1
|
Chen Q, Wei W, Chao Z, Qi R, He J, Chen H, Wang K, Wang X, Rao Y, Zhou J. Electron transfer engineering of artificially designed cell factory for complete biosynthesis of steroids. Nat Commun 2025; 16:3740. [PMID: 40258825 PMCID: PMC12012142 DOI: 10.1038/s41467-025-58926-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 04/04/2025] [Indexed: 04/23/2025] Open
Abstract
Biosynthesis of steroids by artificially designed cell factories often involves numerous nicotinamide adenine dinucleotide phosphate (NADPH)-dependent enzymes that mediate electron transfer reactions. However, the unclear mechanisms of electron transfer from regeneration to the final delivery to the NADPH-dependent active centers limit systematically engineering electron transfer to improve steroids production. Here, we elucidate the electron transfer mechanisms of NADPH-dependent enzymes for systematically engineer electron transfer of Saccharomyces cerevisiae, including step-by-step engineering the electron transfer residues of 7-Dehydrocholesterol reductase (DHCR7) and P450 sterol side chain cleaving enzyme (P450scc), electron transfer components for directing carbon flux, and NADPH regeneration pathways, for high-level production of the cholesterol (1.78 g/L) and pregnenolone (0.83 g/L). The electron transfer engineering (ETE) process makes the electron transfer chains shorter and more stable which significantly accelerates deprotonation and proton coupled electron transfer process. This study underscores the significance of ETE strategies in steroids biosynthesis and expands synthetic biology approaches.
Collapse
Affiliation(s)
- Qihang Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wenqian Wei
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zikai Chao
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Rui Qi
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jianhong He
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Huating Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Ke Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xinglong Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
2
|
Lu H, Wan Y, Wang Q, Li Y, Wu H, Ma N, Zhang Z, Zhang G. Aerobic Oxidative Hydroxylation of Arylboronic Acids under Visible-Light Irradiation without Metal Catalysts or Additives. Org Lett 2024; 26:1959-1964. [PMID: 38407134 DOI: 10.1021/acs.orglett.4c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Phenols are versatile synthetic intermediates and key structural motifs in many natural products and biologically active compounds. We herein report a visible-light-induced aerobic oxidative hydroxylation of arylboronic acids/pinacol esters using air as oxidant and without using any catalysts and base, etc., additives, providing a green entry to a variety of phenols in a highly efficient and concise fashion. This novel reaction is enabled by photoactivation of an electron donor-acceptor complex, in which THF serves as both the solvent and electron donor. DFT studies indicated that the oxidation process involves a concerted hydrogen abstraction transfer from THF and dehydroxylation of boronic acid undergoing spin crossover from triplet to singlet to produce an active peroxoboronic acid intermidiate. Salient merits of this chemistry include broad substrate scope and excellent functional group tolerance, gram-scale synthesis, and versatile late-stage functionalizations as well as the use of air, visible light, and catalyst- and additive-free conditions. This strategy introduces a novel photoreaction mode with the aid of a solvent, offering a succinct and environmentally sustainable route for synthesizing phenols. The strong practicability and highly efficient access to modifying complex biorelevant molecules bode well for the potential applications of this chemistry in pharmaceutical chemistry.
Collapse
Affiliation(s)
- Hongchen Lu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yameng Wan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Qiongjin Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yabo Li
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Hao Wu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Nana Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhiguo Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
3
|
Liu Q, Niu ZP, Yang K, Song JR, Wei XN, Huang YB, Yuan CM, Li YM. Synergistic combination of isogarcinol isolated from edible fruits of Garcinia multiflora and dexamethasone to overcome leukemia glucocorticoid resistance. Biomed Pharmacother 2024; 170:115936. [PMID: 38039755 DOI: 10.1016/j.biopha.2023.115936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
Isogarcinol (ISO), a cytotoxic polycyclic polyprenylated acylphloroglucinol isolated from the edible fruits of Garcinia multiflora. However, synergistic combination of ISO and dexamethasone (DEX) to overcome leukemia glucocorticoid resistance has never been investigated. Therefore, in this study, the effects of ISO in combination with DEX was conducted on leukemia in vivo and glucocorticoid resistance in vitro. As a result, the combination of the two compounds could efficiently inhibit leukemia progression in mice and reverse DEX resistance in acute lymphoblastic leukemia (ALL) Jurkat cells. Significantly, our findings indicated that c-Myc may be a potential target of ISO, as it is involved in cell cycle arrest and apoptosis by the combination of ISO and DEX in Jurkat cells. Furthermore, western blot analysis revealed that ISO and DEX inhibits the PI3K/Akt/mTOR signaling pathway and promotes the nuclear translocation of glucocorticoid receptor (GR), which activates target genes NR3C1 and TSC22D3, leading to apoptosis in Jurkat cells. Hence, our results suggest that ISO, as a safe and effective food-derived agent, can enhance the anti-leukemia effects of DEX.
Collapse
Affiliation(s)
- Qin Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014 Guizhou, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025 Guizhou, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Zhen-Peng Niu
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou, China
| | - Kun Yang
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025 Guizhou, China
| | - Jing-Rui Song
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014 Guizhou, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Xue-Nai Wei
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014 Guizhou, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yu-Bing Huang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014 Guizhou, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Chun-Mao Yuan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014 Guizhou, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| | - Yan-Mei Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014 Guizhou, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| |
Collapse
|