy analysis of the film surfaces revealed a roughness under 8 nm, with the OP extract recording the highest at 7.0275 nm, whereas the BP/OP mixture exhibited the lowest roughness at 0.2067 nm and also formed the thinnest film at 6.5 nm. With R2 trend values exceeding 0.9950, the films exhibited water vapor permeability values ranging from 3.05 × 10-3 to 4.44 × 10-3, with the OP film being the least permeable and the BP/PP films the most permeable. The OP film demonstrated the lowest solubility in both water and ethanol with values of 64.71 and 1.05%, respectively. The solubilities of all films were above 60% in water and below 4% in ethanol. Furthermore, the films exhibited antimicrobial efficacy against both Gram-positive and Gram-negative bacteria. Our findings confirm the potential of utilizing banana, orange, and potato peels as viable substrates for eco-friendly bioplastics in thin-film applications.
Collapse
Affiliation(s)
- Diana
Lucinda Castillo-Patiño
- Faculty
of Chemical Sciences, Autonomous University
of Nuevo León (UANL), San
Nicolás de los Garza 66455, Mexico
- Center
for Research in Biotechnology and Nanotechnology, Faculty of Chemical
Sciences, Autonomous University of Nuevo
León, Research and Technological Innovation Park, Apodaca 66628, Mexico
| | - Humberto Geovani Rosas-Mejía
- Faculty
of Chemical Sciences, Autonomous University
of Nuevo León (UANL), San
Nicolás de los Garza 66455, Mexico
- Center
for Research in Biotechnology and Nanotechnology, Faculty of Chemical
Sciences, Autonomous University of Nuevo
León, Research and Technological Innovation Park, Apodaca 66628, Mexico
| | - Alonso Albalate-Ramírez
- Faculty
of Chemical Sciences, Autonomous University
of Nuevo León (UANL), San
Nicolás de los Garza 66455, Mexico
- Center
for Research in Biotechnology and Nanotechnology, Faculty of Chemical
Sciences, Autonomous University of Nuevo
León, Research and Technological Innovation Park, Apodaca 66628, Mexico
| | - Pasiano Rivas-García
- Faculty
of Chemical Sciences, Autonomous University
of Nuevo León (UANL), San
Nicolás de los Garza 66455, Mexico
- Center
for Research in Biotechnology and Nanotechnology, Faculty of Chemical
Sciences, Autonomous University of Nuevo
León, Research and Technological Innovation Park, Apodaca 66628, Mexico
| | - Amanda Carrillo-Castillo
- Autonomous
University of Ciudad Juarez, Plutarco Elias Avenue, 1210 Foviste Chamizal, Ciudad Juárez 32310, Chihuahua, Mexico
| | - José Rubén Morones-Ramírez
- Faculty
of Chemical Sciences, Autonomous University
of Nuevo León (UANL), San
Nicolás de los Garza 66455, Mexico
- Center
for Research in Biotechnology and Nanotechnology, Faculty of Chemical
Sciences, Autonomous University of Nuevo
León, Research and Technological Innovation Park, Apodaca 66628, Mexico
| |
Collapse
|
12
|
Antunes M, Mota MN, Fernandes PAR, Coelho E, Coimbra MA, Sá-Correia I. Cell wall alterations occurring in an evolved multi-stress tolerant strain of the oleaginous yeast Rhodotorula toruloides. Sci Rep 2024; 14:23366. [PMID: 39375422 PMCID: PMC11458906 DOI: 10.1038/s41598-024-74919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
The oleaginous yeast species Rhodotorula toruloides is a promising candidate for applications in circular bioeconomy due to its ability to efficiently utilize diverse carbon sources being tolerant to cellular stress in bioprocessing. Previous studies including genome-wide analyses of the multi-stress tolerant strain IST536 MM15, derived through adaptive laboratory evolution from a promising IST536 strain for lipid production from sugar beet hydrolysates, suggested the occurrence of significant modifications in the cell wall. In this study, the cell wall integrity and carbohydrate composition of those strains was characterized to gain insights into the physicochemical changes associated to the remarkable multi-stress tolerance phenotype of the evolved strain. Compared to the original strain, the evolved strain exhibited a higher proportion of glucomannans, fucogalactomannans, and chitin relative to (1→4)-linked glucans, and an increased presence of glycoproteins with short glucosamine derived oligosaccharides, which have been found to be associated to ethanol stress tolerance and physical strength of the cell wall. Furthermore, the evolved strain cells were found to be significantly smaller than the original strain and more resistant to thermal and mechanical disruption, consistent with higher proportion of beta-linked polymers instead of glycogen, conferring a more rigid and robust cell wall. These findings provide further insights into the cell wall composition of this basidiomycetous red yeast species and into the alterations occurring in a multi-stress tolerant evolved strain. This new information can guide yeast genome engineering towards more robust strains of biotechnological relevance.
Collapse
Affiliation(s)
- Miguel Antunes
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, 1049-001, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, 1049-001, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon, 1049-001, Portugal
| | - Marta N Mota
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, 1049-001, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, 1049-001, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon, 1049-001, Portugal
| | - Pedro A R Fernandes
- Department of Chemistry, LAQV-REQUIMTE, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Elisabete Coelho
- Department of Chemistry, LAQV-REQUIMTE, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal.
| | - Manuel A Coimbra
- Department of Chemistry, LAQV-REQUIMTE, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Isabel Sá-Correia
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, 1049-001, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, 1049-001, Portugal.
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon, 1049-001, Portugal.
| |
Collapse
|
13
|
Wankhede L, Bhardwaj G, Saini R, Osorio-Gonzalez CS, Brar SK. Technological modes and processes to enhance the Rhodosporidium toruloides based lipid accumulation. Microbiol Res 2024; 287:127840. [PMID: 39032267 DOI: 10.1016/j.micres.2024.127840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/21/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Rhodosporidium toruloides has emerged as an excellent option for microbial lipid production due to its ability to accumulate up to 70 % of lipids per cell dry weight, consume multiple substrates such as glucose and xylose, and tolerate toxic compounds. Despite the potential of Rhodosporidium toruloides for high lipid yields, achieving these remains is a significant hurdle. A comprehensive review is essential to thoroughly evaluate the advancements in processes and technologies to enhance lipid production in R. toruloides. The review covers various strategies for enhancing lipid production like co-culture, adaptive evolution, carbon flux analysis, as well as different modes of fermentation. This review will help researchers to better understand the recent developments in technologies for sustainable and scalable lipid production from R. toruloides and simultaneously emphasize the need for developing an efficient and sustainable bioprocess.
Collapse
Affiliation(s)
- Lachi Wankhede
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Gaurav Bhardwaj
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Rahul Saini
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Carlos S Osorio-Gonzalez
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
14
|
Xue SJ, Li XC, Liu J, Zhang XT, Xin ZZ, Jiang WW, Zhang JY. Efficient sugar utilization and high tolerance to inhibitors enable Rhodotorula toruloides C23 to robustly produce lipid and carotenoid from lignocellulosic feedstock. BIORESOURCE TECHNOLOGY 2024; 407:131146. [PMID: 39047799 DOI: 10.1016/j.biortech.2024.131146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
The utilization of lignocellulosic substrates for microbial oil production by oleaginous yeasts has been evidenced as an economically viable process for industrial-scale biodiesel preparation. Efficient sugar utilization and tolerance to inhibitors are critical for lipid production from lignocellulosic substrates. This study investigated the lignocellulosic sugar utilization and inhibitor tolerance characteristics of Rhodotorula toruloides C23. The results demonstrated that C23 exhibited robust glucose and xylose assimilation irrespective of their ratios, yielding over 21 g/L of lipids and 11 mg/L of carotenoids. Furthermore, C23 exhibited high resistance and efficiently degradation towards toxic inhibitors commonly found in lignocellulosic hydrolysates. The potential molecular mechanism underlying xylose metabolism in C23 was explored, with several key enzymes and signal regulation pathways identified as potentially contributing to its superior lipid synthesis performance. The study highlights R. toruloides C23 as a promising candidate for robust biofuel and carotenoid production through direct utilization of non-detoxified lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Si-Jia Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Xiao-Chen Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Jie Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Xin-Tong Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Zhao-Zhe Xin
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Wen-Wen Jiang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Jin-Yong Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China.
| |
Collapse
|
15
|
He Q, Bai S, Chen C, Yang X, Li Z, Sun S, Qu X, Yang X, Pan J, Liu W, Hou C, Deng Y. A chromosome-scale genome provides new insights into the typical carotenoid biosynthesis in the important red yeast Rhodotorula glutinis QYH-2023 with anti-inflammatory effects. Int J Biol Macromol 2024; 269:132103. [PMID: 38719011 DOI: 10.1016/j.ijbiomac.2024.132103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Rhodotorula spp. has been studied as one powerful source for a novel cell factory with fast growth and its high added-value biomolecules. However, its inadequate genome and genomic annotation have hindered its widespread use in cosmetics and food industries. Rhodotorula glutinis QYH-2023, was isolated from rice rhizosphere soil, and the highest quality of the genome of the strain was obtained at chromosome level (18 chromosomes) than ever before in red yeast in this study. Comparative genomics analysis revealed that there are more key gene copies of carotenoids biosynthesis in R. glutinis QYH-2023 than other species of Rhodotorula spp. Integrated transcriptome and metabolome analysis revealed that lipids and carotenoids biosynthesis was significantly enriched during fermentation. Subsequent investigation revealed that the over-expression of the strain three genes related to carotenoids biosynthesis in Komagataella phaffii significantly promoted the carotenoid production. Furthermore, in vitro tests initially confirmed that the longer the fermentation period, the synthesized metabolites controlled by R. glutinis QYH-2023 genome had the stronger anti-inflammatory properties. All of the findings revealed a high-quality reference genome which highlight the potential of R. glutinis strains to be employed as chassis cells for biosynthesizing carotenoids and other active chemicals.
Collapse
Affiliation(s)
- Qiaoyun He
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shasha Bai
- Beijing Institute of Nutritional Resources Co., LTD, Beijing Academy of Science and Technology, Beijing 100069, PR China; Department of Biomedical Sciences, Beijing city university, Beijing 100083, PR China
| | - Chenxiao Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Xiai Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Zhimin Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Shitao Sun
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Xiaoxin Qu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Xiushi Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Jiangpeng Pan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Wei Liu
- Hangzhou Base Array Biotechnology Co., Ltd., Hangzhou 310000, PR China
| | - Chunsheng Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| | - Yanchun Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| |
Collapse
|
16
|
Antunes M, Mota MN, Sá-Correia I. Cell envelope and stress-responsive pathways underlie an evolved oleaginous Rhodotorula toruloides strain multi-stress tolerance. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:71. [PMID: 38807231 PMCID: PMC11134681 DOI: 10.1186/s13068-024-02518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND The red oleaginous yeast Rhodotorula toruloides is a promising cell factory to produce microbial oils and carotenoids from lignocellulosic hydrolysates (LCH). A multi-stress tolerant strain towards four major inhibitory compounds present in LCH and methanol, was derived in our laboratory from strain IST536 (PYCC 5615) through adaptive laboratory evolution (ALE) under methanol and high glycerol selective pressure. RESULTS Comparative genomic analysis suggested the reduction of the original strain ploidy from triploid to diploid, the occurrence of 21,489 mutations, and 242 genes displaying copy number variants in the evolved strain. Transcriptomic analysis identified 634 genes with altered transcript levels (465 up, 178 down) in the multi-stress tolerant strain. Genes associated with cell surface biogenesis, integrity, and remodelling and involved in stress-responsive pathways exhibit the most substantial alterations at the genome and transcriptome levels. Guided by the suggested stress responses, the multi-stress tolerance phenotype was extended to osmotic, salt, ethanol, oxidative, genotoxic, and medium-chain fatty acid-induced stresses. CONCLUSIONS The comprehensive analysis of this evolved strain provided the opportunity to get mechanistic insights into the acquisition of multi-stress tolerance and a list of promising genes, pathways, and regulatory networks, as targets for synthetic biology approaches applied to promising cell factories, toward more robust and superior industrial strains. This study lays the foundations for understanding the mechanisms underlying tolerance to multiple stresses in R. toruloides, underscoring the potential of ALE for enhancing the robustness of industrial yeast strains.
Collapse
Affiliation(s)
- Miguel Antunes
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Marta N Mota
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| |
Collapse
|
17
|
Liu K, Xiang G, Li L, Liu T, Ke J, Xiong L, Wei D, Wang F. Engineering non-conventional yeast Rhodotorula toruloides for ergothioneine production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:65. [PMID: 38741169 DOI: 10.1186/s13068-024-02516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Ergothioneine (EGT) is a distinctive sulfur-containing histidine derivative, which has been recognized as a high-value antioxidant and cytoprotectant, and has a wide range of applications in food, medical, and cosmetic fields. Currently, microbial fermentation is a promising method to produce EGT as its advantages of green environmental protection, mild fermentation condition, and low production cost. However, due to the low-efficiency biosynthetic process in numerous cell factories, it is still a challenge to realize the industrial biopreparation of EGT. The non-conventional yeast Rhodotorula toruloides is considered as a potential candidate for EGT production, thanks to its safety for animals and natural ability to synthesize EGT. Nevertheless, its synthesis efficiency of EGT deserves further improvement. RESULTS In this study, out of five target wild-type R. toruloides strains, R. toruloides 2.1389 (RT1389) was found to accumulate the highest EGT production, which could reach 79.0 mg/L at the shake flask level on the 7th day. To achieve iterative genome editing in strain RT1389, CRISPR-assisted Cre recombination (CACR) method was established. Based on it, an EGT-overproducing strain RT1389-2 was constructed by integrating an additional copy of EGT biosynthetic core genes RtEGT1 and RtEGT2 into the genome, the EGT titer of which was 1.5-fold increase over RT1389. As the supply of S-adenosylmethionine was identified as a key factor determining EGT production in strain RT1389, subsequently, a series of gene modifications including S-adenosylmethionine rebalancing were integrated into the strain RT1389-2, and the resulting mutants were rapidly screened according to their EGT production titers with a high-throughput screening method based on ergothionase. As a result, an engineered strain named as RT1389-3 was selected with a production titer of 267.4 mg/L EGT after 168 h in a 50 mL modified fermentation medium. CONCLUSIONS This study characterized the EGT production capacity of these engineered strains, and demonstrated that CACR and high-throughput screening method allowed rapid engineering of R. toruloides mutants with improved EGT production. Furthermore, this study provided an engineered RT1389-3 strain with remarkable EGT production performance, which had potential industrial application prospects.
Collapse
Affiliation(s)
- Ke Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Gedan Xiang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Lekai Li
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Tao Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Ke
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Liangbin Xiong
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Fengqing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
18
|
Sunder S, Gupta A, Kataria R, Ruhal R. Potential of Rhodosporidium toruloides for Fatty Acids Production Using Lignocellulose Biomass. Appl Biochem Biotechnol 2024; 196:2881-2900. [PMID: 37615852 DOI: 10.1007/s12010-023-04681-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Microbial lipids are ideal for developing liquid biofuels because of their sustainability and no dependence on food crops. Especially the bioprocess for microbial lipids may be made economical by using sustainable approaches, e.g., lignocellulose-based carbon sources. This demand led to a search for ideal microorganisms with the ability to utilize efficiently biomass into value-added products. Rhodosporidium toruloides species belongs to the family of oleaginous (OG) yeast, which aggregates up to 70% of its biomass to produce fatty acids which can be converted to a variety of biofuels. R. toruloides is extremely adaptable to different types of feedstocks. Among all feedstock, a lot of effort is going on to develop a bioprocess of fatty acid production from lignocellulose biomass. The lignocellulose biomass is pretreated using harsh conditions of acid, alkali, and other which leads to the generation of a variety of sugars and toxic compounds. Thus, so obtained lignocellulose hydrolysate may have conditions of different pH, variable carbon and nitrogen ratios, and other non-optimum conditions. Accordingly, a detailed investigation is required for molecular level metabolism of R. toruloides in response to the hydrolysate for producing desired biochemicals like fatty acids. The present review focuses on numerous elements and obstacles, including metabolism, biofuel production, cultivation parameters, and genetic alteration of mutants in extracting fatty acids from lignocellulosic materials utilizing Rhodosporidium spp. This review provides useful information on the research working to develop processes for lignocellulose biomass using oleaginous yeast.
Collapse
Affiliation(s)
- Sushant Sunder
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Anshul Gupta
- Department of Biotechnology, Delhi Technological University, New Delhi, India
- Department of Physics, Technische Universität München, Munich, Germany
| | - Rashmi Kataria
- School of Bio Science and Technology, VIT Vellore, Vellore, Tamil Nadu, India.
| | - Rohit Ruhal
- School of Bio Science and Technology, VIT Vellore, Vellore, Tamil Nadu, India.
| |
Collapse
|
19
|
Koh HG, Yook S, Oh H, Rao CV, Jin YS. Toward rapid and efficient utilization of nonconventional substrates by nonconventional yeast strains. Curr Opin Biotechnol 2024; 85:103059. [PMID: 38171048 DOI: 10.1016/j.copbio.2023.103059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Economic and sustainable production of biofuels and chemicals necessitates utilizing abundant and inexpensive lignocellulosic biomass. Yet, Saccharomyces cerevisiae, a workhorse strain for industrial biotechnology based on starch and sugarcane-derived sugars, is not suitable for lignocellulosic bioconversion due to a lack of pentose metabolic pathways and severe inhibition by toxic inhibitors in cellulosic hydrolysates. This review underscores the potential of nonconventional yeast strains, specifically Yarrowia lipolytica and Rhodotorula toruloides, for converting underutilized carbon sources, such as xylose and acetate, into high-value products. Multi-omics studies with nonconventional yeast have elucidated the structure and regulation of metabolic pathways for efficient and rapid utilization of xylose and acetate. The review delves into the advantages of using xylose and acetate for producing biofuels and chemicals. Collectively, value-added biotransformation of nonconventional substrates by nonconventional yeast strains is a promising strategy to improve both economics and sustainability of bioproduction.
Collapse
Affiliation(s)
- Hyun Gi Koh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sangdo Yook
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hyunjoon Oh
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christopher V Rao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
20
|
Liu H, Huang X, Liu Y, Jing X, Ning Y, Xu P, Deng L, Wang F. Efficient Production of Triacetic Acid Lactone from Lignocellulose Hydrolysate by Metabolically Engineered Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18909-18918. [PMID: 37999448 DOI: 10.1021/acs.jafc.3c06528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Lignocellulose is a promising renewable feedstock for the bioproduction of high-value biochemicals. The poorly expressed xylose catabolic pathway was the bottleneck in the efficient utilization of the lignocellulose feedstock in yeast. Herein, multiple genetic and process engineering strategies were explored to debottleneck the conversion of xylose to the platform chemical triacetic acid lactone (TAL) in Yarrowia lipolytica. We identified that xylose assimilation generating more cofactor NADPH was favorable for the TAL synthesis. pH control improved the expression of acetyl-CoA carboxylase and generated more precursor malonyl-CoA. Combined with the suppression of the lipid synthesis pathway, 5.03 and 4.18 g/L TAL were produced from pure xylose and xylose-rich wheat straw hydrolysate, respectively. Our work removed the bottleneck of the xylose assimilation pathway and effectively upgraded wheat straw hydrolysate to TAL, which enabled us to build a sustainable oleaginous yeast cell factory to cost-efficiently produce green chemicals from low-cost lignocellulose by Y. lipolytica.
Collapse
Affiliation(s)
- Huan Liu
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolan Huang
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yangming Liu
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinyun Jing
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuchen Ning
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
| | - Li Deng
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fang Wang
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
21
|
Hu L, Qiu H, Huang L, Zhang F, Tran VG, Yuan J, He N, Cao M. Emerging nonmodel eukaryotes for biofuel production. Curr Opin Biotechnol 2023; 84:103015. [PMID: 37913603 DOI: 10.1016/j.copbio.2023.103015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/07/2023] [Indexed: 11/03/2023]
Abstract
Microbial synthesis of biofuels offers a promising solution to the global environmental and energy concerns. However, the main challenge of microbial cell factories is their high fermentation costs. Model hosts, such as Escherichia coli and Saccharomyces cerevisiae, are typically used for proof-of-concept studies of producing different types of biofuels, however, they have a limited potential for biofuel production at an industrially relevant scale due to the weak stability/robustness and narrow substrate scope. With the advancements of synthetic biology and metabolic engineering, nonmodel eukaryotes, with naturally favorable phenotypic and metabolic features, have been emerging as promising biofuel producers. Here, we introduce the emerging nonmodel eukaryotes for the biofuel production and discuss their specific advantages, especially those with the capacity of producing cellulosic ethanol, higher alcohols, and fatty acid-/terpene-derived biofuel molecules. We also propose the challenges and prospects for developing nonmodel eukaryotic as the ideal hosts for future biofuel production.
Collapse
Affiliation(s)
- Lin Hu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Fujian 361005, China
| | - Huihui Qiu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Fujian 361005, China
| | - Liuheng Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Fujian 361005, China
| | - Fenghui Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Fujian 361005, China
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Fujian 361005, China.
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Fujian 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Fujian 361005, China.
| |
Collapse
|
22
|
Lopes DD, Dien BS, Hector RE, Singh V, Thompson SR, Slininger PJ, Boundy-Mills K, Jagtap SS, Rao CV. Determining mating type and ploidy in Rhodotorula toruloides and its effect on growth on sugars from lignocellulosic biomass. J Ind Microbiol Biotechnol 2023; 50:kuad040. [PMID: 37989723 PMCID: PMC10690854 DOI: 10.1093/jimb/kuad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Rhodotorula toruloides is being developed for the use in industrial biotechnology processes because of its favorable physiology. This includes its ability to produce and store large amounts of lipids in the form of intracellular lipid bodies. Nineteen strains were characterized for mating type, ploidy, robustness for growth, and accumulation of lipids on inhibitory switchgrass hydrolysate (SGH). Mating type was determined using a novel polymerase chain reaction (PCR)-based assay, which was validated using the classical microscopic test. Three of the strains were heterozygous for mating type (A1/A2). Ploidy analysis revealed a complex pattern. Two strains were triploid, eight haploid, and eight either diploid or aneuploid. Two of the A1/A2 strains were compared to their parents for growth on 75%v/v concentrated SGH. The A1/A2 strains were much more robust than the parental strains, which either did not grow or had extended lag times. The entire set was evaluated in 60%v/v SGH batch cultures for growth kinetics and biomass and lipid production. Lipid titers were 2.33-9.40 g/L with a median of 6.12 g/L, excluding the two strains that did not grow. Lipid yields were 0.032-0.131 (g/g) and lipid contents were 13.5-53.7% (g/g). Four strains had significantly higher lipid yields and contents. One of these strains, which had among the highest lipid yield in this study (0.131 ± 0.007 g/g), has not been previously described in the literature. SUMMARY The yeast Rhodotorula toruloides was used to produce oil using sugars extracted from a bioenergy grass.
Collapse
Affiliation(s)
- Daiane Dias Lopes
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, (Bioenergy Research), 1815 N University, Peoria, IL 61604, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bruce S Dien
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, (Bioenergy Research), 1815 N University, Peoria, IL 61604, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ronald E Hector
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, (Bioenergy Research), 1815 N University, Peoria, IL 61604, USA
| | - Vijay Singh
- DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephanie R Thompson
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, (Bioenergy Research), 1815 N University, Peoria, IL 61604, USA
| | - Patricia J Slininger
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, (Bioenergy Research), 1815 N University, Peoria, IL 61604, USA
| | - Kyria Boundy-Mills
- Phaff Yeast Culture Collection, Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Sujit S Jagtap
- DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Christopher V Rao
- DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| |
Collapse
|